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Abstract. We consider several survival models in heterogeneous settings.  Heterogeneity in 

the failure rates of subpopulations results (as a specific case) in the famous failure rate paradox 

when the failure rate of a mixture of items with constant failure rates is decreasing. Random 

failure rate that is due to a point process that increases it at random times on fixed values also 

results in the ‘bending down’ of the population failure rate. Similar effect is observed while  

analysing the extreme shock models with shock processes that possess memory. Finally, 

another paradox when, due to heterogeneity in a vital parameter of a model, a terminating point 

process with decreasing rate after ‘mixing’ becomes a non-terminating one with increasing rate 

is described. Those are the impacts of heterogeneity that are discussed from the unified 

perspective that employs the ‘principle’: the weaker subpopulations are dying out first.  

Keywords. Heterogeneous populations, frailty, extreme shock model, self-exciting point 

processes, self-regulating point processes  

1. Introduction

In October 2001, Professor Nozer Singpurwalla visited the first author at the University of Free 

State, South Africa. In numerous conversations and discussions, Nozer was repeatedly coming 

back to the issue of the Bayesian interpretation of the failure rate that he called the subjective 

or the “predictive failure rate” along with the objective failure rate that was mostly referred by 

him as the “model failure rate” (Singpurwalla (2011), Singpurwalla and Wilson (1999)). He 

was always more interested in foundational, aspects of reliability theory rather than in 

straightforward applications. Needless to say, the work and personality of Prof. Singpurwalla 

had an impact on development of reliability theory in the last decades. These discussions 

eventually inspired the interest of the first author in the topic of mixture failure rates that can 

describe heterogeneous populations and are, in fact, ‘predictive’ in Nozer’s terminology. 

However, obviously, they can be studied without a Bayesian flavour as well. As a result, a 

number of relevant publications in this area emerged that were co-authored with the second 

author as well.  

      The current paper, in a way, discusses and interprets some of our developments of the topic 

through the years from the unified viewpoint, providing some new results and insights as well. 
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The general approaches considered (except the last recent part) were discussed in this or other 

way with Nozer at various conferences or personal communications.  

     This paper describes some effects of heterogeneity of populations on survival characteristics 

and, specifically and most importantly, on the corresponding failure rates. Due to instability of 

production processes, environmental and other factors, most populations of manufactured 

items in real life are heterogeneous (Finkelstein (2008)). Human populations are also 

heterogeneous within one country and among the countries or large areas as well.  

      As far as we know, the first model for the failure rate in heterogeneous populations in a 

reliability-based context was described in Barlow and Proschan (1975), whereas a Bayesian 

explanation of the corresponding paradox was given in Barlow (1985). A population of items 

with exponentially distributed lifetimes was considered. The uncertainty in the parameter of 

exponential distribution was modelled by a random prior. Although each item in a population 

was described by a constant failure rate, the predictive failure rate was decreasing in time. It 

can be considered as intuitively paradoxical, whereas the formal explanation of this fact was 

provided in these references: as the failure rate is a conditional characteristic, the prior 

distribution is being updated for the survived items. Later, Finkelstein (2008, 2009) was using 

for explanation the following principle: “The weaker subpopulations are dying out first”. 

Intuitively, it is clear that the items from a subpopulation with a larger failure rate fail 

stochastically earlier, which results in the smaller failure rate for a population. However, for 

exhibiting this effect, the subpopulations (i.e., the items that are described by the same failure 

rate, or, equivalently, distribution function) in a population should be ordered appropriately, in 

order the terms “weaker” or “stronger” to have a proper stochastic sense.  

     Heterogeneity of populations is closely related to the term “frailty” intensively used in 

statistical literature for over 40 years (see, e.g., Cha and Finkelstein (2014) on mixture models 

with frailties in reliability context). Frailty is an unobserved random variable that can 

characterize uncertainty in a distribution or model parameters. This term was first introduced 

in a seminal paper by Vaupel at al. (1979) for a gamma-distributed frailty. See also Vaupel and 

Yashin (1985) for other counter-intuitive effects of heterogeneity. It is worth noting, however, 

that this specific case of the gamma-frailty model was, in fact, first introduced by the British 

actuary Robert Beard (1959) far before the corresponding reliability studies. The gamma 

mixing distribution was considered in this paper for the underlying Gompertz distribution with 

the exponentially increasing failure rate. The effect of heterogeneity was in ‘slowing down’ the 

increase of the mixture failure rate that eventually was tending to a constant (a plateau of human 

mortality).  

     The shape of the resulting failure is closely related to aging properties of items as, for 

instance, the increasing failure rate defines the simplest but most important in various 

applications class of IFR lifetime distributions.  It can be versatile depending mostly on the 

shape of the underlying/baseline failure rate. The studies show that the mixing (prior) 

distribution has a less prominent effect in this respect. The decreasing pattern for the constant 

underlying failure rate was described above as well as the plateau of human mortality.  Another 

popular example (see the next section) is the Weibull distribution with increasing failure rate. 

The mixture failure rate in this case is initially increasing and then decreasing exhibiting the 

corresponding bell shape. Throughout this paper, we call such initially increasing and then 

decreasing function a ‘bell-shaped’ function in a wider sense whether its limit is given by 0 or 

not.  The bathtub shape for a specific additive mixing model with increasing underlying failure 



rate was described in Lynn and Singpurwalla (1997). Other patterns can also exist exhibiting 

the well-pronounced effect of populations heterogeneity on its statistical characteristics. 

     Heterogeneity described by different failure rates of subpopulations shows, in a way, an 

aggregated pattern, as the failure rate itself is an unobserved ‘aggregated’ characteristic. It is 

usually described by a single frailty (can be multivariate as well).  However, in the described 

sense, it is a fixed frailty assigned at t=0. On the other hand, the effect of e.g., environment on 

the baseline failure rate of an item can be in the form of a stochastic process and not a random 

variable, thus defining time-dependent or evolving heterogeneity (see Li and Andersen (2009), 

Finkelstein (2012) and Aalen et al. (2008)). Thus, the failure rate can become the full-fledged 

stochastic process and not just a path process as in the case of the described fixed frailty. The 

effects of heterogeneity of this kind for lifetime models can be also explained intuitively in a 

similar manner to that used for the fixed frailty modelling. 

     The paper is organized as follows. In Section 2 some well-known mixture failure rate 

models are briefly introduced and some basic notions are discussed. Section 3 describes the 

hazard rate process induced by external shocks and the corresponding effect of this 

heterogeneity. Section 4 deals with the survival model based on the generalized Polya process. 

Section 5 shows how heterogeneity in parameter of the extended generalized Polya process 

results in the generalized Polya process. Concluding remarks are given in Section 6. 

2. ‘Traditional’ mixing with fixed frailty

Consider a homogeneous population of i.i.d. items with lifetimes T  described by the absolutely 

continuous cdf 𝐹(𝑡), pdf 𝑓(𝑡) and failure rate, 𝜆(𝑡). Denote also the corresponding survival 

function by 𝐹(𝑡) = 1 − 𝐹(𝑡) . However, due to instability of production processes,

environmental and other factors, most populations of manufactured items in real life are 

heterogeneous. Let the lifetime of an item chosen at random from this heterogenous population 

be 𝑇ℎ . 

     The simplest and the most popular way to model this heterogeneity in applications is via the 

unobserved random variable that is often called “frailty”. Consider for definiteness, a 

continuous frailty  𝑍 ≥ 0 with support in [0, ∞) and the pdf 𝜋(𝑧). The baseline cdf, pdf and 

the failure rate in this case are indexed by parameter 𝑍 , i.e., 𝐹(𝑡, 𝑧) = 𝑃(𝑇ℎ ≤ 𝑡|𝑍 = 𝑧) ,

𝐹̄(𝑡, 𝑧) = 1 − 𝐹(𝑡, 𝑧), 𝑓(𝑡, 𝑧) =
𝜕

𝜕𝑡
 𝐹(𝑡, 𝑧) and 𝜆(𝑡, 𝑧) =

𝑓(𝑡,𝑧)

𝐹̄(𝑡,𝑧)
 accordingly, where 𝑍 = 𝑧  is 

the corresponding realization. (Note that the equivalent notations  𝐹(𝑡|𝑧), 𝑓(𝑡|𝑧) and 𝜆(𝑡|𝑧) 

can be also used). On the other hand, the population (mixture) characteristics are defined, 

obviously, as the following expectations  

𝐹𝑚 (𝑡) = ∫ 𝐹(𝑡, 𝑧)𝜋(𝑧)𝑑𝑧,
∞

0

 

𝑓𝑚 (𝑡) = ∫ 𝑓(𝑡, 𝑧)𝜋(𝑧)𝑑𝑧
∞

0

. 

As the failure rate is a conditional characteristic, the population (observed, or mixture) failure 

rate should be defined also as the conditional expectation (Lynn and Singpurwalla (1997)):

𝜆𝑚 (𝑡) = ∫ 𝜆(𝑡, 𝑧)𝜋(𝑧|𝑡)𝑑𝑧,
∞

0

 (1)



𝜋(𝑧|𝑡) =
𝜋(𝑧)𝐹̄(𝑡, 𝑧)

∫ 𝐹̄(𝑡, 𝑧)𝜋(𝑧)𝑑𝑧
∞

0

,  (2) 

where 𝜋(𝑧|𝑡) denotes the conditional pdf of 𝑍 on condition that 𝑇ℎ > 𝑡. On the other hand, an 

unconditional expectation or the ‘model/baseline mixture failure rate’ is defined as  

𝜆𝑏(𝑡) = ∫ 𝜆(𝑡, 𝑧)𝜋(𝑧)𝑑𝑧.
∞

0

  (3) 

     It is also important to note that the above setting describes the random failure rate, which is 

the simplest stochastic process, namely, the path process 𝜆𝑏𝑡   

𝜆𝑏𝑡 = 𝜆(𝑡, 𝑍), 𝑡 ≥ 0.  (4) 

This relation can define, e.g., an impact of a random environment on some baseline failure rate 

The more general form of this failure rate process to be called the model failure rate process 

(MFRP) will be considered in the next sections. It describes the failure rates of the 

corresponding subpopulations in a heterogeneous population. However, if we want to describe 

the failure rate of an item chosen at random from this heterogeneous population, conditioning 

on 𝑇ℎ > 𝑡 defines the corresponding hazard rate process (HRP) 

 𝜆𝑡 ≡ 𝜆𝑏𝑡 |𝑇ℎ > 𝑡,𝑡 ≥ 0 

 and, in what follows, we will use this important terminology for our paper. 

     To arrive at certain important properties for the shape of the population (mixture) failure 

rate, additional assumptions should be imposed. The main one is the corresponding ordering 

assumption  

𝜆(𝑡, 𝑧1) < 𝜆(𝑡, 𝑧2), 𝑧1 < 𝑧2, ∀𝑧1,𝑧2 ∈ (0, ∞),  𝑡 ≥ 0.  (5) 

Thus, we have an ordered family of failure rates of ‘subpopulations’. The following result is 

obtained (Finkelstein (2008)): 

Let ordering (5) take place for the described model of mixing. Then the following inequality 

holds 

𝜆𝑚(𝑡) < 𝜆𝑏(𝑡), 𝑡 > 0.  (6) 

      Thus, owing to conditioning, the mixture failure rate is smaller than the unconditional one 

for each 𝑡 > 0. This can be intuitively explained via the principle: “the weaker subpopulations 

are dying out first”. Indeed, the subpopulations with larger failure rates terminate stochastically 

earlier ‘pushing’ the resulting unconditional failure rate down. Moreover, if   𝜆(𝑡, 𝑧)  is 

differentiable in both arguments and 𝜕𝜆(𝑡, 𝑧)/𝜕z is increasing in 𝑡 , then λ𝑏(t) − λm(t)  is 

increasing (Finkelstein and Cha (2013)). 

     As examples, we will consider two models of mixing which are popular in applications. 

a. The additive model

The model failure rate process (MFRP) defined in (4) in this specific case is 

𝜆𝑏𝑡 = 𝜆(𝑡) + 𝑍, 𝑡 ≥ 0. (7) 

whereas the corresponding hazard rate process (HRP), in accordance with our definition, is 

𝜆𝑡ℎ ≡ 𝜆𝑏𝑡|𝑇ℎ > 𝑡 = 𝜆(𝑡) + 𝑍|𝑇ℎ > 𝑡, (8)



where the random variable 𝑍|𝑇ℎ > 𝑡 has the conditional  pdf 𝜋(𝑧|𝑡) (at each insant of time t)

defined in (2). Then, taking expectations of both sides of (8) results in the population failure 

rate  

𝜆𝑚 (𝑡) = 𝜆(𝑡) +
∫ 𝑧𝐹̄(𝑡,𝑧)𝜋(𝑧)𝑑𝑧
∞

0

∫ 𝐹̄(𝑡,𝑧)𝜋(𝑧)𝑑𝑧
∞

0
= 𝜆(𝑡) + 𝐸[𝑍|𝑡]. 

Equation (7) defines for 𝑧 ∈ [0, ∞) a family of ‘horizontally parallel’ functions. Lynn and 

Singpurawalla (1997) had shown, under some mild additional assumptions, that when 𝜆(𝑡)  is 

increasing, the mixture failure rate can have a bathtub failure rate.  

b. The multiplicative model

This model is, in a way, the proportional hazard (PH) model used in statistics to model the 

effect of covariates on the baseline failure rate. In our notation, it is defined for  𝑍 = 𝑧 as 

𝜆(𝑡, 𝑧) = 𝑧𝜆(𝑡), 

whereas the corresponding mixture failure rate and the hazard rate process are 

𝜆𝑚 (𝑡) = ∫ 𝜆(𝑡, 𝑧)𝜋(𝑧|𝑡)𝑑𝑧
∞

0
= 𝜆(𝑡)𝐸[𝑍|𝑡], 

 𝜆𝑡ℎ ≡ 𝜆𝑏𝑡|𝑇ℎ > 𝑡 = (𝑍|𝑇ℎ > 𝑡)𝜆(𝑡),

accordingly. 

     The effect of multiplication can result in more dramatic changes as compared with an 

additive model. For instance (Finkelstein (2008)), let 𝑍 be the gamma-distributed random 

variable with shape parameter 𝛼  and scale parameter 𝛽  and let 𝜆(𝑡) = 𝛾𝑡𝛾−1,  𝛾 > 1 be the 

increasing failure rate of the Weibull distribution. Then the mixture failure rate has a bell-

shape, which is illustrated by Figure 1.  

Figure 1. The mixture failure rate for the Weibull baseline distribution, 𝛾 = 2,  𝛼 = 1 
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This follows as a specific case of the mixture failure rate for the multiplicative model with the 

general baseline distribution (Beard (1971), Vaupel et al (1979)), i.e., 𝜆(𝑡, 𝑧) = 𝑧𝜆(𝑡), with a 

gamma-distributed frailty 𝜋(𝑧) =
𝛽𝛼 𝑧𝛼−1

Γ(𝛼)
exp{−𝛽𝑧} , 𝑧 > 0. In this case, the explicit form for 

the mixture survival function is given by 

𝐹𝑚 (𝑡) =
𝛽𝛼

(𝛽+𝛬(𝑡))
𝛼 

and its mixture failure rate is obtained by 

𝜆𝑚 (𝑡) =
𝛼𝜆(𝑡)

𝛽 + 𝛬(𝑡)

where 𝛬(𝑡) = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
 is the corresponding cumulative baseline failure rate. The 

corresponding cumulative mixture failure rate is given by 𝛬𝑚(𝑡) = ∫ 𝜆𝑚 (𝑥)𝑑𝑥
𝑡

0
= ln(𝛽 +

𝛬(𝑡))
𝛼

− ln𝛽𝛼.

Thus, the shape of the mixture failure rate can dramatically differ from that of the model 

(baseline) failure rate. This presents a paradox, which is well-explained nowadays due to 

conditioning when obtaining the mixture failure rate.  

     As mentioned, the path process  (4)  presents the simplest model for the random failure rate 

with fixed, ‘assigned’ frailty. However, this is only a small class of models, where 

heterogeneity plays important role in describing the corresponding survival model. The next 

section will consider heterogeneity induced by a more general stochastic process and the 

heterogeneity in its sample paths can be considered in terms of the evolving frailty (Li and 

Anderson (2009)). 

3. Hazard rate processes induced by shocks

Let an item operate in a random environment modelled by a point process of external shocks 

{𝑁(𝑡), 𝑡 ≥ 0}, where 𝑁(𝑡) is the number of shocks in [0, 𝑡]. A simple failure rate path model 

in (4) is now replaced by the following MFRP 

𝜆𝑏𝑡 = 𝜆0 (𝑡) + 𝜂𝑁(𝑡),    (9) 

whereas ‘conditioning on survivors’ defines the corresponding HRP {𝜆𝑏𝑡 |𝑇ℎ > 0, 𝑡 ≥ 0}, 

 𝜆𝑡ℎ ≡ 𝜆𝑏𝑡|𝑇ℎ > 𝑡 = 𝜆0(𝑡) + 𝜂(𝑁(𝑡)|𝑇ℎ > 𝑡),   (10) 

where 𝜆0(𝑡) is some deterministic function that can be considered as a background failure rate; 

 -{𝑁(𝑡), 𝑡 ≥ 0} is a nonhomogeneous Poisson process (NHPP)  of shocks with rate 𝑟(𝑡).  

-𝜂 is a deterministic jump size on each event from the point process.

Thus, heterogeneity is now induced by the random number of shocks that occurred in each 

interval of time. It follows from (10) that for stochastic description, the properties of 𝑁(𝑡)|𝑇ℎ >

𝑡, 𝑡 ≥ 0 should be analysed.  The following result provides the distribution of 𝑁(𝑡)|𝑇ℎ > 𝑡. 



The conditional distribution of (𝑁(𝑡)|𝑇ℎ > 𝑡)  for each 𝑡 > 0  is given by the Poisson 

distribution with mean ∫ 𝑒𝑥𝑝{ − 𝜂(𝑡 − 𝑥)}𝑟(𝑥)𝑑𝑥
𝑡

0
, that is, 

𝑃(𝑁(𝑡) = 𝑛|𝑇ℎ > 𝑡) =
(∫ 𝑒𝑥𝑝{−𝜂(𝑡−𝑥)}𝑟(𝑥)𝑑𝑥

𝑡
0 )

𝑛

𝑛!
𝑒𝑥𝑝 {−∫ 𝑒𝑥𝑝{ − 𝜂(𝑡 − 𝑥)}𝑟(𝑥)𝑑𝑥

𝑡

0
}, 

𝑛 = 0,1,2, . ... 

The proof of this supplementary result can be found in Cha and Finkelstein (2016a). 

     Taking expectations of both sides of (10) results in the following expression for the 

population failure rate, 𝜆𝑚(𝑡) 

𝜆𝑚 (𝑡) = 𝜆0(𝑡) + 𝜂𝐸[𝑁(𝑡)|𝑇ℎ > 𝑡]. (11) 

Using relationship for 𝑃(𝑁(𝑡) = 𝑛|𝑇ℎ > 𝑡),

𝜆𝑚 (𝑡) = 𝜆0(𝑡) + 𝜂 ∫ 𝑒𝑥𝑝{ − 𝜂(𝑡 − 𝑥)}𝑟(𝑥)𝑑𝑥
𝑡

0
. (12) 

On the other hand, the unconditional (model or baseline) population failure rate, similar to (3) 

and for the NHPP with rate 𝑟(𝑡) can be defined as  

𝜆𝑏(𝑡) = 𝜆0(𝑡) + 𝜂 ∫ 𝑟(𝑥)𝑑𝑥  (13)
𝑡

0
 

It follows from (12) that 

∫ 𝑒𝑥𝑝{ − 𝜂(𝑡 − 𝑥)}𝑟(𝑥)𝑑𝑥
𝑡

0

< ∫ 𝑟(𝑥)𝑑𝑥
𝑡

0

 

and, therefore, inequality (6) holds in this case as well.  

     Intuitively, this effect can be also explained because the weaker subpopulations (with the 

larger realization of 𝑁(𝑡)) are dying out first, as opposed to the stronger subpopulations (with 

the smaller realization of 𝑁(𝑡)). This is ‘bending’ the unconditional (model) failure rate  𝜆𝑏(𝑡)

down to result in the ‘mixture’ failure rate (12). However, the conditioning now is applied not 

to the assigned (fixed) random variable (frailty), but to the corresponding stochastic process 

(evolving heterogeneity). Thus, the considered heterogeneity is due to the variability of sample 

paths of the process of shocks in (9) (see, Anderson (2000); Li and Anderson (2009) and 

Finkelstein (2012) for the similar type of heterogeneity due to variability of the sample paths 

of the Wiener process and also for the discussion and examples of fixed and evolving 

heterogeneity). 

Example 1. (Cha and Finkelstein (2016a)). Let 𝑟(𝑡) = 𝑟. Then 𝐸[𝑁(𝑡)] = 𝑟𝑡. Assume also 

that 𝜆0(𝑡) = 0. Then

𝜂𝐸[𝑁(𝑡)|𝑇ℎ > 𝑡] = 𝜂 ∫ 𝑒𝑥𝑝{ − 𝜂(𝑡 − 𝑥)}𝑟(𝑥)𝑑𝑥
𝑡

0
= 𝑟(1 − 𝑒𝑥𝑝{ − 𝜂𝑡}). 



Figure 2. Population failure rate with 𝜂 = 𝑟 = 1. 

Fig. 2 illustrates the resulting curves for the specific case when 𝜂 = 𝑟 = 1. 

It can be easily seen that  

𝜆𝑚 (∞) = 𝑙𝑖𝑚𝑡→∞ 𝜂 𝐸[𝑁(𝑡)|𝑇ℎ > 𝑡] = 𝑟. 

This is a remarkable fact showing that this specific model describes not only the deceleration 

in population failure rate (in the specified sense) but the monotonic approaching to the plateau 

as well. In accordance with our discussion in Section 2, this is happening due to evolving 

heterogeneity in the sample paths of the process: the most vulnerable items are dying out first 

and only survivors ‘contribute’ to the population failure rate, which is a conditional 

characteristic.  

Example 2. Consider the decreasing in time rate of the NHPP of shocks 𝑟(𝑡) = 𝑟/(𝑡 + 𝑐), 𝑐 >

0 . This happens, when the environment is gradually becoming less severe. Then for 𝜆0 (𝑡) =
0,  

𝜆𝑚 (𝑡) = 𝜂𝑟 𝑒𝑥𝑝{ − 𝜂𝑡} ∫
𝑒𝑥𝑝{ 𝜂𝑥}

𝑥 + 𝑐
𝑑𝑥

𝑡

0

, 

where the exponential integral can be calculated numerically. The corresponding bell-shaped 

is shown in Figure 3.  
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Figure 3. Population failure rate with 𝜂 = 𝑟 = 5, 𝑐 = 1. 

4. Survival model induced by the shock process with memory.

In the previous sections, heterogeneity was imposed directly on the failure rates via the fixed 

frailty (Section 2) or the evolving frailty (Section 3). For the latter case, it was due to 

heterogeneous sample paths of the NHPP {𝑁(𝑡), 𝑡 ≥ 0}. We will now consider the extreme 

shock survival model (Cha and Finkelstein (2018)) for an item subject to the process of external 

shocks. It can be seen that in this case, when the process is NHPP, there is no induced 

heterogeneity in the considered model (distinct from the previous section, where the NHPP 

process of shocks acts directly on the failure rate).  However, if the process of shocks with 

memory (filtration) is considered, heterogeneity can arise in the framework of the extreme 

shock survival model, as it will be shown in what follows in this section.  

Let 𝐻𝑡− ≡ {𝑁(𝑢),0 ≤ 𝑢 < 𝑡} be the history (internal filtration) of the orderly point process 

in [0, 𝑡), i.e., the number of events in [0, 𝑡) denoted by𝑁(𝑡−) and the corresponding arrival 

times 𝑇0 ≡ 0 ≤ 𝑇1 ≤ 𝑇2 ≤. . . ≤ 𝑇𝑁(𝑡−) < 𝑡. The useful characterization of the point processes 

is via the stochastic intensity (Aven and Jensen (1999), Finkelstein and Cha (2013)) 

𝜆𝑡 = 𝑙𝑖𝑚𝛥𝑡→0

𝑃𝑟[ 𝑁(𝑡, 𝑡 + 𝛥𝑡) = 1|𝐻𝑡−]

𝛥𝑡
= 𝑙𝑖𝑚𝛥𝑡→0

𝐸[𝑁(𝑡, 𝑡 + 𝛥𝑡)|𝐻𝑡−]

𝛥𝑡
 (14) 

where 𝑁(𝑡1, 𝑡2), 𝑡1 < 𝑡2, is the number of events in [𝑡1, 𝑡2). It should be noted that although 

some similarities can be seen, the MFRP in (9) is not formally a stochastic intensity in the 

defined sense as (14) defines the point process, whereas (9) just includes the point process into 

a model.  

     For our modelling, the generalized Polya process with explicit filtration will be used.  

Definition 1. (Cha (2014)). 
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A counting process {𝑁(𝑡), 𝑡 ≥ 0} is called the Generalized Polya Process (GPP) with the set 

of parameters (𝜆(𝑡), 𝛼, 𝛽), 𝛼 ≥ 0, 𝛽 > 0, if 

(i) 𝑁(0) = 0;

(ii) 𝜆𝑡 = (𝛼𝑁(𝑡−) + 𝛽)𝜆(𝑡).

     The GPP with (𝜆(𝑡), 𝛼 = 0, 𝛽 = 1) reduces to the NHPP with the rate 𝑟(𝑡) = 𝜆(𝑡). The 

following result was obtained in Cha (2014): 

The probability of occurrence of n events for the GPP is given by 

𝑃(𝑁(𝑡) = 𝑛) =
𝛤(𝛽/𝛼+𝑛)

𝛤(𝛽/𝛼)𝑛!
(1 − 𝑒𝑥𝑝{−𝛼 Λ(𝑡)})𝑛(𝑒𝑥𝑝{−𝛼 Λ(𝑡)})

𝛽

𝛼, 𝑛 = 0,1,2, . . . ,          (15) 

where Λ(𝑡) ≡ ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
. 

It follows from (15) that  

𝐸[𝑁(𝑡)] = ∑ 𝑛𝑃(𝑁(𝑡) = 𝑛)𝑛
1 =

𝛽

𝛼
(𝑒𝑥𝑝{ 𝛼 Λ(𝑡)} − 1). (16) 

Therefore, the rate of the GPP is  

𝑟𝐺𝑃𝑃(𝑡) =
𝑑

𝑑𝑡
𝐸[𝑁(𝑡)] = 𝛽𝜆(𝑡) 𝑒𝑥𝑝{ 𝛼 Λ(𝑡)}. (17) 

     Now we will define the corresponding survival model (Cha and Finkelstein (2016b)). 

Consider an item subject to the GPP process of shocks. Assume, for simplicity, that shocks 

constitute the only cause of failure. Let each shock result in item’s failure with probability 𝑝(𝑡) 

and is survived with probability 𝑞(𝑡) = 1 − 𝑝(𝑡)  independently of ‘everything else’. This 

defines the corresponding extreme shock model (see, e.g., Gut and Husler (2005)) that is well-

known for the case of the NHPP of shocks with rate 𝑟(𝑡).  In this specific case, the survival 

probability of an item 𝑃(𝑇 > 𝑡) is defined as (Finkelstein (2008)) 

𝑃(𝑡) = 𝑃(𝑇 > 𝑡) = 𝑒𝑥𝑝 {− ∫ 𝑝(𝑢)𝑟(𝑢)
𝑡

0

𝑑𝑢}  (18) 

with the corresponding failure rate of an item 

𝜆𝑖𝑡(𝑡) = 𝑝(𝑡)𝑟(𝑡).                                                               (19)

On the other hand, for the described GPP extreme shock model (Cha and Finkelstein (2018)): 

𝑃(𝑇 > 𝑡) =
1

(1 + ∫ 𝛼𝑝(𝑣)𝜆(𝑣) 𝑒𝑥𝑝{ 𝛼 Λ(𝑣)}
𝑡

0
𝑑𝑣)

𝛽
𝛼

 (20) 

whereas the corresponding failure rate is 

𝜆𝑖𝑡(𝑡) = −
𝑑𝑃(𝑇 > 𝑡)/𝑑𝑡

𝑃(𝑇 > 𝑡)
=

𝛽𝑝(𝑡)𝜆(𝑡) 𝑒𝑥𝑝{ 𝛼 Λ(𝑡)}

(1 + ∫ 𝛼𝑝(𝑣)𝜆(𝑣) 𝑒𝑥𝑝{ 𝛼 Λ(𝑣)}
𝑡

0
𝑑𝑣)

 .            (21) 



If in Definition 1, we fix the history as 𝑁(𝑡 −) = 𝑛(𝑡−), then the corresponding rate defines 

the NHPP and, in accordance with (18)-(19), the failure rate in this conditional failure model 

is 𝑝(𝑡)(𝛼𝑛(𝑡−) + 𝛽)𝜆(𝑡) , whereas 𝑝(𝑡)(𝛼𝑁(𝑡−) + 𝛽)𝜆(𝑡)  is, in fact, the corresponding 

MFRP 𝜆𝑏𝑡 , 𝑡 ≥ 0, similar to (9) in the previous section (for a different model).  As in (3) and 

(13), obtaining expectation of stochastic intensity (𝛼𝑁(𝑡 −) + 𝛽)𝜆(𝑡), with respect to 𝑁(𝑡 −) 

and using (16), we arrive at the model/baseline population failure rate  

𝜆𝑏(𝑡) = 𝑝(𝑡)𝛽𝜆(𝑡) 𝑒𝑥𝑝{ 𝛼Λ(𝑡)},  (22) 

It immediately follows from (21) and (22) that 

𝜆𝑖𝑡 (𝑡) < 𝜆𝑏(𝑡), 𝑡 > 0.   

We are now ready to interpret 𝜆𝑖𝑡(𝑡) as the mixture failure rate 𝜆𝑚(𝑡)  similar to that in (1) and

(12), whereas mixing in 𝜆𝑏(𝑡) is obtained by taking expectation with respect to 𝑁(𝑡−). Thus,

a similar effect of bending down of the failure rate due to induced heterogeneity takes place. It 

is important that we were able to interpret this effect of heterogeneity from the same viewpoint 

for three different models.  

Example 3.  Recall that the Gompertz lifetime distribution is described by the exponentially 

increasing failure/mortality rate.   

𝜇(𝑡) = 𝑎𝑒𝑏𝑡 , 𝑎, 𝑏 > 0. 

We will now derive this curve (even in a more ‘advanced’ form) using the extreme shock model 

developed in this section. Let 𝑝(𝑡) ≡ 𝑝;  𝜆(𝑡) ≡ 𝜆; 𝛽 = 1. Then from (21) 

𝜆𝑖𝑡(𝑡) ≡ 𝜆𝑚(𝑡) = 𝑝(𝑡) ⋅
𝜆(𝑡) 𝑒𝑥𝑝{ 𝛼Λ(𝑡)}

(1 + ∫ 𝛼𝑝(𝑣)𝜆(𝑣) 𝑒𝑥𝑝{ 𝛼𝛬(𝑣)}
𝑡

0
𝑑𝑣)

=
𝑝𝜆𝑒𝛼𝜆𝑡

1 + 𝑝(1 − 𝑒𝛼𝜆𝑡)
, 

which has the shape of the ‘logistic curve’ that is used in demography for modelling 

heterogeneous populations with exponentially increasing subpopulations failure rates (Vaupel 

et al., 1979). Note that the ‘traditional mixing’ of Section 2 will result also in the logistic curve 

with the corresponding parameters.  

5. Stochastic intensity paradox

Recently Cha (2022) has proposed a new point process that is somewhat dual to the GPP 

described in the previous section. It is also defined via the stochastic intensity. 

Definition 2. 

A counting process {𝑁(𝑡), 𝑡 ≥ 0} is called the Extended Generalized Polya Process (EGPP) 

with the set of parameters (𝜆(𝑡), 𝛼, 𝑙), 𝛼 ≥ 0, 𝑙-integer, if 

(i) 𝑁(0) = 0;

(ii) 𝜆𝑡 = (−𝛼𝑁(𝑡−) + 𝛼𝑙)𝜆(𝑡).



      For reliability interpretation, let 𝛼 ≡ 1 . We can think in this case, e.g., about some 

debugging process in an item (program) when with each failure, the elimination of the 

corresponding defect occurs and the stochastic intensity decreases. However, our goal in this 

section is not in application, but rather in describing a fundamental property in context of 

mixing and heterogeneity. Note that, in this interpretation, 𝑙 has a meaning of a number of 

defects (bugs) that are initially present in an item.  

     When 𝑁(𝑡 −) = 𝑙 , the stochastic intensity becomes zero, which implies that additional 

events cannot occur anymore and, thus, the process terminates in this case. Equivalently, 

stochastic intensity can be defined as 

𝜆𝑡 = ∑(𝑙 − 𝑖)𝜆(𝑡)

𝑙−1

𝑖=0

𝐼(𝑇𝑖 < 𝑡 ≤ 𝑇𝑖+1); 𝜆𝑡 = 0,  𝑡 > 𝑇𝑙,  (23) 

where  𝑇𝑖 , 𝑖 = 1,2, … , 𝑙 is the arrival time of the i-th event and 𝑇0 = 0. 
     It follows from Cha (2022) and also can be shown employing relevant reliability 

interpretation of the parallel system of 𝑙 i.i.d. components that (compare with (15)): 

𝑃(𝑁(𝑡) = 𝑛) = (
𝑙
𝑛

) (1 − 𝑒𝑥𝑝{ −  Λ(𝑡))𝑛(𝑒𝑥𝑝{ −  Λ(𝑡)})𝑙−𝑛 , 𝑛 = 0,1,2, . . . , 𝑙           (24) 

We see that this is the binomial distribution with the ‘probability of success’ (1 − 𝑒𝑥𝑝{ −

 Λ(𝑡)}). Therefore, 

𝐸[𝑁(𝑡)] = 𝑙(1 − 𝑒𝑥𝑝{ −  Λ(𝑡)}). (25) 

and the rate of this process is given by  

𝑟𝐸𝐺𝑃𝑃(𝑡) = 𝑑[𝐸[𝑁(𝑡)]]/𝑑𝑡 = 𝑙𝜆(𝑡) 𝑒𝑥𝑝{ −  Λ(𝑡)} (26) 

 (compare with (16) and (17), respectively).  

Example 4. Let 𝜆(𝑡) = 𝜆, then (26) reduces to 𝑙𝜆 𝑒𝑥𝑝{ − 𝜆𝑡} showing the exponential decline 

in the rate of occurrence of defects/bugs as in the NHPP-based models of software reliability. 

See, e.g., Musa and Okumoto (1984) and  Goel (1985) for some initial empirical models of this 

kind. On the other hand, 𝑟𝐺𝑃𝑃(𝑡) = 𝛽𝜆 𝑒𝑥𝑝{ 𝛼𝜆𝑡} is exhibiting exponential growth.

    We will now address some general properties of the GPP and the EGPP. A wide class of 

point processes is the class of self-exciting point processes.  They describe random recurrent 

events when the occurrence of an event increases the likelihood of the occurrence of the 

subsequent events (Hawkes (1971, 2018)). Self-exciting point processes have, obviously, 

positively dependent increments and they are very useful in a wide range of applications. It 

follows from Definition 1 that GPP is the self-exciting process. On the other hand, there are 

point processes with a negative dependence between increments when the occurrence of an 

event decreases the likelihood of the occurrences of the subsequent events. Sometimes these 

processes are called the “self-regulating” (or self-correcting) point processes (Ertekin et al. 

(2015)). Obviously, as follows from Definition 2, the EGPP is the self-regulating process. 

     Thus, the GPP and EGPP are in a way dual and possess some opposite properties. However, 

an operation of appropriate mixing can ‘turn’ the terminating EGPP into non-terminating GPP! 

We will show this paradoxical result using an example, whereas the general framework is 

reported in Cha and Finkelstein (2024). As the number of defects in an item is usually unknown, 



it is reasonable to assume that it is a random variable 𝐿. Let it be geometrically distributed with 

the corresponding pmf (other discrete distributions can be considered as well)   

𝑓𝐿(𝑙) = 𝜃(1 − 𝜃)𝑙 , 𝑙 = 0,1,2, … ,   0 < 𝜃 < 1.

It can be shown using general results obtained in Cha and Finkelstein (2024), that the stochastic 

intensity for this mixed EGPP (in fact, it is a new type of a point process) can be obtained in 

the following form 

𝜆𝑡 = (𝑁(𝑡 −) + 1) +
(1 − 𝜃)exp {−𝛼Λ(𝑡)}

1 − (1 − 𝜃)exp {−𝛼Λ(𝑡)}
𝛼Λ(𝑡).  (27) 

It follows from Definition 1 that this is the GPP just with a different parameter set, namely, 

(
(1 − 𝜃)exp {−𝛼Λ(𝑡)}

1 − (1 − 𝜃)exp {−𝛼Λ(𝑡)}
𝛼Λ(𝑡), 1,1) 

Thus, the terminating EGPP with decreasing rate after mixing with respect to 𝐿 becomes the 

GPP with increasing rate, changing the ‘pattern’ to an opposite one. This counter-intuitive 

observation is due to heterogeneity induced via randomization and, in a way, has a similar 

origin as described in the previous sections via the principle “the weaker subpopulations are 

dying out first”. Indeed, each realization of   𝐿 can define the corresponding subpopulation with 

a ‘lifetime’ defined as the time when the process terminates. The larger realization corresponds 

to a stronger subpopulation with stochastically longer lifetime. As the weaker subpopulations 

are dying out first, the process with time the lifetimes are ‘pushed’ upwards eventually resulting 

in infinite lifetimes with probability 1. The latter corresponds to the non-terminating GPP. We 

intend to further justify this loose intuitive explanation and to report it elsewhere. Another topic 

to be explored in this respect is defining properties of mixing distributions that are ‘responsible’ 

for the described effect. 

6. Concluding remarks

One can hardly find homogeneous populations in real life, however, most of reliability 

modelling, usually for simplicity, deals with a homogeneous case. Due to instability of 

production processes, environmental and other factors, most populations of manufactured 

items in real life are heterogeneous. 

     Mixtures of distributions usually present an effective mathematical tool for modeling 

heterogeneity, as they implement in the model an unobservable random variable, which is 

usually called “frailty”. Obtaining expectations (or conditional expectations, as in the case of 

the failure rate) results in the population characteristics that can have properties different from 

those of the subpopulations. The convincing example of the latter is the possible change in 

aging properties of the population as compared with aging properties of subpopulations (e.g., 

the increasing failure rate turns to the bell-shaped). This presents the conventional approach in 

modeling heterogeneity considered in Section 2 via the fixed frailty assigned at 𝑡 = 0.
     However, at many instances, heterogeneity is imposed in a more complex way, which 

reflects, e.g., the impact of a random environment on a performance of operating items.  In 

sections 3 and 4 this is modeled by external shocks that occur in accordance with the Poisson 

point process (direct impact on the baseline failure rate) and the generalized Polya process 



(extreme shock model), respectively.  In both cases, the corresponding heterogeneity is not 

fixed and evolving with time (evolving heterogeneity). The end effects of this type of 

heterogeneity are similar to those for a fixed frailty, e.g., the population failure rate bends down 

as compared to the baseline: the weaker subpopulations are dying out first.  

     Finally, another paradox is outlined when, due to heterogeneity in a vital parameter of a 

model, a terminating point process (EGPP) with the decreasing rate after mixing becomes a 

non-terminating one with the increasing rate (GPP).  
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