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Abstract
In this work, we present the derivation of a novel model for the myocardium that incorporates the underlying poroelastic 
nature of the material constituents as well as the electrical conductivity. The myocardium has a microstructure consisting 
of a poroelastic extracellular matrix with embedded poroelastic myocytes, i.e. a double poroelastic material. Due to the 
sharp length scale separation that exists between the microscale, where the individual myocytes are clearly resolved from 
the surrounding matrix, and the length of the entire heart muscle, we can apply the asymptotic homogenization technique. 
The novel PDE model accounts for the difference in the electric potentials, elastic properties as well as the differences in 
the hydraulic conductivities at different points in the microstructure. The differences in these properties are encoded in the 
coefficients and are to be computed by solving differential cell problems arising when applying the asymptotic homogeniza-
tion technique. We present a numerical analysis of the obtained Biot’s modulus, Young’s moduli as well as shears and the 
effective electrical activity. By investigating the poroelastic and electrical nature of the myocardium in one model, we can 
understand how the differences in elastic displacements between the extracellular matrix and the myocytes affect mecha-
notransduction and the influence of disease.

Keywords Poroelasticity · Asymptotic homogenization · Myocardial modelling · Composite materials

1 Introduction

The human heart is a muscular organ comprising four 
chambers: two atria and two ventricles, each of which have 
a muscular wall with three distinct layers, the endocardium, 
the myocardium and the epicardium. The thin inner and 
outer layers are known as the endocardium and epicardium, 
whereas the myocardium is the middle, thickest and domi-
nant layer. The myocardium has its own blood supply via 
the coronary arteries. The myocardium can be affected by 
a variety of diseases that influence its contractility and in 
turn its efficiency at pumping blood around the entire body, 

e.g. myocardial infarction, angina and the effects of ageing 
(Whitaker 2014; Weinhaus and Roberts 2005).

The myocardium comprises individual cardiac mus-
cle cells that are connected together creating a functional 
electrical syncytium. The syncytium allows for the rapid 
yet coordinated contraction of the muscles cells along the 
entire length. Therefore, there exists strong electrical and 
mechanical interactions taking place in every direction 
between each of the adjacent cardiac muscle cells. These 
connections allow the myocardium to behave as a single 
contractile unit (Bader et al. 2021). These cardiac muscle 
cells are called myocytes, and the ends are connected by the 
gap junctions at the intercalated discs. Blood flow around the 
body is propelled by contraction of the heart muscle due to 
the electrical activation of the myocytes. The heart has a vast 
and complicated physiology and electrical conductivity, and 
we encourage the reader to consider (Katz 2010; Opie 2004; 
Weidmann 1974) to gain a more thorough understanding.

The electrophysiology and mechanical behaviour of the 
heart have been the subject of much investigation (Pei-
rlinck et al. 2021; Owen et al. 2018; Smith et al. 2004). Key 
approaches in the literature surround the use of constitutive 
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nonlinear elastic modelling via both the Holzapfel–Ogden 
law (Holzapfel and Ogden 2009) and Fung (2013). The 
Holzapfel–Ogden law takes into consideration the fibre 
orientations when modelling the layers of the myocardium. 
Other works focusing on the influence of microstructural 
fibre arrangements in both soft tissues and porous media 
are Federico and Herzog (2008); Hashlamoun et al. (2016). 
The Holzapfel–Ogden law has been used for a variety of 
studies such as the inclusion of residual stress (Wang et al. 
2014) and parameter inference (Gao et al. 2015). Other 
important heart modelling approaches include the mod-
els of active contraction by Guccione et al. (1993); Guc-
cione and McCulloch (1993) and the finite element models 
of ventricular mechanics and large-scale beating heart in 
Guccione and McCulloch (1991); Guccione et al. (2020). 
The theories of Fung have been applied to heart modelling 
in Fung (1970), and in Hsu et al. (2015), the authors use 
fluid–structure interaction simulations to understand bio-
prosthetic heart valves. A viscoelastic approach to modelling 
the myocardium has also been investigated by Gültekin et al. 
(2016) and Nordsletten et al. (2021). In Zingaro et al. (2023), 
the authors create a first of its kind computational model 
for myocardial blood perfusion that accounts for multiscale 
and multiphysics features. There have been many prominent 
works modelling the perfusion of the heart from a computa-
tional viewpoint. These include computational methods to 
obtain myocardial coronary permeabilities using the under-
lying anatomical vascular network, developed by Hyde et al. 
(2014). In Di Gregorio et al. (2021), the authors develop 
a mathematical and numerical model of cardiac perfusion 
accounting for the different length scales of the vessels in 
the coronary tree. Finally in Montino Pelagi et al. (2024), 
simulation of coronary flow and 3D myocardial perfusion 
is investigated.

The heart is highly multiscale in nature with various 
structural components only visible at various microstructural 
levels or scales. We are studying the myocardium where 
we wish to consider the interactions between the myocytes 
and the extracellular matrix. We therefore consider a length 
scale of resolution of the microstructure where we can vis-
ibly see the myocytes and matrix distinctly resolved from 
each other. This scale will be our microscale. This is a fine 
microstructural level of the myocardium and therefore can 
be characterized by a length which is much smaller than the 
one of the whole heart muscle. The complete heart mus-
cle has a scale which we call the macroscale. We should 
note that while we will not resolve the interactions here in 
this work, if we zoom in further on each of the microscale 
components we find that each is a porous matrix with fluid 
flow in the pores, and this scale is known as the porescale. 
A porous media approach to modelling perfusion in soft tis-
sues is taken by Huyghe and Van Campen (1995a, b), and 
in particular, modelling the myocardium and complex fluid 

flows has been considered in Cookson et al. (2012); Ng et al. 
(2005); Pesavento et al. (2017); Miller and Penta (2024). 
We note that although regularly not considered, it is a valid 
modelling assumption to consider the cardiac myocytes as 
a poroelastic material for two specific reasons. Firstly, all 
biological cells can be considered poroelastic due to the 
microscale existence of cytoplasm and various organelles 
(Moeendarbary et al. 2013), and secondly, the homeostasis 
of myocardial fluid content is controlled via the interplay 
between cardiac myocyte water uptake, microvascular filtra-
tion, interstitial hydration and lymphatic removal (Vasques-
Nóvoa et al. 2022).

Since the heart comprises multiple scales, it is necessary 
to create computationally feasible models that can effec-
tively characterize the effective behaviour of the organ. 
Such a model requires that the macroscale governing equa-
tions have the properties and interactions of the microscale 
encoded. To address this, a problem is setup that possesses 
governing equations for each phase in the microstructure 
and the interactions that occur between them. This type of 
problem can then undergo an upscaling process which will 
lead to a macroscale system of governing equations. This 
upscaling process can be carried out by a variety of methods 
each of which has been discussed in the literature and is col-
lectively known as homogenization techniques. These tech-
niques include volume averaging, mixture theory, effective 
medium theory and asymptotic homogenization. Homogeni-
zation techniques such as those mentioned above have been 
reviewed and discussed in Hori and Nemat-Nasser (1999); 
Davit et al. (2013).

We will utilize the two-scale asymptotic homogeniza-
tion technique. This technique has gained popularity in the 
modelling of poroelasticity such as in Burridge and Keller 
(1981); Penta et al. (2020), in the modelling of elastic com-
posites (Penta and Gerisch 2015; Penta and Gerisch 2017; 
Ramírez-Torres et al. 2018) and also in electroactive mate-
rials (Di Stefano et al. 2020; Penta et al. 2018; Penta et al. 
2021). The theory of poroelasticity has been extended via 
the asymptotic homogenization so as to include important 
biological features such as growth and remodelling and vas-
cularization of poroelastic materials (Penta et al. 2014; Penta 
and Merodio 2017). More recently, the technique was used 
to investigate poroelastic materials with more complicated 
microstructures such as poroelastic composites and double 
poroelastic materials (Miller and Penta 2020; Miller and 
Penta 2021a). A key feature of the asymptotic homogeniza-
tion technique is that it produces computationally feasible 
models. Due to this, a variety of analyses have been car-
ried out including a micromechanical analysis of the effec-
tive stiffness of poroelastic composites in Miller and Penta 
(2023) and the role of porosity and solid matrix compress-
ibility on the mechanical behaviour of poroelastic tissues 
has been investigated in Dehghani et al. (2018). Asymptotic 
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homogenization has been previously applied to solve prob-
lems in heart modelling. In Miller and Penta (2022), the 
structural changes involved in myocardial infarction have 
been investigated numerically. The technique has also been 
used in the context of the electrical bidomain model (see 
Bader et al. 2021; Richardson and Chapman 2011) and both 
the electrical and mechanical bidomain model of the heart 
(Miller and Penta 2023).

We apply the two-scale asymptotic homogenization tech-
nique to the equations we have chosen to govern the elec-
trostatic and poroelastic interactions of the components of 
the myocardium. We are investigating the myocardium at 
a scale of resolution where the myocytes are distinctly vis-
ible from the matrix. We call this scale the microscale. We 
associate a length with the microscale that is much smaller 
than the length of the entire heart muscle. When looking at 
the entire heart muscle, we no longer see the myocytes as the 
variations are smoothed out, and so, we denote the scale of 
the heart as the macroscale. At a finer scale of resolution on 
both the myocytes and the extracellular matrix, we find that 
each domain comprises a porous matrix with fluid flowing 
in the pores. This porescale microstructure is captured via 
the use of the governing equations of Biot’s poroelasticity in 
each domain of the microscale. We are then able to apply the 
asymptotic homogenization technique to upscale the micro-
scale problem, by accounting for the continuity of current 
densities, stresses, elastic displacements, fluxes, pressures 
and then also the difference in the electric potentials across 
the interface between the myocyte and the matrix. We note 
that an important feature of the asymptotic homogenization 
technique is that the scales and features fully decouple (see 
Penta and Gerisch 2017; Auriault et al. 2010; Mei and Ver-
nescu 2010). The obtained novel system of macroscale PDEs 
contains balance equations for the current densities and the 
stresses, a conservation of mass equation and a modified 
Darcy’s law. The macroscale equations have coefficients 
which encode properties of the material microstructure, and 
these are calculated by solving the microscale cell problems 
(electric, poroelastic and Darcy flow) that arise from our 
upscaling. A key feature of the asymptotic homogenization 
is the decoupling of the scales which allows for straight-
forward solution of the cell problems, and we note that the 
physical features fully decouple. That is, we have cell prob-
lems for the electric features that are fully independent from 
the poroelastic problems, which are also fully independent 
from the Darcy flow problems.

The current work extends upon exciting modelling devel-
opments in the literature such as the electrical and mechani-
cal bidomain model of Miller and Penta (2023), the models 
of a poroelastic matrix with elastic inclusion by Royer et al. 
(2019) and Chen et al. (2020), and the model of double 
poroelastic materials (Miller and Penta 2021a). Here we 
will combine key features from Miller and Penta (2023) 

and Miller and Penta (2021a) to create an electrical and 
mechanical myocardium model where there is an extra level 
of microstructural complexity encoded by accounting for the 
fact that the myocytes and matrix have an underlying poroe-
lastic nature. This means we have the behaviour of two finer 
scales encoded in the macroscale model, and additionally, 
this allows for a greater understanding of the myocardial 
behaviour as we are using a more realistic microstructure. 
The key novelties of the model are that (1) the macroscale 
coefficients encode the differences in microstructure over 
two finer scales of resolution and (2) it encodes the differ-
ence in poroelastic and electrical properties/moduli at differ-
ent points in the microstructure. Our macroscale stress bal-
ance equation captures how the elastic displacement of the 
myocyte and extracellular matrix are driven by the applied 
magnetic fields. Since our model captures both elastic and 
electrostatic activity, it paves the way towards understanding 
whether the differences in myocyte and extracellular matrix 
displacements affect the mechanotransduction of the overall 
heart and hence greater understanding of the influence of 
disease.

The paper is organized as follows. Section 2 introduces 
the mechanical and electrostatic equations that govern the 
interactions between the poroelastic myocyte and the poroe-
lastic extracellular matrix. In Sect. 3, we apply a multiscale 
analysis to the problem to allow us to derive the new mac-
roscale myocardial model encoding both the electrostatic 
and poroelastic properties of the myocardium. In Sect. 4, 
we present the new macroscale model and discuss the novel 
terms that arise. In Sect. 5, we solve the novel cell prob-
lems and present an analysis of both the effective electrical 
conductivity tensor and poroelastic properties such as elas-
tic shears and Young’s moduli, as well as investigating the 
Biot’s modulus. Finally in Sect. 6, we summarize our work 
discuss limitations and provide further perspectives.

2  Problem

We consider the myocardium to be a set Ω ∈ ℝ
3 where Ω is 

the union of the poroelastic extracellular matrix Ωe and the 
poroelastic myocyte Ωi , where we can write Ω̄ = Ω̄i ∪ Ω̄e . 
We provide a sketch of a cross section of the domain Ω in 
Fig. 1.

To create our model, we begin by writing the equations 
that govern each domain as well as the appropriate interface 
conditions that will close the problem, which we note will be 
in a quasi-static and linearized regime. We first consider the 
electrical component of our model and use the steady-state 
electrical bidomain equation, proposed by Puwal and Roth 
(2010); Roth (1992, 2016), in each subphase 
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 where we have the second rank conductivity tensors �i and 
�e in the myocyte and extracellular domain, respectively, 
and the scalar electric potentials of each phase are �i and 
�e . We also have the membrane parameters: � is the ratio of 
membrane area to tissue volume and G is the membrane con-
ductance. Equations (1a) and (1b) are the balance equations 
for the electric current densities for each phase. We note 
that it would also be possible to assume that we do not have 
a passive membrane current and modify Eqs. (1a) and (1b) 
to include an active membrane current such as the model 
presented by Spach (1983). We further remark that we could 
include the addition of active stresses and active strain such 
as in Pezzuto and Ambrosi (2014); Pezzuto et al. (2014) to 
incorporate the heart actively beating and undergoing defor-
mation. The current densities are given by Ohm’s law 

 where again the conductivity tensors are �i and �e and the 
applied electric fields are ∇�i and ∇�e.

We also need to consider the poroelastic component of 
our model. The two phases need a balance equation that 
will govern their mechanical behaviour. These are given by 

 The stress tensors �i and �e are the stress tensors in each 
compartment and are those of linear poroelastic materials 

(1a)∇ ⋅ (�i∇�i) = �G(�i − �e) in Ωi,

(1b)∇ ⋅ (�e∇�e) = −�G(�i − �e) in Ωe,

(2a)ji = −�i∇�i in Ωi,

(2b)je = −�e∇�e in Ωe,

(3a)∇ ⋅ �i = bi in Ωi,

(3b)∇ ⋅ �e = be in Ωe.

(Burridge and Keller 1981; Penta et al. 2020). We assume 
that each of the domains is subject to a body force bi and 
be . The body forces are the magnetic Lorentz force and are 
given by the action potential currents, ji and je , in a magnetic 
field B , as in Puwal and Roth (2010). The body forces bi and 
be are therefore

The body forces chosen here are commonly selected in the 
literature (see Puwal and Roth 2010) when investigating 
the cardiac action potentials. We also apply this body force 
because there are important applications where the magnetic 
Lorentz force has been used in medical imaging, e.g. elastic 
displacement due to Lorentz force has been recently pro-
posed as a potential use of MRI (Roth et al. 2014). For read-
ers interested in electroelastic or magneto-elastic materials 
and applied electric body forces for a variety of modelling 
applications, see, for example, Dorfmann and Ogden 2006; 
Maugin 2013; Dorfmann and Ogden 2014; Fu 2024; Liguori 
and Gei 2023; Bustamante et al. 2009; Bustamante 2010.

We assume that the two solid phases can be described using 
Biot’s anisotropic, heterogeneous, compressible poroelasticity 
(Biot 1955; Biot 1956a, b; Biot 1962). This can be derived via 
application of the asymptotic homogenization technique to a 
finer scale problem where the solid phases are described using 
Cauchy stress tensor (see Burridge and Keller 1981; Penta 
et al. 2020). Therefore, we have the stresses �i and �e appear-
ing in (3a) and (3b) which are given by 

(4)
b
i
= j

i
× B = −�

i
∇�

i
× B and b

e
= j

e
× B

= −�
e
∇�

e
× B.

(5a)�i = ℂi ∶ �(ui) − �ipi in Ωi,

(5b)�e = ℂe ∶ �(ue) − �epe in Ωe,

Fig. 1  We have a 2D sketch 
representing a cross section of 
the 3D domain Ω . The myocyte 
Ω

i
 is shown in pink and the 

extracellular domain Ω
e
 is in 

blue. There is an interface Γ (the 
cell membrane) between the two 
domains. We also can see that 
when zooming in on each of the 
two domains we have two dif-
ferent porous media with a fluid 
flowing in the pores
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 where

is the symmetric part of the gradient operator. We have that 
ui and ue are the elastic displacements in the myocyte and the 
extracellular matrix, respectively, and pi and pe are the pres-
sures in the myocyte and extracellular matrix, respectively. 
The ℂi and ℂe are the effective elasticity tensors that describe 
the myocytes and the extracellular matrix. These tensors can 
be obtained by carrying out a homogenization process at the 
finer hierarchical level, i.e. at the porescale shown in Fig. 1. 
These tensors ℂi and ℂe are the effective elasticity tensors 
obtained in (Burridge and Keller (1981); Penta et al. (2020)) 
for a standard poroelastic material. These effective elastic-
ity tensors possess major and minor symmetries as proved 
in Mei and Vernescu (2010). This means we can write the 
fourth rank effective elasticity tensors in components as Ci

pqrs
 

and Ce
pqrs

 , for p, q, r, s = 1, 2, 3 . Therefore, we have 

 The second rank tensors �i and �e appearing in (5a) and 
(5b) are the effective Biot’s tensors of coefficients in the 
myocyte and the extracellular matrix, respectively. These 
tensors also have been obtained from the homogenization 
at finer hierarchical scales. The second rank tensors �i and 
�e are related to the ratio of fluid to solid volume changes 
at constant pressure in their respective poroelastic phases.

In the myocytes and the extracellular matrix, we also have 
a Darcy’s law governing the fluid flow. That is, 

 where �i and �e are the hydraulic conductivities in the myo-
cyte and extracellular matrix, respectively, and the wi and we 
are the relative fluid–solid velocities in the myocytes and 
extracellular matrix, respectively.

The last governing equation of each compartment is the 
conservation of mass equation given by 

(6)�(⋅) =
∇(⋅) + (∇(⋅))T

2
,

(7a)C
i
pqrs

= C
i
qprs

= C
i
pqsr

= C
i
rspq

,

(7b)C
e
pqrs

= C
e
qprs

= C
e
pqsr

= C
e
rspq

.

(8a)wi = −�i∇pi in Ωi,

(8b)we = −�e∇pe in Ωe,

(9a)
ṗi

Mi

= −�i ∶ 𝜁(u̇i) − ∇ ⋅ wi in Ωi,

(9b)
ṗe

Me

= −�e ∶ 𝜁(u̇e) − ∇ ⋅ we in Ωe,

 in the myocyte and extracellular matrix. We have the Biot’s 
moduli Mi and Me in each compartment, which are also 
coefficients that can be obtained from the homogenization 
process at finer hierarchical scales. These moduli Mi and Me 
can be described physically as poroelastic coefficients that 
depend on the porescale geometry, porosity and the fluid 
bulk modulus. They also depend on the elastic properties 
of the myocyte and matrix, respectively. These coefficients 
Mi and Me can be interpreted as the inverse of the variation 
of fluid volume in response to a variation in pore pressure. 
The have been proved to be positive definite in Mei and 
Vernescu (2010).

Finally we need to close the problem by prescribing 
conditions on the interface Γ . These are continuity of elec-
tric current densities, jump in electric potentials, continu-
ity of stress, continuity of elastic displacements and the 
continuity of fluxes and pressures between the myocytes 
and the extracellular matrix 

 where V is a given and is the potential drop across the mem-
brane (Richardson and Chapman 2011) and n is the normal 
to the interface Γ pointing into the myocyte.

The problem is also to be closed by appropriate bound-
ary conditions on the external boundary �Ω . The latter 
could be, for example, of Dirichlet–Neumann type, as 
noted in Ramírez-Torres et al. (2018). The conditions on 
the external boundary typically do not play a role in the 
derivation of results carried out by formal asymptotic 
homogenization.

Now that we have set up the problem, we are able 
perform a multiscale analysis in order to derive the new 
model. To do this, we will (a) non-dimensionalize the 
problem we have set up in this section, (b) introduce two 
well-separated length scales, (c) apply the asymptotic 
homogenization technique to the non-dimensionalized 
problem, and (d) derive the novel effective governing 
equations for the myocardium.

(10a)�i∇�i ⋅ n = �e∇�e ⋅ n on Γ,

(10b)�i − �e = V on Γ,

(10c)�i ⋅ n = �e ⋅ n on Γ,

(10d)ui = ue on Γ,

(10e)we ⋅ n = wi ⋅ n on Γ,

(10f)pi = pe on Γ,
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3  Multiscale analysis

To progress with our analysis, we determine that there exists 
two different length scales in the myocardium. We denote 
the average size of the whole heart by L and this is the mac-
roscale. The scale at which we clearly see the myocytes 
resolved from the surrounding matrix is denoted by d, the 
microscale. So as to correctly capture the behaviour of the 
material, it is important to emphasize the difference between 
such scales; therefore, we carry out a non-dimensional anal-
ysis of the equations described in Sect. 2.

3.1  Non‑dimensionalization of the problem

In order to derive our model, we must begin with equations 
that are in non-dimensional form as this allows us to clearly 
understand the contribution of each of the relevant fields. 
Since the model is describing the myocardium, it is best 
to derive in a general form so that it can later be specified 
to certain conditions or diseases. This means that we per-
form a formal non-dimensionalization that will highlight the 
proper asymptotic behaviour of each of the relevant fields 
instead of one motivated by heart/disease-specific param-
eters. We choose to scale the spatial variable and the elastic 
displacement as well as the stresses and elasticity tensors, 
by the characteristic length scale L of the domain. We also 
assume that the system is characterized by a reference pres-
sure gradient C, and that the characteristic fluid velocity is 
given by the typical parabolic profile proportional to that of 
a Newtonian fluid slowly flowing in a cylinder of radius d. 
We have that Φ0 is the typical potential drop and �0 is the 
typical conductance. We therefore non-dimensionalize by 
assuming the following

We are then able to use (11) and note that

We now substitute each of these into (1a)–(3b), (5a)–(5b), 
(8a)–(9b), and interface conditions (10a)–(10f) obtain the 
following non-dimensional form of the system of PDEs 
where we have dropped the “primes” for the sake of simpli-
fying the notation 

(11)

x = L��, ℂi = CLℂ�
i
, ℂe = CLℂ�

e
, �i = CL��

i
,

�e = CL��
e
, ue = Lu�

e
, ui = Lu�

i
,

�i = Φ
0
��
i
, �e = Φ

0
��
e
,

V = Φ
0
V �
, �i = �

0
��
i
, �e = �

0
��
e
, B =

L

�
0
Φ

0

B�
,

v =
Cd2

�
v�, pi = CLp�

i
, pe = CLp�

e
.

(12)∇ =
1

L
∇�

 where we can write the following dimensionless parameter

Now that we have our problem in non-dimensional form, we 
are ready to apply the asymptotic homogenization technique 
which we will use to upscale the PDEs (13a–13r) by making 
the formal assumption that the microscale and the macro-
scale are well separated. We follow the technique as outlined 
in Miller and Penta (2023, 2021a) with the assumptions of 

(13a)∇ ⋅ (�i∇𝜙i) = 𝛽(𝜙i − 𝜙e) in Ωi,

(13b)∇ ⋅ (�e∇𝜙e) = −𝛽(𝜙i − 𝜙e) in Ωe,

(13c)ji = −�i∇�i in Ωi,

(13d)je = −�e∇�e in Ωe,

(13e)∇ ⋅ �i = −�i∇�i × B in Ωi,

(13f)∇ ⋅ �e = −�e∇�e × B in Ωe,

(13g)�i = ℂi ∶ �(ui) − �ipi in Ωi,

(13h)�e = ℂe ∶ �(ue) − �epe in Ωe,

(13i)wi = −�i∇pi in Ωi,

(13j)we = −�e∇pe in Ωe

(13k)
ṗi

Mi

= −�i ∶ 𝜁(u̇i) − ∇ ⋅ wi in Ωi,

(13l)
ṗe

Me

= −�e ∶ 𝜁(u̇e) − ∇ ⋅ we in Ωe,

(13m)�i∇�i ⋅ n = �e∇�e ⋅ n on Γ,

(13n)�i − �e = V on Γ,

(13o)�i ⋅ n = �e ⋅ n on Γ,

(13p)ui = ue on Γ,

(13q)we ⋅ n = wi ⋅ n on Γ,

(13r)pi = pe on Γ,

(14)𝛽 =
𝛽GL2

G
0

.
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microscale periodicity and macroscopic uniformity and 
summarized in Appendix A.1 with associated remarked 
assumptions.

3.2  Multiple scales expansion

We apply the assumptions of the asymptotic homogenization 
technique (92) and (93) to Eqs. (13a–13r). We then obtain, 
accounting for the periodicity, the following 

(15a)
𝜖2∇x ⋅ (�i∇x𝜙

𝜖
i
) + 𝜖∇x ⋅ (�i∇y𝜙

𝜖
i
) + 𝜖∇y ⋅ (�i∇x𝜙

𝜖
i
)

+ ∇y ⋅ (�i∇y𝜙
𝜖
i
) = 𝜖2𝛽(𝜙𝜖

i
− 𝜙𝜖

e
) in Ωi

(15b)

𝜖2∇x ⋅ (�e∇x𝜙
𝜖
e
) + 𝜖∇x ⋅ (�e∇y𝜙

𝜖
e
) + 𝜖∇y ⋅ (�e∇x𝜙

𝜖
e
))

+ ∇y ⋅ (�e∇y𝜙
𝜖
e
= −𝜖2𝛽(𝜙𝜖

i
− 𝜙𝜖

e
) in Ωe

(15c)�j�
i
= −��i∇x�

�
i
− �i∇y�

�
i

in Ωi

(15d)�j�
e
= −��e∇x�

�
e
− �e∇y�

�
e

in Ωe

(15e)
�∇x ⋅ �

�
i
+ ∇y ⋅ �

�
i
= −��i∇x�

�
i
× B�

− �i∇y�
�
i
× B� in Ωi

(15f)
�∇x ⋅ �

�
e
+ ∇y ⋅ �

�
e
= −��e∇x�

�
e
× B�

− �e∇y�
�
e
× B� in Ωe

(15g)���
i
= ℂi ∶ �y(u

�
i
) + �ℂi ∶ �x(u

�
i
) − ��ip

�
i

in Ωe

(15h)���
e
= ℂe ∶ �y(u

�
e
) + �ℂe ∶ �x(u

�
e
) − ��ep

�
e

in Ωe

(15i)�w�
i
= −�i∇yp

�
i
− ��i∇xp

�
i

in Ωi

(15j)�w�
e
= −�e∇yp

�
e
− ��e∇xp

�
e

in Ωe

(15k)
𝜖
ṗ𝜖
i

Mi

= −�i ∶ 𝜁y(u̇
𝜖
i
) − 𝜖�i ∶ 𝜁x(u̇

𝜖
i
)

− ∇y ⋅ w
𝜖
i
− 𝜖∇x ⋅ w

𝜖
i

in Ωi

(15l)
𝜖
ṗ𝜖
e

Me

= −�e ∶ 𝜁y(u̇
𝜖
e
) − 𝜖�e ∶ 𝜁x(u̇

𝜖
e
)

− ∇y ⋅ w
𝜖
e
− 𝜖∇x ⋅ w

𝜖
e

in Ωe

(15m)
�i∇y�

�
i
⋅ n + ��i∇x�

�
i
⋅ n

= �e∇y�
�
e
⋅ n + ��e∇x�

�
e
⋅ n, on Γ

 Now that we have the expansion, we can substitute power 
series of the type (93) into the relevant fields in (15a–15r). 
This allows us to equate the coefficients of �l for l = 0, 1,… , 
and therefore, we derive the macroscale model for the mate-
rial in terms of the relevant leading-order fields.

If a field in the asymptotic expansion retains a micro-
scale dependence, we apply the integral average. This can 
be defined as

where due to y-periodicity the integral average is taken over 
one representative cell and |Ω| is the volume of the domain, 
where |Ω| = |Ωi| + |Ωe| . Due to y-periodicity, the integral 
average is over one representative cell, and therefore, (16) 
represents a cell average.

We are now ready to consider the coefficients of different 
powers of � in the multiple scales expansion. Equating first 
the coefficients of �0

(15n)��
i
− ��

e
= V� on Γ,

(15o)��
i
n = ��

e
n on Γ,

(15p)u�
i
= u�

e
on Γ

(15q)w�
i
⋅ n = w�

e
⋅ n on Γ

(15r)p�
i
= p�

e
on Γ

(16)⟨�⟩k =
1

�Ω� ∫Ωi

�(x,y, t)dy k = i, e,

(17a)∇y ⋅ (�i∇y�
(0)

i
) = 0, in Ωi

(17b)∇y ⋅ (�e∇y�
(0)
e
) = 0, in Ωe

(17c)�i∇y�
(0)

i
= 0, in Ωi

(17d)�e∇y�
(0)
e

= 0, in Ωe

(17e)∇y ⋅ �
(0)

i
= −�i∇y�

(0)

i
× B(0), in Ωi

(17f)∇y ⋅ �
(0)
e

= −�e∇y�
(0)
e

× B(0), in Ωe

(17g)ℂi ∶ �y(u
(0)

i
) = 0, in Ωi

(17h)ℂe ∶ �y(u
(0)
e
) = 0, in Ωe
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 Equations (17g) and (17h) show that u(0)
i

 and u(0)
e

 are rigid 
body motions, and since we have y-periodicity, the leading-
order elastic displacements in each domain do not depend 
on the microscale variable y . That is,

Due to the interface condition (17p) u(0)
i

= u(0)
e

 on Γ , we 
will use that

in the remainder of this work.
We also see from (17i) and (17j) with interface condition 

(17r) that the leading-order pressures p(0)
i

 and p(0)
e

 do not 
depend on the microscale variable. That is,

We chose that the difference in electric potentials V (0) is 
given and does not depend on the microscale variable y , see 
(94). We are able to write the �0 problem for �i

(0) and �e
(0) . 

To do this, we define a new variable,

This allows us to write the �0 problem in terms of �i
(0) and 

the new variable �̄�(0)
e

(17i)�i∇yp
(0)

i
= 0, in Ωi

(17j)�e∇yp
(0)
e

= 0, in Ωe

(17k)�i ∶ 𝜁y(u̇
(0)

i
) + ∇y ⋅ w

(0)

i
= 0, in Ωi

(17l)�e ∶ 𝜁y(u̇
(0)
e
) + ∇y ⋅ w

(0)
e

= 0, in Ωe

(17m)�i∇y�
(0)

i
⋅ n = �e∇y�

(0)
e

⋅ n, on Γ

(17n)�
(0)

i
− �(0)

e
= V (0), on Γ

(17o)�
(0)

i
n = �(0)

e
n, on Γ

(17p)u
(0)

i
= u(0)

e
, on Γ

(17q)w
(0)

i
⋅ n = w(0)

e
⋅ n, on Γ

(17r)p
(0)

i
= p(0)

e
. on Γ

(18)u
(0)

i
= u

(0)

i
(x, t) and u(0)

e
= u(0)

e
(x, t).

(19)u(0) = u
(0)

i
= u(0)

e

(20)p(0) = p
(0)

i
(x, t) = p(0)

e
(x, t).

(21)�̄�(0)
e

= 𝜙(0)
e

+ V (0).

 The problem (22a)–(22d) is of linear elastic type. The 
problem has the jump condition (22d) between the current 
densities and the continuity of the zeroth-order electric 
potentials (22c). Problems of this type have been studied in 
the literature (Bakhvalov and Panasenko 2012; Cioranescu 
and Donato 1999) where it has been proved that the only 
solutions to these problems are constant with respect to the 
microscale variable y . Therefore, (22a)–(22d) gives the solu-
tion that �i

(0) and �̄�(0)
e

 do not depend on the microscale. This 
means that it follows that both �i

(0) and �e
(0) do not depend 

on that microscale. Therefore, we can write 

 Therefore, the balance Eqs. (17e) and (17f) will reduce to 

 We now equate the coefficients of �1

(22a)∇y ⋅ (�i∇y�
(0)

i
) = 0, in Ωi

(22b)∇y ⋅ (�e∇y�̄�
(0)
e
) = 0, in Ωe

(22c)𝜙
(0)

i
= �̄�(0)

e
, on Γ

(22d)�i∇y𝜙
(0)

i
⋅ n = �e∇y�̄�

(0)
e

⋅ n. on Γ

(23a)�i
(0) = �i

(0)(x, t)

(23b)�e
(0) = �e

(0)(x, t).

(24a)∇y ⋅ �
(0)

i
= 0 in Ωi,

(24b)∇y ⋅ �
(0)
e

= 0 in Ωe.

(25a)∇y ⋅ (�i
∇x�

(0)

i
) + ∇y ⋅ (�i

∇y�
(1)

i
) = 0 in Ω

i
,

(25b)∇y ⋅ (�e
∇x�

(0)
e
) + ∇y ⋅ (�e

∇y�
(1)
e
) = 0 in Ω

e
,

(25c)j
(0)

i
= −�

i
∇x�

(0)

i
− �

i
∇y�

(1)

i
in Ω

i
,

(25d)j(0)
e

= −�
e
∇x�

(0)
e

− �
e
∇y�

(1)
e

in Ω
e
,

(25e)
∇x ⋅ �

(0)

i
+ ∇y ⋅ �

(1)

i
= −�

i
∇x�

(0)

i
× B(0)

− �
i
∇y�

(1)

i
× B(0)

in Ω
i
,

(25f)
∇x ⋅ �

(0)
e

+ ∇y ⋅ �
(1)
e

= −�
e
∇x�

(0)
e

× B(0)

− �
e
∇y�

(1)
e

× B(0)
in Ω

e
,
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 With the coefficients of �0 and �1, we can use these equa-
tions to form problems for the order 1 electric potentials, 
elastic displacements and the relative fluid–solid velocity. 
This will allow us to understand the electrostatic and poroe-
lastic behaviours of the myocardium.

3.3  Problem for electric potentials �(1)

i
 and �(1)

e

Using the balance Eqs. (25a), (25b), with the interface 
conditions (25m) and (25o) we form the following steady-
state problem for the electric potentials �(1)

i
 and �(1)

e
 , i.e. 

the electrostatic problem. We have 

(25g)
�
(0)

i
= ℂ

i
∶ �

y
(u

(1)

i
) + ℂ

i
∶ �

x
(u

(0)

i
)

− �
i
p
(0)

i
in Ω

i
,

(25h)
�(0)
e

= ℂ
e
∶ �

y
(u(1)

e
) + ℂ

e
∶ �

x
(u(0)

e
)

− �
e
p
(0)
e

in Ω
e
,

(25i)w
(0)

i
= −�

i
∇

y
p
(1)

i
− �

i
∇

x
p
(0)

i
in Ω

i
,

(25j)w(0)
e

= −�
e
∇

y
p
(1)
e

− �
e
∇

x
p
(0)
e

in Ω
e
,

(25k)

ṗ
(0)

i

M
i

= −�
i
∶ 𝜁

y
(u̇

(1)

i
) − �

i
∶ 𝜁

x
(u̇

(0)

i
) − ∇

y
⋅ w

(1)

i

− ∇
x
⋅ w

(0)

i
in Ω

i
,

(25l)

ṗ
(0)
e

M
e

= −�
e
∶ 𝜁

y
(u̇(1)

e
) − �

e
∶ 𝜁

x
(u̇(0)

e
) − ∇

y
⋅ w

(1)
e

− ∇
x
⋅ w

(0)
e

in Ω
e
,

(25m)
�
i
∇y�

(1)

i
⋅ n + �

i
∇x�

(0)

i
⋅ n

= �
e
∇y�

(1)
e

⋅ n + �
e
∇x�

(0)
e

⋅ n on Γ,

(25n)�
(1)

i
− �(1)

e
= V

(1)
on Γ,

(25o)�
(1)

i
n = �(1)

e
n on Γ,

(25p)u
(1)

i
= u(1)

e
on Γ,

(25q)w
(1)

i
⋅ n = w(1)

e
⋅ n on Γ,

(25r)p
(1)

i
= p

(1)
e

on Γ.

 The problem (26a)–(26d) is linear, and therefore, we can 
propose the following ansatz 

 where we have the vectors Φi , Φe , Φ̂i and Φ̂e and the scalars 
�̃�i and �̃�e . The auxiliary vector and scalar fields Φi , Φe , Φ̂i , 
Φ̂e , �̃�i and �̃�e satisfy the cell problems 

 and 

 and 

(26a)∇y ⋅ (�i∇x�
(0)

i
) + ∇y ⋅ (�i∇y�

(1)

i
) = 0 in Ωi,

(26b)∇y ⋅ (�e∇x�
(0)
e
) + ∇y ⋅ (�e∇y�

(1)
e
) = 0 in Ωe,

(26c)�
(1)

i
− �(1)

e
= V (1) on Γ,

(26d)
(�i∇y�

(1)

i
− �e∇y�

(1)
e
) ⋅ n

= (�e∇x�
(0)
e

− �i∇x�
(0)

i
) ⋅ n on Γ.

(27a)𝜙
(1)

i
= Φi∇x𝜙

(0)

i
+ Φ̂i∇x𝜙

(0)
e

+ �̃�i,

(27b)𝜙(1)
e

= Φe∇x𝜙
(0)
e

+ Φ̂e∇x𝜙
(0)

i
+ �̃�e,

(28a)∇y ⋅ (∇yΦi�
T
i
) + ∇y ⋅ �

T
i
= 0 in Ωi,

(28b)∇y ⋅ (∇yΦ̂e�
T
e
) = 0 in Ωe,

(28c)Φi = Φ̂e on Γ,

(28d)(∇yΦi�
T
i
− ∇yΦ̂e�

T
e
) ⋅ n = −�T

i
⋅ n on Γ,

(29a)∇y ⋅ (∇yΦ̂i�
T
i
) = 0 in Ωi,

(29b)∇y ⋅ (∇yΦe�
T
e
) + ∇y ⋅ �

T
e
= 0 in Ωe,

(29c)Φ̂i = Φe on Γ,

(29d)(∇yΦ̂i
�T

i
− ∇yΦe

�T

e
) ⋅ n = �T

e
⋅ n on Γ,

(30a)∇y ⋅ (�i∇y�̃�i) = 0 in Ωi,

(30b)∇y ⋅ (�e∇y�̃�e) = 0 in Ωe,

(30c)�̃�i − �̃�e = V (1) on Γ,



 L. Miller, R. Penta 

 The above cell problems are also supplemented by periodic 
conditions on the boundary �Ω ⧵ Γ . For uniqueness of solu-
tion, we require a further condition on the auxiliary fields Φi , 
Φe , Φ̂i , Φ̂e , �̃�i and �̃�e . The condition we propose is the zero 
average on their individual domains, that is,

The ansatz has given expressions for �(1)

i
 and �(1)

e
 (17b) and 

(17c) and these can be used to write Ohm’s law, Eqs. (25c) 
and (25d) as

and

with the notation

The macroscale model requires a balance equation for the 
current densities. In order to obtain this, we need to equate 
further powers of epsilon in the multiple scales expansion. 
We need the coefficient of �2 in (15a) and (15b) as well as 
the �2 terms of (15c) and (15d). We have 

 and the coefficients of �2 in the expansion of Ohm’s law give 

(30d)(�i∇y�̃�i) ⋅ n = (�e∇y�̃�e) ⋅ n on Γ.

(31)
⟨Φi⟩i = 0, ⟨Φe⟩e = 0, ⟨Φ̂i⟩i = 0, ⟨Φ̂e⟩e = 0,

⟨�̃�i⟩i = 0, ⟨�̃�e⟩e = 0.

(32)

j
(0)

i
= −�i∇x𝜙

(0)

i
− �i∇y𝜙

(1)

i

= −(�i + �i(∇yΦi)
T)∇x𝜙

(0)

i
− �i(∇yΦ̂i)

T∇x𝜙
(0)
e

− �i∇y�̃�i

= −(�i + �i�i)∇x𝜙
(0)

i
− (�i�i)∇x𝜙

(0)
e

− �isi

(33)

j(0)
e

= −�e∇x𝜙
(0)
e

− �e∇y𝜙
(1)
e

= −(�e + �e(∇yΦe)
T)∇x𝜙

(0)
e

− �e(∇yΦ̂e)
T∇x𝜙

(0)

i

− �e∇y�̃�e

= −(�e + �e�e)∇x𝜙
(0)
e

− (�e�e)∇x𝜙
(0)

i
− �ese

(34)
�i = (∇yΦi)

T
, �e = (∇yΦe)

T
, �i = (∇yΦ̂i)

T
,

�e = (∇yΦ̂e)
T
, si = ∇y�̃�i, se = ∇y�̃�e.

(35a)
∇x ⋅ (�i∇x𝜙

(0)

i
) + ∇x ⋅ (�i∇y𝜙

(1)

i
) + ∇y ⋅ (�i∇x𝜙

(1)

i
)

+ ∇y ⋅ (�i∇y𝜙
(2)

i
) = 𝛽(𝜙

(0)

i
− 𝜙(0)

e
),

(35b)
∇x ⋅ (�e∇x𝜙

(0)
e
) + ∇x ⋅ (�e∇y𝜙

(1)
e
) + ∇y ⋅ (�e∇x𝜙

(1)
e
)

+ ∇y ⋅ (�e∇y𝜙
(2)
e
) = −𝛽(𝜙

(0)

i
− 𝜙(0)

e
),

(36a)j
(1)

i
= −�i∇x�

(1)

i
− �i∇y�

(2)

i
,

(36b)j(1)
e

= −�e∇x�
(1)
e

− �e∇y�
(2)
e
.

 Now by using the �2 expansions (36a) and (36b), along 
with (25c) and (25d) in the �2 balance Eqs. (35a) and (35b) 
we obtain 

 We also consider the �2 expansions of interface condition 
(15m) 

 which when using (36a) and (36b) can be written as 

We can now take the sum of (37a) and (37b) and apply 
the integral average to obtain

By applying the assumption of macroscopic uniformity to 
the first and third integrals and by also applying the Gauss 
divergence theorem to the second and fourth integrals, we 
obtain

Since we have the assumption of periodicity the terms on 
the external boundaries will disappear and by using (39a), 
we see that the terms on the interface Γ will also disappear 
giving

(37a)∇x ⋅ j
(0)

i
+ ∇y ⋅ j

(1)

i
= 𝛽(𝜙

(0)

i
− 𝜙(0)

e
),

(37b)∇x ⋅ j
(0)
e

+ ∇y ⋅ j
(1)
e

= −𝛽(𝜙
(0)

i
− 𝜙(0)

e
).

(38a)
(�i∇x�

(1)

i
+ �i∇y�

(2)

i
) ⋅ n = (�e∇x�

(1)
e

+ �e∇y�
(2)
e
) ⋅ n,

(39a)j
(1)

i
⋅ n = j(1)

e
⋅ n,

(40)

∫Ωi

∇x ⋅ j
(0)

i
d y + ∫Ωi

∇y ⋅ j
(1)

i
d y − ∫Ωi

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y

+ ∫Ωe

∇x ⋅ j
(0)
e

d y

+ ∫Ωe

∇y ⋅ j
(1)
e

d y + ∫Ωe

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y = 0

(41)

∇x ⋅ ⟨j
(0)

i
⟩i + ∇x ⋅ ⟨j(0)e

⟩e + ∫𝜕Ωi⧵Γ

j
(1)

i
n𝜕Ωi

dS

+ ∫Γ

j
(1)

i
n dS + ∫𝜕Ωe⧵Γ

j(1)
e
n𝜕Ωe

dS

− ∫Γ

j(1)
e
n dS − ∫Ωi

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y

+ ∫Ωe

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y = 0.

(42)

∇x ⋅ ⟨j
(0)

i
⟩i + ∇x ⋅ ⟨j(0)e

⟩e − ∫Ωi

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y

+ ∫Ωe

𝛽(𝜙
(0)

i
− 𝜙(0)

e
) d y = 0.
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Since we have that the difference in the potentials is V (0) 
from (17n) and we know that the potentials depend only on 
the macroscale from (23a) and (23b), we can rewrite (42) as

where the averaged leading-order current densities are given 
as 

3.4  Poroelastic problem

We now require a problem for u(1)
i

 and u(1)
e

 , so by taking (24a), 
(24b) with (25g) and (25h) along with the interface conditions 
(17o) and (25p) we can write 

The problem (45a–45d) has a unique solution up to a y con-
stant function. By exploiting linearity, we propose the ansatz 

 where we have that c1(x) and c2(x) are y constant functions 
and we have the third-order tensors Bi and Be which satisfy 
the cell problems given by 

 as well as the vectors bi and be which satisfy the problem 

(43)∇x ⋅ ⟨j
(0)

i
⟩i + ∇x ⋅ ⟨j(0)e

⟩e − 𝛽V (0)(�Ωe� − �Ωi�) = 0.

(44a)
⟨j(0)

i
⟩i = −⟨�i + �i�i⟩i∇x�

(0)

i
− ⟨�i�i⟩i∇x�

(0)
e

− ⟨�isi⟩i

(44b)
⟨j(0)

e
⟩e = −⟨�e + �e�e⟩e∇x�

(0)
e

− ⟨�e�e⟩e∇x�
(0)

i
− ⟨�ese⟩e

(45a)
∇y ⋅ (ℂi�y(u

(1)

i
)) = −∇y ⋅ (ℂi�x(u

(0))) + ∇y ⋅ (p
(0)
�i) in Ωi,

(45b)
∇y ⋅ (ℂe�y(u

(1)
e
)) = −∇y ⋅ (ℂe�x(u

(0))) + ∇y ⋅ (p
(0)
�e) in Ωe,

(45c)
(ℂi�y(u

(1)

i
) − ℂe�y(u

(1)
e
))n

= ((ℂe − ℂi)�x(u
(0)) − (�e − �i)p

(0))n on Γ,

(45d)u(1)
e

= u
(1)

i
on Γ.

(46a)u
(1)

i
= Bi�x(u

(0)) + bip
(0) + c1(x),

(46b)u(1)
e

= Be�x(u
(0)) + bep

(0) + c2(x),

(47a)∇y ⋅ (ℂi�y(Bi)) = −∇y ⋅ ℂi in Ωi,

(47b)∇y ⋅ (ℂe�y(Be)) = −∇y ⋅ ℂe in Ωe,

(47c)(ℂi�y(Bi) − ℂe�y(Be))n = (ℂe − ℂi)n on Γ,

(47d)Bi = Be on Γ,

 The problems (47a–47d) and (48a–48d) are further supple-
mented with periodic conditions on �Ω ⧵ Γ . To ensure the 
uniqueness of the solution, we require one further condition 
on the auxiliary variables Bi , Be , bi and be , and we impose 
zero average on the individual subsets of the domain. That is,

Now that we have expressions for the leading-order elas-
tic displacements, we can write the leading-order effective 
stress tensors in the myocyte and matrix, respectively, as

where we have the auxiliary tensors

and

where we have used the notation

The tensor and vector terms appearing in (51), and analo-
gously in (53), are the microscale gradients of the auxiliary 
tensors and vectors that are solving the microscale poroelas-
tic cell problems (47a)–(47d) and (48a)–(48d). This means 
that they are capturing the microscale variations in differ-
ent geometries and physical properties of the phases and 
encoding them in the macroscale model. We can describe 
the fourth rank tensors �i and �e as correction terms to the 
average of the effective elasticity tensors, thus accounting 
for differences in elastic properties at different points in 
the microstructure. The second rank tensors � i and �e are 
accounting for the variations in the compressibility of the 
microstructure at different points.

We require a balance equation for the effective stresses 
that takes into consideration both the myocytes and the 
extracellular matrix. We apply the integral average to (25e) 
and (25f) to obtain

(48a)∇y ⋅ (ℂi�y(bi)) = ∇y ⋅ �i in Ωi,

(48b)∇y ⋅ (ℂe�y(be)) = ∇y ⋅ �e in Ωe,

(48c)(ℂi�y(bi) − ℂe�y(be))n = −(�i − �e)n on Γ,

(48d)bi = be on Γ.

(49)⟨Bi⟩i = 0, ⟨Be⟩e = 0, ⟨bi⟩i = 0, ⟨be⟩e = 0.

(50)

�
(0)

i
= ℂi�y(Bi�x(u

(0)) + bip
(0))

+ ℂi�x(u
(0)) − �ip

(0) = (ℂi𝕃i + ℂi)�x(u
(0)) + (ℂi� i − �i)p

(0)
,

(51)�i = �y(Bi) and � i = �y(bi),

(52)
�(0)
e

= ℂe�y(Be�x(u
(0)) + bep

(0)) + ℂe�x(u
(0)) − �ep

(0)

= (ℂe𝕃e + ℂe)�x(u
(0)) + (ℂe�e − �e)p

(0),

(53)�i = �y(Bi) and � i = �y(bi).
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We apply the divergence theorem to the second and seventh 
integral and use the expressions we have for the first-order 
electric potentials (27a) and (27b) that we have for �(1)

i
 and 

�(1)
e

 to write

Due to periodicity, the terms of the external boundaries can-
cel and the terms on Γ cancel due to the interface condition 
(25o). This means that we have

We can rewrite using the integral average notation, and using 
(34) and rearranging, we have

(54)

∫
Ωi

∇
x
⋅ �

(0)

i
d y + ∫

Ωi

∇
y
⋅ �

(1)

i
d y + ∫

Ωi

(�
i
∇

x
�
(0)

i
× B

(0)
) d y

+ ∫
Ωi

(�
i
∇

y
�
(1)

i
× B

(0)
) d y + ∫

Ωe

∇
x
⋅ �(0)

e
d y

+ ∫
Ωe

∇
y
⋅ �(1)

e
d y + ∫

Ωe

(�
e
∇

x
�(0)

e
× B

(0)
) d y

+ ∫
Ωe

(�
e
∇

y
�(1)

e
× B

(0)
) d y = 0.

(55)

∇x ⋅ ⟨�
(0)

i
⟩i + ∇x ⋅ ⟨�(0)

e
⟩e + ∫𝜕Ωi⧵Γ

�
(1)

i
⋅ n𝜕Ωi

dS

− ∫Γ

�
(1)

i
⋅ n dS

+ ∫𝜕Ωe⧵Γ

�(1)
e

⋅ n𝜕Ωe
dS + ∫Γ

�(1)
e

⋅ n dS

+ ∫Ωi

(�i∇x𝜙
(0)

i
× B(0)) d y

+ ∫Ωe

(�e∇x𝜙
(0)
e

× B(0)) d y + ∫Ωi

(�i∇y(Φi∇x𝜙
(0)

i

+ Φ̂i∇x𝜙
(0)
e

+ �̃�i) × B(0)) d y

+ ∫Ωe

(�e∇y(Φe∇x𝜙
(0)
e

+ Φ̂e∇x𝜙
(0)

i
+ �̃�e) × B(0)) d y = 0.

(56)

∇x ⋅ ⟨�
(0)

i
⟩i + ∇x ⋅ ⟨�(0)

e
⟩e + ∫Ωi

(�i∇x𝜙
(0)

i
× B(0)) d y

+ ∫Ωe

(�e∇x𝜙
(0)
e

× B(0)) d y + ∫Ωi

(�i∇yΦi∇x𝜙
(0)

i
× B(0)) d y

+ ∫Ωi

(�i∇yΦ̂i∇x𝜙
(0)
e

× B(0)) d y + ∫Ωi

(�i∇y�̃�i × B(0)) d y

+ ∫Ωe

(�e∇yΦe∇x𝜙
(0)
e

× B(0)) d y + ∫Ωe

(�e∇yΦ̂e∇x𝜙
(0)

i

× B(0)) d y

+ ∫Ωe

(�e∇y�̃�e × B(0)) d y = 0.

3.5  The Darcy flow problem

We can use the balance Eqs. (17k) and (17l) with the interface 
conditions (17q) and (25r) to write the following problem for 
the first-order pressures in each phase p(1)

i
 and p(1)

e

 Using the expressions (25i) and (25j) that we have for w(0)

i
 

and w(0)
e
, we rewrite the problem (58a–58d) in terms of the 

pressures 

 This problem then admits a unique solution up to a y con-
stant function (see Cioranescu and Donato 1999; Bakhvalov 
et al. 1989). By exploiting the linearity, we are able to pro-
pose the following ansatz 

 where we have that c3(x) and c4(x) are y constant functions 
and the vectors Pi and Pe satisfy the cell problem given by 

(57)

∇x ⋅ ⟨�
(0)

i
⟩i + ∇x ⋅ ⟨�(0)

e
⟩e = −⟨�i�i + �i⟩i∇x�

(0)

i
× ⟨B(0)⟩i

− ⟨�e�e + �e⟩e∇x�
(0)
e

× ⟨B(0)⟩e − ⟨�i�i⟩i∇x�
(0)
e

× ⟨B(0)⟩i
− ⟨�e��⟩e∇x�

(0)

i
×⟨B(0)⟩e − ⟨�isi×B

(0)⟩i − ⟨�ese×B
(0)⟩e

(58a)∇y ⋅ w
(0)

i
= 0 in Ωi,

(58b)∇y ⋅ w
(0)
e

= 0 in Ωe,

(58c)p(1)
e

= p(1)
e

on Γ,

(58d)w
(0)

i
⋅ n = w(0)

e
⋅ n on Γ.

(59a)∇y ⋅ (�i∇yp
(1)

i
) = −∇y ⋅ (�i∇xp

(0)) in Ωi,

(59b)∇y ⋅ (�e∇yp
(1)
e
) = −∇y ⋅ (�e∇xp

(0)) in Ωe,

(59c)p
(1)

i
= p(1)

e
on Γ,

(59d)
(�i∇yp

(1)

i
− �e∇yp

(1)
e
) ⋅ n = (�e − �i)∇xp

(0)
⋅ n on Γ.

(60a)p
(1)

i
= Pi ⋅ ∇xp

(0) + c3(x),

(60b)p(1)
e

= Pe ⋅ ∇xp
(0) + c4(x),

(61a)∇y ⋅ (∇yPi�
T
i
) = −∇y ⋅ �

T
i

in Ωi,

(61b)∇y ⋅ (∇yPe�
T
e
) = −∇y ⋅ �

T
e

in Ωe,
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 The cell problem is supplemented by periodic conditions 
on the boundary �Ω ⧵ Γ, and for the sake of uniqueness of 
solution, we place a further condition on Pi and Pe . We chose 
zero average over the subsection of the domain, that is,

We know wish to find the expressions for the leading-order 
Darcy’s law in the myocytes and extracellular matrix, 
respectively. We can use the expressions (60a) and (60b) 
for the first-order pressures p(1)

i
 and p(1)

e
 in (25i) and (25j), 

and by applying the integral average, we obtain

in the myocyte where we have used the notation

and we obtain

in the extracellular matrix where we have used the notation

We now wish to use these to quantities to determine an effec-
tive Darcy’s law. We have

Here we can define an effective hydraulic conductivity ten-
sor as

and this means that the Darcy’s law can be rewritten as

3.6  Conservation of mass

The final equation we require is the macroscale conservation 
of mass equation. To obtain this, we integrate the expres-
sions (25k) and (25l), which are the conservation of mass 

(61c)Pi = Pe on Γ,

(61d)(∇yPi�
T
i
− ∇yPe�

T
e
)n = (�e − �i)

Tn on Γ.

(62)⟨Pi⟩i = 0, and ⟨Pe⟩e = 0.

(63)
⟨w(0)

i
⟩i = −⟨�i(∇yPi)

T⟩i∇xp
(0) − ⟨�i⟩i∇xp

(0)

= −⟨�i�i + �i⟩i∇xp
(0),

(64)�i = (∇yPi)
T,

(65)
⟨w(0)

e
⟩e = −⟨�e(∇yPe)

T⟩e∇xp
(0) − ⟨�e⟩e∇xp

(0)

= −⟨�e�e + �e⟩e∇xp
(0),

(66)�e = (∇yPe)
T.

(67)
weff ∶ = ⟨w(0)

i
⟩i + ⟨w(0)

e
⟩e

= −
�
⟨�i�i + �i⟩i + ⟨�e�e + �e⟩e

�
∇xp

(0).

(68)� = ⟨�i�i + �i⟩i + ⟨�e�e + �e⟩e

(69)weff = −�∇xp
(0).

equation in each subdomain, in Ωi and Ωe , respectively. That 
is,

We then apply the divergence theorem and use the interface 
condition (25q) to cancel the final two terms. This allows us 
to rewrite the remaining terms as

Since we have the expressions for the leading-order solid 
displacements u(1)

i
 and u(1)

e
 from (46a) and (46b), we can 

differentiate these with respect to time to obtain u̇(1)
i

 and u̇(1)
e

 
and then use these new expressions in (71) to obtain

We can now rearrange this equation to obtain an expression 
for ṗ(0)

where we have use the notation

which is reminiscent of the Biot’s modulus for the system. 
We also define a tensor quantity

(70)

∫Ωi

ṗ(0)

Mi

dy + ∫Ωe

ṗ(0)

Me

dy = −∫Ωi

�i ∶ 𝜁x(u̇
(0)) dy

− ∇x ⋅ ∫Ωi

w
(0)

i
dy

− ∫Ωe

�e ∶ 𝜁x(u̇
(0)) dy − ∇x ⋅ ∫Ωe

w(0)
e
dy

− ∫Ωi

�i ∶ 𝜁y(u̇
(1)

i
) dy

− ∫Ωe

�e ∶ 𝜁y(u̇
(1)
e
) dy − ∫Ωi

∇y ⋅ w
(1)

i
dy − ∫Ωe

∇y ⋅ w
(1)
e

dy .

(71)

�⟨Mi⟩i + ⟨Me⟩e
⟨Mi⟩i⟨Me⟩e

�
ṗ(0)

= −(⟨�i⟩i + ⟨�e⟩e) ∶ 𝜁x(u̇
(0)) − ∇x ⋅ (⟨w

(0)

i
⟩i + ⟨w(0)

e
⟩e)

− ⟨�i ∶ 𝜁y

�
u̇
(1)

i

�
⟩i − ⟨�e ∶ 𝜁y(u̇

(1)
e
)⟩e.

(72)

�⟨Mi⟩i + ⟨Me⟩e
⟨Mi⟩i⟨Me⟩e

�
ṗ(0) = −

��
⟨�i⟩i + ⟨�e⟩e

�
∶ 𝜁x(u̇

(0))

+ ∇x ⋅ weff +
�
⟨�T

i
∶ �i⟩i + ⟨�T

e
∶ �e⟩e

�
∶ 𝜁x(u̇

(0))

+ (⟨�i ∶ � i⟩i + ⟨�e ∶ �e⟩e)ṗ(0)
�
.

(73)
ṗ(0) = −M̄

�
∇x ⋅ weff + (⟨�i + �

T
i
∶ �i⟩i

+ ⟨�e + �
T
e
∶ �e⟩e) ∶ 𝜁x(u̇

(0))

�

(74)

M̄ ∶=
⟨Mi⟩i⟨Me⟩e

⟨Mi⟩i + ⟨Me⟩e + ⟨Mi⟩i⟨Me⟩e(⟨�i ∶ � i⟩i + ⟨�e ∶ �e⟩e)
,

(75)�̄ ∶= ⟨�i + �
T
i
∶ �i⟩i + ⟨�e + �

T
e
∶ �e⟩e,
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which reminds of an effective Biot’s tensor of coefficients.
We have now derived all the equations required to be able 

to state our macroscale model.

4  Macroscale model

The macroscale equations describe the effective behaviour of 
the heart in terms of the leading-order elastic displacement 
u(0) , the leading-order electric potentials �(0)

i
 and �(0)

e
 , the 

relative fluid–solid velocity weff and the pressure p(0) . The 
model is given by 

 where we have the averaged leading-order current densities 

 and the averaged leading-order solid stresses 

 The novel PDE model has the balance equation for the 
leading-order current densities (76a). The leading-order 
current densities (77a) and (77b) are the sum of the electric 
fields one from each compartment which are premultiplied 
by second rank tensors that are to be obtained by solving 
the cell problems (28a)–(28d) and (29a)–(29d). The current 
densities also contain a vector term that is the solution to the 
cell problem (30a)–(30d) which is driven by the difference in 
the electric potentials. The coefficients arising from solving 
the cell problem account for the differences in the electric 
potentials in each phase and encode these in the model.

(76a)∇x ⋅ ⟨j
(0)

i
⟩i + ∇x ⋅ ⟨j(0)e

⟩e = 𝛽V (0)(�Ωe� − �Ωi�),

(76b)

∇x ⋅ ⟨�
(0)

i
⟩i + ∇x ⋅ ⟨�(0)

e
⟩e = −⟨�i�i + �i⟩i∇x�

(0)

i
× ⟨B(0)⟩i

− ⟨�e�e + �e⟩e∇x�
(0)
e

× ⟨B(0)⟩e − ⟨�i�i⟩i∇x�
(0)
e

× ⟨B(0)⟩i
− ⟨�e��⟩e∇x�

(0)

i
×⟨B(0)⟩e − ⟨�isi×B

(0)⟩i − ⟨�ese×B
(0)⟩e

(76c)�
(0)

i
− �(0)

e
= V (0),

(76d)
ṗ(0) = −M̄

�
∇x ⋅ weff + (⟨�i + �

T
i
∶ �i⟩i + ⟨�e

+ �
T
e
∶ �e⟩e) ∶ 𝜁x(u̇

(0))
�

(76e)weff = −�∇xp
(0)

(77a)
⟨j(0)

i
⟩i = −⟨�i + �i�i⟩i∇x�

(0)

i
− ⟨�i�i⟩i∇x�

(0)
e

− ⟨�isi⟩i

(77b)
⟨j(0)

e
⟩e = −⟨�e + �e�e⟩e∇x�

(0)
e

− ⟨�e�e⟩e∇x�
(0)

i
− ⟨�ese⟩e

(78a)⟨�(0)

i
⟩i = ⟨ℂi + ℂi𝕃i⟩i�x(u(0)) + ⟨ℂi� i − �i⟩ip(0)

(78b)⟨�(0)
e
⟩i = ⟨ℂe + ℂe𝕃e⟩e�x(u(0)) + ⟨ℂe�e − �e⟩ep(0)

The macroscale model also possesses a balance equation 
for the solid stresses (76b), where the stresses are given by 
(78a) and (78b). These stresses comprise tensors ℂi + ℂi𝕃i 
and ℂe + ℂe𝕃e which are found by solving (47a)–(47d). 
The stresses also contain terms relating to the fluid pres-
sure where the coefficients of these terms are to be found by 
solving (48a)–(48d). The problems to be solved are similar 
to those found for elastic composite in Penta and Gerisch 
(2015, 2017) and poroelastic composites in Miller and Penta 
(2020, 2023, 2022). The balance equation (76b) also has 
terms that relate to the electric potentials and Lorentz forces 
on the deformations of the material. These terms are to be 
found by solving the electric cell problems (28a)–(28d) and 
(29a)–(29d) and (30a)–(30d). This equation tells us how the 
changes in the elastic deformations influence the mecha-
notransduction of the myocardium.

Equation (76c) provides a constraint such that the V (0) is 
a given and therefore allows that only one of �(0

i
 or �(0)

e
 is to 

be calculated in order to obtain both.
We have (76d) which is the conservation of mass equa-

tion. This equation comprises the divergence of the rela-
tive fluid–solid velocity and the Biot’s tensor of coefficients 
applied to the leading-order strains. The Biot’s tensor that 
we obtain here (75) comprises the Biot’s tensors from the 
myocyte and the extracellular matrix as well as the two 
additional contributions arising due to the fact that we are 
accounting for changing compressibility at different points 
on the microstructure.

And finally we have Darcy’s law (76e) with the modified 
hydraulic conductivity tensor � (68). This tensor consists 
of the hydraulic conductivities �i and �e from the myocyte 
and extracellular matrix as well as two additional terms. The 
extra terms are �i�i and �e�e and these are accounting for the 
differences in the hydraulic conductivities at different points 
in the microstructure. The hydraulic conductivity tensor � 
can be found by solving cell problem (61a)–(61d).

Our new macroscale model (76a)–(76e) describes the 
effective electrostatic and mechanical behaviour of a double 
poroelastic material subjected to a magnetic Lorentz force 
representing the myocardium. The model incorporates fine 
scale behaviours through the coefficients which are solved 
via the specific cell problems referenced in the preceding 
paragraphs. The key novelties of the model are that (1) the 
macroscale coefficients encode the differences in microstruc-
ture over two finer scales of resolution, and (2) it encodes 
the difference in poroelastic and electrical properties/moduli 
at different points in the microstructure. Our macroscale 
stress balance equation captures how the elastic displace-
ment of the myocyte and extracellular matrix are driven by 
the applied magnetic fields. We also note that the cell prob-
lems are all fully decoupled from each other. This means 
that we are solving the electrical problems (28a)–(28d) 
and (29a)–(29d) and (30a)–(30d) fully separately from the 
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poroelastic problems (47a)–(47d) and (48a)–(48d), which 
are again fully separated from the Darcy flow problems 
(61a)–(61d). Therefore, we also note that the fluid that fills 
the poroelastic matrix is there only as a contribution via a 
porosity since the simulations are drained. In order to under-
stand what details this model is capturing, in the next sec-
tion we wish to numerically investigate the behaviour of the 
electrical and poroelastic coefficients of the model.

5  Numerical simulations

Here we investigate the coefficients of our novel model. We 
consider both the electrostatic and poroelastic cell prob-
lems. We first investigate the effective electrical conduct-
ance tensor that arises from the balance equation and sec-
ondly consider the double poroelastic simulations. As the 
3D geometry of our unit cell is assumed to be a cube with 
cylindrical myocyte extending in the z-axis direction, we 
are able to cut the plane and carry out 2D simulations (see 
Fig. 2) which will be less computationally expensive while 
still retaining the desired accuracy, see Parnell and Abra-
hams (2006, 2008); Miller and Penta (2022) for a reduction 
of poroelastic-type cell problems from 3D to 2D and valida-
tion of the 2D simulations.

5.1  Electrical simulations

In the macroscale model, we have the balance equation for 
the leading-order current densities (76a). This can be rewrit-
ten as follows when using (77a) and (77b)

Since we want to investigate the effective electrostatic prop-
erties of the material, it is useful to define an effective con-
ductance tensor. To do this, we want to write as a diffusion-
type equation. We therefore can substitute the macroscale 
equation (76c) written in the form �(0)

i
= �(0)

e
+ V (0) into (79) 

and rearrange to obtain

We can define the following

and therefore, (80) can be written as

(79)

∇x ⋅

��
⟨�i + �i�i⟩i + ⟨�e�e⟩e

�
∇x𝜙

(0)

i

+
�
⟨�e + �e�e⟩e + ⟨�i�i⟩i

�
∇x𝜙

(0)
e

+
�
⟨�isi⟩i + ⟨�ese⟩e

��
= −𝛽V (0)(�Ωe� − �Ωi�).

(80)

∇x ⋅

��
⟨�i + �i�i⟩i + ⟨�e�e⟩e + ⟨�e + �e�e⟩e

+ ⟨�i�i⟩i
�
∇x𝜙

(0)
e

�

= ∇x ⋅

�
−
�
⟨�i + �i�i⟩i + ⟨�e�e⟩e

�
∇xV

(0) − ⟨�isi⟩i

− ⟨�ese⟩e
�
− 𝛽V (0)(�Ωe� − �Ωi�)

(81)
� ∶ = ⟨�i + �i�i⟩i + ⟨�e�e⟩e + ⟨�e + �e�e⟩e + ⟨�i�i⟩i,

(82)
f ∶ = −

�
⟨�i + �i�i⟩i + ⟨�e�e⟩e

�
∇xV

(0) − ⟨�isi⟩i − ⟨�ese⟩e,

(83)𝛽 ∶ = 𝛽(|Ωe| − |Ωi|),

(84)∇x ⋅

(
�∇x𝜙

(0)
e

)
= ∇x ⋅ f − 𝛽V (0).

Fig. 2  COMSOL Multiphysics 3D geometries showing the direction of the myocyte elongation as well as the direction of the electrical conduct-
ances
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We can then solve the cell problems (28a)–(28d) and 
(29a)–(29d) to determine the second rank tensor � which 
we call the effective conductance tensor.

We are considering the effective conductance tensor of 
the myocardium and we wish to consider how it is influenced 
by structural changes related to heart diseases such as myo-
cardial infarction or growth and remodelling. It can physi-
ologically be observed that post-myocardial infarction, the 
volume fraction of myocytes in the infarct zone decreases 
due to the death and damage of myocytes. This dramati-
cally reduces the functionality of the heart as the damaged 
myocytes are replaced by a thick collagen scar. The heart 
requires to function normally and therefore looks for ways 
to compensate for the scar tissue. In this case, and in the case 
of most tissue remodelling, it is a well-known homeostasis 
mechanism for healthy regions of the myocardium to have 
an increase in myocyte volume to attempt to compensate for 
heart diseases (Olivetti et al. 1987). We therefore choose to 

focus on the general effect that the change in myocyte vol-
ume has on the electrical conductivity of the myocardium. 
We should note that we are assuming that the increases in 
myocyte volume fraction that we are studying correspond 
to the extent of remodelling and are not time dependent 
(Olivetti et al. 1994; Anversa et al. 1985).

The cell problems are solved on the following 2D com-
posite geometry (Fig. 3).

We use the following conductivity tensors obtained from 
Roth (1991); Sachse et al. (2009) for the transversal and 
longitudinal conductivities in the myocyte and extracellular 
matrix

We consider the two components of the second rank tensor 
� in the balance Eq. (84).

Figure 4a shows the transverse component of our effective 
conductivity tensor � decreases with the increasing myo-
cyte volume. We can explain this due to the fact that the 
myocyte has a much lower conductivity in the transversal 
direction than the extracellular matrix, see input experi-
mental parameters (85), and therefore, as the volume of the 
myocyte increases the matrix volume decreases, and so, the 
value of the myocyte takes over leading to the decrease in 
the transversal conductance. Figure 4b shows that the lon-
gitudinal component of the effective conductivity increases 
with increasing myocyte volume. This can be explained due 
to the fact that the myocyte has already a higher longitu-
dinal conductance than the extracellular matrix, see input 
experimental parameters (85), and as it increases in volume, 

(85)

�i =

(
0.047 0

0 0.469

)
, and �e =

(
0.214 0

0 0.375

)
.

Fig. 3  COMSOL Multiphysics geometry for the electrostatic cell 
problems

Fig. 4  Plots of the components of the second rank effective conductivity tensor �
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this larger value plays an increasingly important role in the 
conductance of � . The myocytes in adjacent cells join end 
to end; therefore, the larger the volume fraction of the myo-
cyte, the larger the contact area between adjacent myocytes 
is likely leading to the increasing longitudinal conductance.

5.2  Poroelastic simulations

In this section, we wish to consider the poroelastic response 
of the myocardium. The model tells us that the poroelastic 
behaviour can be fully described by the material’s effective 
elasticity tensor, the hydraulic conductivity tensor � , the 
tensor �̄ which is reminiscent of the classical Biot’s ten-
sor of coefficients and the scalar quantity M̄ which can be 
identified with the Biot’s modulus. The relevant cell prob-
lems to find the poroelastic coefficients are (47a)–(47d) and 
(48a)–(48d) and (61a)–(61d).

As we noted above, we are considering the case where 
we have an increase in myocyte volume as a homeostasis 
mechanism in heart disease and remodelling. We therefore 
wish to investigate the influence that this change in volume 
has on the overall elastic parameters of the heart.

Within this subsection, we make the assumption that 
the bundles of myocytes run from the top of the cell to the 
bottom as a single cylindrical fibre. The myocytes here are 
approximated as cylinders. This means that we can cut the 
plane and perform 2D simulations to solve the cell problems 
(47a)–(47d), (48a)–(48d) and (61a)–(61d).

As we are dealing with a double poroelastic material, our 
simulations will be a two-step process. Figure 5 shows the 
composite made of the two porous media. These are the 2D 
geometries that we perform the simulations on in COMSOL 
Multiphysics. Before we can solve the composite problems 
((47a)–(47d), (48a)–(48d) and (61a)–(61d)), we must find 
the input parameters for the myocyte and the extracellular 
matrix by solving the problems for a porous matrix as done 
in Dehghani et al. (2018). We assume that the matrix and 
the extracellular matrix have different porosities and elastic 

parameters and we obtain ℂi , ℂe , �i , �e , �i , �e , Mi and Me . 
These are the input parameters for solving the cell problems 
(47a)–(47d), (48a)–(48d) and (61a)–(61d) and also form part 
of the poroelastic coefficients. The results of the simulations 
to find the input parameters are found in Appendix.

We will begin by considering the effective elasticity ten-
sor which we can define as

Due to the geometry, we are assuming for the microstructure 
we are including the effects of anisotropy of the myocardium 
tissue in our results. This means that we have more than one 
independent shear and more than one independent Young’s 
modulus. Our material is not fully orthotropic with three 
Young’s moduli and three shears since there is a symmetry 
in x and y. Therefore, due to the symmetries imposed by 
our choice of geometry we should note that the shear C44 
is the same as the shear C55 , so we consider shears C44 and 
C66 . We also only have the two Young’s moduli E1 and E3 , 
since E1 is the same as E2 . We carry out the simulations for 
four fixed total underlying porosities (low porosity, small 
porosity, mid-porosity and high porosity) and for each of 
these varying the myocyte volume fraction from 10 to 60%.

We first consider the two independent shears.
Figure 6 shows that the shear C44 decreases with increas-

ing myocyte volume fraction. In the case of C44 , the force is 
being applied in the axial direction, and this is the direction 
in which the myocytes elongate. We can deduce that it is 
likely that since the myocyte is softer than the extracellular 
matrix then the larger it gets the easier it is for the material 
to deform. We also believe this is the reason that in the case 
where we have the lowest porosity (i.e. the matrix and myo-
cyte are at their stiffest) we see the largest value of shear. 
Indeed as the porosity of the phases increases they will get 
softer and this coupled with the increase in the volume of 
the softer myocyte explains the decrease we see in the figure.

(86)ℂ̃ = ⟨ℂi + ℂi𝕃i⟩i + ⟨ℂe + ℂe𝕃e⟩e

Fig. 5  COMSOL Multiphys-
ics geometries for the double 
poroelastic material
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Figure 7 shows that shears actually increase with the 
increasing myocyte volume fraction. For C66, the force is 
being applied in the transverse direction, that is, the force 
is being applied taking a cross section of the structure 
where we have the myocyte. The increase in the stiffness 
can likely be explained by the direction in which we apply 
the force. As the myocyte increases in volume we have a 

material that is reinforced by a very large fibre, this leads 
to the resistance and indeed the increase in stiffness. The 
higher the porosity, the less the effect this fibre has in 
reinforcing the material as it itself will be soft.

We also wish to consider the comparison between the 
two Young’s moduli E1 (transverse) and E3 (axial). We 
compute the components of the effective elasticity tensor 

Fig. 6  Shear C
44

 vs increasing myocyte volume

Fig. 7  Shear C
66

 vs increasing myocyte volume
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and use in the formulas for the Young’s moduli. These 
formulas, which can derived via inverting the elasticity 
tensor and comparing with the material compliance tensor 
(Vignjevic et al. 2008), are given by

Figure 8 shows that the transverse Young’s modulus E1 
decreases with increasing myocyte volume fraction and 
this behaviour is consistent across the four porosity levels 
that we have considered. The Young’s modulus can be 
thought of as a measure of material stiffness, so in the case 
of low myocyte volume fraction the extracellular matrix 
is the dominating parameter in influencing the stiffness of 
the overall material. A stiffer material leads to less elastic 
compliance. So we see that as the myocyte, which is softer, 
gets larger than the compliance of the material is indeed 
improved; this also makes sense as to why the higher the 
porosity of the phases is then the more compliant the over-
all double poroelastic material is.

Figure 9 shows that the values of axial Young’s modulus 
E3 increase for increasing myocyte volume fraction. This can 
likely be explained due to the fact that this is the direction 
that the myocytes elongate in. This means that as the fibres 

(87)E1 =
(C12 − C11)(2C

2
13
− C12C33 − C11C33)

(−C2
13
+ C11C33)

(88)E3 =
(2C2

13
− C12C33 − C11C33)

(−C12 − C11)

increase in volume they give more resistance when pulling 
the material. This also agrees with the fact that the largest 
values are seen for the case where the underlying porosity 
of both phases is the lowest.

We also wish to consider the Biot’s modulus for the dou-
ble poroelastic material. We have

This can be found by using the Biot’s moduli Mi and Me 
that we obtain for each porous matrix as well as the results 
� i and �e obtained from solving (48a)–(48d). The results of 
the simulations to find Mi and Me are presented in Appendix.

To find � i and �e, we need to solve the cell problem 
(48a)–(48d); to do this, we require the Biot’s tensors of coef-
ficients �i and �e which are calculated in the myocyte and 
extracellular matrix. The results of the simulations to find 
are presented in Appendix.

Using the values of �i and �e, we can then solve the cell 
problem (48a)–(48d). The solution to this cell problem can 
then be used with Mi and Me to obtain the Biot’s modulus for 
a double poroelastic material M̄ (89) which we have plotted 
against increasing porosity.

Figure 10 shows that the effective Biot’s modulus versus 
porosity exhibits an unusual behaviour. The results of our 
numerical simulations show that the Biot’s modulus is ini-
tially decreasing for increasing porosity but then begins to 
increase again. This can likely be explained via the fact that the 
Biot’s modulus comprises the Biot’s modulus of the individual 

(89)

M̄ ∶=
⟨Mi⟩i⟨Me⟩e

⟨Mi⟩i + ⟨Me⟩e + ⟨Mi⟩i⟨Me⟩e(⟨�i ∶ � i⟩i + ⟨�e ∶ �e⟩e)
,

Fig. 8  Young’s modulus E
1
 vs increasing myocyte volume
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phases as well as the additional terms that account for local 
changes in the compressibility.

6  Conclusion

This work has led to the derivation of a novel system of 
PDEs that describes the effective electrical and mechani-
cal behaviour of a poroelastic composite that represents 
the heart muscle. The structure consists of a poroelastic 
extracellular matrix with embedded poroelastic myocytes, 
and we consider the mechanical and electrical interactions 
between them.

To derive the novel system of macroscale PDEs, we set 
up a problem that described the electrostatic and poroelas-
tic interactions that occur between the cardiac myocytes 
and the extracellular matrix. We consider a resolution 
of the microstructure where we can visibly see the myo-
cytes and matrix distinctly resolved from each other. If we 
zoom in further on both the myocytes and the extracellular 
matrix, then we find that each domain can be governed by 
Biot’s poroelasticity due to their underlying porous nature. 
The difference in scales allows us to apply the asymptotic 
homogenization technique to upscale the microstructural 
problem, accounting for the continuity of current densi-
ties, stresses, elastic displacements, fluxes and pressures 
as well as the difference in the electric potentials across 
the interface. The novel macroscale PDEs contains balance 
equations for the current densities and stresses as well as a 
conservation of mass equation and a modified Darcy’s law. 
The model coefficients encode properties of the micro-
structure to be retained in the macroscale model, and these 
are to be computed by solving the microscale differential 
problems that arise during the upscaling.

Fig. 9  Young’s modulus E
3
 vs increasing myocyte volume

Fig. 10  Biot’s modulus vs increasing porosity
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The novel model in this work is an extension to the previ-
ously presented electrical and mechanical bidomain model 
of Miller and Penta (2023) and the model of double poroe-
lastic materials (Miller and Penta 2021a) by combining them 
to create an electrical and mechanical myocardium model 
accounting for the fact that the myocytes and matrix have 
an underlying poroelastic nature. This encodes an extra level 
of microstructural details to the final macroscale model 
and additionally allows for a greater understanding of the 
myocardial behaviour due to a more realistic microstruc-
ture being considered. The key novelties of the model are 
that (1) the macroscale coefficients encode the differences 
in microstructure over two finer scales of resolution and 
(2) it encodes the difference in poroelastic and electrical 
properties/moduli at different points in the microstructure 
via the solution of the cell problems. Our macroscale stress 
balance equation captures how the elastic displacement 
of the myocyte and extracellular matrix are driven by the 
applied magnetic fields. The microscale cell problems pre-
sented in this work for the electrostatic terms (28a)–(28d), 
(29a)–(29d) and (30a)–(30d) and the double poroelastic 
terms (47a)–(47d) and (48a)–(48d) and (61a)–(61d) have 
been solved to provide the first analysis of the effective con-
ductivity tensor and the elastic and poroelastic properties of 
the myocardium.

By modelling the electrostatic activity of the heart, this 
can give rise to better understanding of how the electrostatic 
function is impaired or changed by various cardiac diseases. 
In the case of cardiac ischaemia, we find there is a change 
in the cardiac action potentials and the membrane potential 
increases with a larger uptake of potassium ions. The com-
bination of these features means that our macroscale model 
can investigate how structural changes caused by myocardial 
ischaemia affects heart electrophysiology.

The current model is subject to some limitations that can 
be addressed in future works. Here we have assumed that the 
myocytes and extracellular matrix are governed by Biot’s 
linear poroelasticity. However, it would be possible to extend 
this and use a nonlinear poroelastic formulation for each of 
the phases, such as the large deformation poroelastic models 
of Brown et al. (2014); Collis et al. (2017) or the nonlinear 
poroelastic composite model (Miller and Penta 2021b). This, 
however, would increase the computational complexity as 
the length scales between the pore and microscales in these 
models remain coupled and this means that the cell prob-
lems have a huge computational expense to be solved. How-
ever, advances are being made to overcome the complexity 
(Dehghani and Zilian 2021; Dehghani and Zilian 2023). 
We could also obtain results by using a piecewise linear 
approach as done in Hu et al. (2003a, b). By doing this, we 
can approximate the nonlinear behaviour using simple and 
computationally cheap simulations. We have also governed 
the domains using passive steady-state equations. It would 

be a very useful extension to this work to consider active 
stresses and active strain such as in Pezzuto and Ambrosi 
(2014); Pezzuto et al. (2014) as this would allow for more 
realistic computations of the heart actively beating and 
undergoing deformation. We also note that the current work 
assumes that the material is homogeneous, and therefore, 
macroscopic uniformity (see Remark 2) can be applied. This 
assumption can be relaxed and there are various methods 
discussed in the literature to account for the case where the 
microstructure varies with respect to the macroscale point 
(Penta et al. 2014; Burridge and Keller 1981; Holmes 2012; 
Penta and Gerisch 2015; Dalwadi et al. 2015).

In the current work, we have that the difference in poten-
tials V (0) is assumed to be a given. As this V (0) or indeed 
V (1) , that drives the cell problem (30a)–(30d) arises due to 
transport of ions at a finer microstructural level than we are 
considering in this work, it would be possible to create a 
finer scale problem to obtain an expression for these values 
and cell problems from which they can be calculated.

In the future, this work could be developed in a variety 
of ways. A potential theoretical extension will be to cou-
ple with a vascular network, such as in Penta and Merodio 
(2017), as this will provide a much more realistic micro-
structure for the myocardium. This addition would then also 
be expandable to transport of solute between domains such 
as to investigate drug delivery to the myocardium. It is also 
necessary to investigate whether the assumption of the fluid 
being Newtonian is always realistic. In the case of small 
vessels/pores, it would be appropriate to consider a more 
complex rheology; however, in vessels with a much larger 
radius, then blood can be treated as a continuum with an 
approximately constant viscosity. It would also be possi-
ble to consider the effects of growth and remodelling post-
infarction or disease spread (Penta et al. 2014; O’Dea et al. 
2010; Wang et al. 2017). We will also solve the macroscale 
system of equations presented in this work to understand the 
behaviour of the myocardium that our model can capture 
such as the magnetically driven elastic displacements. This 
is an area which is currently being explored as an alternative 
use of MRI imaging (Roth et al. 2014), where the contrast 
dye does not need to be injected to the patient preimag-
ing. We also would like to validate the current work against 
experimental data to give an insight into how this compu-
tationally feasible myocardium model could have clinical 
utility as a diagnostic tool.

Appendix A

A.1 The asymptotic homogenization technique

Here we introduce the asymptotic homogenization tech-
nique. This will be used to derive the macroscale model 
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for Eqs. (13a–13r). To apply this technique, we must first 
assume that the microscale length denoted by d is very small 
in comparison with the average size of the domain L. That is,

Due to this scale separation, we must introduce a local spa-
tial variable that will capture microscale variations of each 
of the fields in (13a−13r), we have

We note that the spatial variables x and y should be consid-
ered formally independent where x represents the macro-
scale and y the microscale. The gradient operator is trans-
formed via application of the chain rule as

We further assume that all the fields, as well as the elasticity 
tensors are functions of both x and y . We also assume that 
the fields can be represented in terms of a series expansion 
in powers of � , i.e.

where we have used � to denote a general field involved in 
the present analysis in (13a−13r). For simplicity, we make 
the assumption that the difference in the electric potentials 
V is a given and has the following multiple scale expansion

We see that this means it depends only on the macroscale at 
order zero. This assumption has also been made in Richard-
son and Chapman (2011).

In order to progress further with the model derivation, we 
must also make the following two assumptions.

Remark 1 (Microscale Periodicity) The microstructure of 
materials is vast, and therefore, in order to create computa-
tionally feasible yet realistic models we must simplify the 
analysis that will be carried out. In this work, we consider 
the myocardium which has many structural features; we, 
however, restrict our focus to a single subset of the myo-
cardium which we call the periodic cell which contains a 
myocyte phase and an extracellular matrix phase. In order 
to carry out the analysis on this periodic cell, we need to 
assume that every field �(l) in our problem (13a)–(13r) is y
-periodic. This assumption means that it will be the case that 
the microscale differential problems arising from applying 
the asymptotic homogenization technique are to be solved on 
the periodic cell of our material. It is not necessary to make 

(90)𝜖 =
d

L
≪ 1.

(91)y =
x

�
.

(92)∇ → ∇x +
1

�
∇y.

(93)��(x,y, t) =

∞∑

l=0

�(l)(x,y, t)�l,

(94)V = V (0)(x, t) +⋯ .

this assumption, and an analysis can be carried out under 
the assumption of local boundedness of fields. The local 
boundedness approach allows only the determination of the 
functional form of the macroscale model. The coefficients 
of the model derived in this form are related to microscale 
problems that are to be solved on the whole material micro-
structure. This is a very computationally expensive approach 
in comparison with microscale periodicity. Some examples 
of local boundedness are illustrated in Burridge and Keller 
(1981); Penta and Gerisch (2017).

Remark 2 (Macroscopic Uniformity) In multiscale materi-
als, it is a known fact that for each macroscale point the 
underlying microstructure may well be different. The varia-
tion in microstructure is each macroscale point is a subject 
of much interest and has been investigated by Penta et al. 
(2014); Burridge and Keller (1981); Holmes (2012); Penta 
and Gerisch (2015); Dalwadi et al. (2015). By considering 
that the microscale will depend on the macroscale, this will 
add additional terms to the final model. These terms arise via 
proper application of the Reynolds transport theorem. This, 
however, leads to much greater computational complexity 
and cost. For this reason, in this work we will assume that at 
every macroscale point the microstructure will be the same. 
This means that the microscale geometry does not depend 
on the variable x . We define this property as macroscopic 
uniformity and it will be employed in this work. This allows 
for the simple differentiation under the integral sign

where (⋅) is a tensor or a vector quantity.

Remark 3 (Periodic Cell) Before beginning the analysis, we 
make the identification between the domain Ω and the cor-
responding periodic cell, where the extracellular matrix and 
myocyte are denoted by Ωe and Ωi , respectively. We iden-
tify the interface between the domains as Γ ∶= �Ωe ∩ �Ωi 
with corresponding unit normal n . This cell is shown in 
the asymptotic homogenization box of Fig. 1. We have that 
|Ω| = |Ωi| + |Ωe| is the domain volume and is equal to 1 
since we assume we have a unit cube. Our periodic cell 
(cube) has periodic boundary conditions applied on all the 
faces, where we have assumed that the myocytes extend only 
in the z-axis direction.

A.2 Porescale simulations

Here we present the results of the simulations that we 
carry out on the porescale microstructure shown in Fig. 5. 
Each of the myocytes and the extracellular matrix has an 

(95)∫Ω

∇x ⋅ (⋅) dy = ∇x ⋅ ∫Ω

(⋅) dy ,
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underlying porous structure. This means that we can cal-
culate the poroelastic coefficients.

We assume that the porescale porous matrix of the 
myocyte has Young’s modulus Ei = 35 and Poisson 
ratio �i = 0.4 and the porescale extracellular matrix has 
Young’s modulus Ee = 80 and Poisson ratio �e = 0.35 
where both phases are porous with porosities ranging from 
≈ 2% to ≈ 50%.

To obtain the poroelastic parameters of the myocyte 
and the extracellular matrix, we must solve the typical cell 
problems of poroelasticity presented in Penta et al. (2020); 
Miller and Penta (2023); Dehghani et al. (2018).

The components of the elasticity tensors for the matrix 
and the myocyte are plotted versus increasing porosity.

Figure 11a and b shows that the 6 independent elastic 
parameters for both the myocyte and the extracellular matrix 
decrease with increasing porosity.

The Biot’s moduli for the individual phases are plotted 
versus the increasing porosity,

We note that these coefficients shown in Fig. 12a and b 
are indeed tending to +∞ with increasing porosity; however, 
due to the constraints of the microstructure we have chosen 
for the underlying porous materials (see Fig. 5) we cannot 
exploit porosity beyond 50%.

The expressions for �i and �e are

where � is the porosity of the phases and the fourth rank 
tensors �i and �e are so be found by solving the standard 
poroelastic cell problems found in Penta et al. (2020); Miller 
and Penta (2023); Dehghani et al. (2018). Due to the symme-
try of the microstructure, (�i)11 = (�i)22 and (�e)11 = (�e)22 . 

(96)�i = �� − Tr (�i) and �e = �� − Tr (�e)

Fig. 11  Components of the 
elasticity tensors vs porosity

Fig. 12  Biot’s moduli vs porosity
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The Biot’s coefficients for the individual phases are plotted 
versus the increasing porosity.

The Biot’s coefficients shown in Fig. 13a and b for the 
matrix and the myocytes illustrate the standard behaviour of 
poroelastic media by tending to 1 with increasing porosity.

A.3 Numerical simulations and meshing

In this appendix, we give an overview of the steps carried 
out in COMSOL Multiphysics to compute the results that we 
present throughout this work. We are using 2D simulations. 
The geometry that we are investigating is a long poroelastic 
myocyte embedded in a poroelastic (cube) matrix. The sym-
metries mean that the myocyte extends in the z-direction the 
length of the cell, and therefore, we are able to cut the plane, 
justifying the 2D simulations carried out.

For the electrical simulations, we have the cell problems 
(28a)–(28d) and (29a)–(29d) and our interface conditions 
(28d) and (29d) and are applied on the 2D line representa-
tion of the interface. For each boundary load given in (28d) 
and (29d), we compute the corresponding numerical solution 
of the diffusion-type problems (28a)–(28d) and (29a)–(29d). 
This is done using the finite element software COMSOL 
Multiphysics via the Transport of Diluted Species Module.

We use this software to compute the second rank tensors 
�i , �e , �i and �e . Then once we have these results, they can 
be used in (81) to obtain the entries of the effective conduc-
tivity tensor � . These entries are used for the transversal and 
longitudinal conductances we plot in Fig. 4.

For the poroelastic simulations, we have the cell 
problems (47a)–(47d) and (48a)–(48d) and our inter-
face conditions (47c) and (48c) are applied on the 2D 

line representation of the interface. For each bound-
ary load given in (47c) and (48c) we compute a corre-
sponding numerical solution of the elastic-type problems 
(28a)–(28d) and (29a)–(29d). This can be done using 
the finite element software COMSOL Multiphysics by 
employing the Structural Mechanics Module.

We use this software to compute the fourth rank ten-
sors �i and �e , as well as the second rank tensors � i and 
�e . Then once we have these results, they can be used in 
(86) and (89) to obtain the entries of the effective elastic-
ity tensor ℂ̃ and the Biot’s modulus M̄ . Once we have the 
complete tensor ℂ̃, then we can use the components in 
the formulas for our elastic moduli E1 and E3 and take the 
shears directly from the tensor and plot in Figs. 6, 7, 8 and 
9 and plot M̄ in Fig. 10.

We now describe how this process is carried out in 
COMSOL. This finite element software creates a mesh for 
our periodic cell Ω . To do this it creates a surface mesh for 
the interfaces between the phases. Since in our case we are 
carrying out 2D simulations, we have just a line mesh. It 
then extends the line mesh into a two-dimensional one for 
the entire square periodic cell Ω . This method is utilized 
as it allows for the interface conditions to be described 
by boundary pairs. This approach is very beneficial as it 
allows for a highly refined mesh on the interfaces (i.e. 
where the important interactions/physics occurs), and 
then, the bulk gets gradually coarser the further you move 
from the interface.

The cell problem (47a)–(47d) is driven by the stress 
jump condition on the matrix–myocyte interface; simi-
larly, in (48a)–(48d) the driving force is the difference in 

Fig. 13  Eleven component of the Biot’s tensor of coefficients vs porosity
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the compressibility of the underlying phases. Due to these 
important conditions taking place on the interface, we 
require a sufficiently fine mesh here to ensure we obtain 
an accurate numerical solution. Therefore, to capture these 
areas where the important physics is taking place, our mesh 
in Ω is given additional refinement around the boundary 
pairs that representing the interfaces than in the rest of the 
domain. Due to the predefined features of COMSOL, we can 
use a sequence of increasingly refined meshes of Ω ranging 
from extremely coarse to extremely fine.

In cell problem (47a)–(47d), the stress balance Eqs. (47a) 
and (47b) are simple due to having zero volume forces; how-
ever, since the both the matrix Ωe and the myocyte Ωi are 
poroelastic, each has a constant, anisotropic elasticity ten-
sor as an input value. We have that the stress jump and the 
continuity of the auxiliary tensors Bi and Be given by (47c) 
and (47d) across the interface between the myocyte and the 
matrix are encoded by the conditions on each boundary 
pair. On the external boundary (edges of the square) �Ω, we 
impose periodicity. This procedure means that the solution 
of the elastic-type problems will be unique up to a constant. 
We are not concerned by specifying the constant as it will 
disappear when the microscale derivatives of the solution are 
used to obtain �i and �e . Even though we do not necessar-
ily fixate on this constant, computationally we must have a 
unique solution in the periodic cell. We achieve this unique-
ness via an additional constraint in COMSOL that sets the 
auxiliary displacement to zero at a single point in Ω . This 
process fixes the constant that arises. The software COM-
SOL Multiphysics employs the principle of virtual work to 
implement these elastic-type problems in weak form. For 
cell problem (48a)–(48d), we carry out the same process 
with the difference in compressibility of the phases and the 
continuity of auxiliary vectors (48c) and (48d) encoded on 
the boundary pairs.

We remark that since we have the jump in stresses, the 
problem for the auxiliary variables Bi and Be must be solved 
using the geometrical COMSOL feature assembly. The use 
of the union setting would mean that subdomains Ωi and Ωe 
would merge to form a simple union with continuity. This is 
not the case when modelling the myocardium. The assem-
bly feature avoids this merging as you are able to retain the 
boundaries for each phase of the domain and allows for the 
correct application of the interface conditions. The same 
holds for the problem (48a)–(48d) and auxiliary tensors bi 
and be.

The fourth rank tensors �i and �e and the second rank 
tensors � i and �e are calculated by taking the microscale 
derivatives of the auxiliary variables Bi and Be , and bi 
and be , respectively. We can take simple linear deriva-
tives of the entries of Bi and Be, and therefore, we can 
calculate all entries of the auxiliary fourth rank tensors �i 
and �e without error, similarly with second rank tensors 

� i and �e . The entries of the effective elasticity tensor ℂ̃ 
and the Biot’s modulus M̄ are then computed using (86) 
and (89) where we are able to take the averages without 
any additional errors occurring. All the steps carried out, 
including the finite element approximations for Bi , Be , bi 
and be to the computation of the effective elasticity tensor 
ℂ̃ and Biot’s modulus M̄ , are obtained from COMSOL 
Multiphysics via the integral post-processing tools. We 
note that the computational times for all these simulations 
are from 2 s to 90 s.
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