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ABSTRACT
Thin plate and shell structures are extensively used in aerospace, naval, and energy sectors due to their lightweight and efficient

load‐bearing properties. Structural Health Monitoring (SHM) implementations are becoming increasingly important in these

industries to reduce maintenance costs, improve reliability, and ensure safe operations. This study presents an efficient tri-

angular inverse shell element for thin shell structures, developed using discrete Kirchhoff assumptions within the inverse finite

element method (iFEM) framework. The proposed inverse formulation is efficient and requires fewer strain sensors to achieve

accurate and reliable displacement field reconstruction than existing inverse elements based on the First Order Shear Defor-

mation Theory (FSDT). These features are critical to iFEM‐based SHM strategies for improving real‐time efficiency while

reducing project costs. The inverse element is rigorously validated using benchmark problems under in‐plane, out‐of‐plane, and
general loading conditions. Also, its performance is compared to an existing competitive inverse shell element based on FSDT.

The inverse formulation is further evaluated for robust shape‐sensing capability, considering a real‐world structural configu-

ration under a practicable sparse sensor arrangement. Additional investigation includes defect characterization and structural

health assessment using damage index criteria. This research contributes toward developing more reliable and cost‐effective
monitoring solutions by highlighting the potential application of the proposed inverse element for SHM frameworks designed

for thin shell structures.

1 | Introduction

Structural health monitoring (SHM) has become an essential
tool across various industrial sectors, offering modern solutions
to enhance maintenance efficiency, improve safety, and reduce
costs. By collecting and analyzing real‐time sensory data,
SHM systems enable accurate predictions of structural behavior
and facilitate early detection of damage, such as cracks,
delamination, or corrosion. Traditional inspection methods, like
visual or ultrasonic testing, while effective, can be labor‐
intensive, time‐consuming, and may not always detect obscured
damage. A key challenge in SHM is its ability to continuously
monitor structural integrity in real time. Rather than relying
solely on point‐wise measurements, full‐field reconstruction of
displacement and stress profiles is critical for comprehensive

health assessments. This approach allows for identifying and
quantifying defects that might otherwise go undetected.

Rapid sensor technology advancements have significantly trans-
formed SHM applications in recent years. Traditional techniques
have evolved into sophisticated, real‐time intelligent sensing sys-
tems for structural health prognosis. Based on their core method-
ologies, SHM methods are broadly classified into two categories:
data‐driven and model‐based approaches [1]. Data‐driven ap-
proaches, particularly those utilizing deep neural networks (DNNs),
offer considerable advantages in reconstructing complex structural
behavior [2, 3]. These robust frameworks can effectively address
both forward and inverse analyses, making them highly suitable for
SHM applications. However, they are data‐intensive, requiring
substantial computational resources and a machine learning (ML)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.

20 of 175International Journal of Mechanical System Dynamics, 2025; 5:20–39
https://doi.org/10.1002/msd2.12141

https://doi.org/10.1002/msd2.12141
http://orcid.org/0000-0002-4614-7214
mailto:erkan.oterkus@strath.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/msd2.12141
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmsd2.12141&domain=pdf&date_stamp=2025-03-13


framework [4, 5]. Despite these challenges, DNN‐based methods
present promising alternatives for SHM, especially when traditional
mechanical approaches struggle to capture intricate structural
responses [1]. In contrast, model‐based methods are typically more
robust and efficient, using physics‐based structural models to detect
and assess damage while predicting structural responses to potential
future loading conditions. However, the full‐field reconstruction of
structural behavior poses an inverse problem that has intrigued
researchers for their significant contributions to the evolution of
accurate shape‐sensing technologies.

Early research in full‐field displacement reconstruction began with
Ko's Displacement Theory [6], which enabled the reconstruction of
wing‐bending profiles using limited onboard sensors. Ko et al. [7]
used the Euler–Bernoulli beam theory to reconstruct wing deflec-
tions by strategically placing strain sensors along the wing span.
However, the simplified assumptions of the beam theory limit its
effectiveness in capturing complex behaviors, such as shear and
torsional effects, reducing its applicability for structures with intri-
cate geometries and loading conditions. Consequently, while effec-
tive for beam‐like structures, extending this approach to built‐up
structures requires accounting for more complex deformation
modes, such as membrane stresses or buckling. Furthermore, Ko's
approach struggles to detect localized effects, such as damages, in
real‐world SHM applications.

Other researchers, such as Foss and Haugse [8], have explored
global and piecewise continuous basis functions for displace-
ment reconstruction. The Modal Transformation Theory [9, 10]
also attracted attention for reconstructing displacement profiles
from normal mode shapes. However, these methods depend
heavily on accurate mode shape data, which can be compromised
by material degradation or structural damage. Additionally,
limited modes in these methods can overlook localized defor-
mations, a critical factor in SHM applications. Shkarayev [11]
introduced a two‐step least‐squares method for displacement
reconstruction. This approach estimates the applied load on the
structure and then determines the displacement field. Conse-
quently, the reliability of the reconstructed displacements
depends considerably on the accuracy of these load predictions.
Even minor errors in load estimations can lead to significant
inaccuracies in the reconstructed displacement profiles.

More recently, variational and model‐based approaches have
become increasingly popular for full‐field displacement
reconstruction. Tessler [12] introduced the inverse finite ele-
ment method (iFEM), which uses a variational error functional
using discrete onboard strain data to reconstruct displacement
profiles without relying on material properties or loading con-
ditions. This framework is advantageous in real‐world scenar-
ios, offering a more reliable method for reconstructing
displacements than traditional techniques, which require pre-
cise material and loading information. Also, the iFEM frame-
work can handle diverse structural configurations and is
reliable against sparse strain data, making it an essential tool for
shape‐sensing and SHM applications [13].

Various inverse elements developed for specific structural needs
have since expanded the versatility of iFEM. Tessler and
Spangler [14] introduced the iMIN3 element for full‐field shape‐
sensing applications. Similarly, Kefal et al. [15] developed the

iQS4 element for SHM in the naval sector, later developing a
curved inverse element (iCS8) for marine structures [16].
Khalid et al. [17] proposed the iKP4 element using non‐
conforming Hermite basis functions for thin plates. Higher‐
order isogeometric inverse elements [18, 19] have also been
developed to address complex geometries, improving interele-
ment compatibility. De Mooij et al. [20] extended iFEM to thick
structures with a 3D solid inverse element, and the i3‐RZT
element [21] advanced the iFEM capabilities for composite
laminates and sandwich structures. Khalid et al. recently
introduced an inverse crack tip element (iTP6) to perform iFEM
analysis on structures with pre‐existing cracks and reconstruct
crack mechanics [22].

Numerous inverse elements in the literature are based on the first
order shear deformation theory (FSDT), used for iFEM analysis of
thin and thick shell structures. For thicker structures, shear cor-
rection factors are applied, and transverse shear strains are calcu-
lated using FSDT equilibrium equations. In dealing with thin shell
structures, the transverse shear strain computations are neglected;
however, this assumption does not improve computational effi-
ciency since the shear deformation terms are integral to the inverse
formulation. Another challenge of FSDT‐based elements is shear
locking in analyzing thin structures due to the dominance of
transverse shear deformation terms. Additionally, these elements
tend to converge slowly for thin plates and shells, requiring a large
number of strain sensors. As a result, FSDT‐based inverse elements
face difficulties in accurately analyzing thin structures, leading to
high computational costs and impractically large sensor require-
ments. The literature emphasizes that the effectiveness of the iFEM
shape‐sensing capability is closely linked to the kinematic as-
sumptions in the inverse formulation. Therefore, an efficient inverse
shell element explicitly designed for thin shell structures is needed
for efficient SHM applications, reducing overall project costs.

This study proposes a new triangular inverse shell element
(iKS3) for SHM applications, designed to overcome the limita-
tions of existing FSDT‐based formulations for thin shell
structures. The iKS3 formulation is straightforward, neglecting
transverse shear effects based on discrete Kirchhoff assump-
tions. It also integrates hierarchical drilling rotation to improve
compatibility and extend its use to complex built‐up structures.
In contrast to FSDT‐based elements, the iKS3 formulation is
computationally efficient, simple to implement, and free from
locking issues when applied to thin plates and shells. A rigorous
numerical validation, using well‐known benchmark problems,
assesses the performance of the iKS3 element. Comparative
analysis with the iMIN3 inverse shell element evaluates its
accuracy and efficiency in reconstructing displacement fields.
For SHM applications, the robustness of the iKS3 element is
tested on the curved stiffened panel commonly found in air-
frames and barges. Additionally, the damage detection capa-
bilities of the iKS3 inverse shell element are assessed for
material degradation defects.

The rest of this article is organized as follows: Section 2 pres-
ents the inverse shell formulation and theoretical background.
Detailed mathematical aspects, including shape functions for
triangular elements, drilling rotation degree of freedom (DOF),
and discrete Kirchhoff bending fields, are outlined in
Appendices A–C. Appendix D describes the coordinate
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transformation system essential for shell formulations. Sec-
tion 3 provides benchmark results and compares iFEM results
for the iKS3 and iMIN3 elements. Section 4 discusses SHM
applications considering real‐world cases, including displace-
ment reconstruction, defect detection, and damage assessment.
Finally, the conclusion summarizes the key findings and the
importance of the study for efficient and cost‐effective SHM
applications involving thin plate and shell structures.

2 | Formulation of the Inverse Shell Element

According to the kinematics of the classical plate theory (CPT),
Kirchhoff‐based elements requireC1 continuity in the deflection
field due to the presence of second derivatives of deflection in
the virtual work expression. Achieving this level of continuity
requires special techniques, such as using Hermite basis func-
tions, which increases computational complexity, particularly
when analyzing built‐up structures [23].

To address the strict continuity requirements, Batoz et al. [24]
proposed the Discrete Kirchhoff Theory. This method simplifies
the problem by applying the Kirchhoff hypothesis only along
the element edges, relating the rotations to transverse dis-
placements. This approach enables using more straightforward
C0 continuity elements while ensuring convergence to the
Kirchhoff plate theory solution. The formulation neglects
transverse shear energy, consistent with the thin plate theory,
and relies on the deflection w and rotations θ θ( , )x y as the
independent variables, which only require C0 continuity. The
Kirchhoff hypothesis discretely relates the rotations to trans-
verse displacements along the element edges, such that
θ w= − ,x y and θ w= ,y x.

A general expression for the strain field, consisting of mem-
brane and bending components, can be written as

ε u e u κ u( ) = ( ) + ( ), (1)

where ε u( ) represents the strain field, e u( ) denotes the mem-
brane strains, and κ u( ) represents the bending strains associ-
ated with bending curvatures. The strain field can further be
expressed in terms of its strain components as
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The strain field for membrane and bending curvatures can be
written more conveniently as
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In this formulation, e u( ) represents the membrane strains,
while κ u( ) corresponds to the bending curvatures. The inde-
pendent rotations θx and θy directly relate to the nodal dis-
placements, maintaining the Kirchhoff element characteristics.
These strain–displacement relationships form the basis for the
inverse shell formulation using the iFEM weighted least‐
squares functional.

The constitutive relationship between the non‐zero stress and
strain states for a homogeneous material under isothermal
conditions can be expressed as

σ u C ε u( ) = [ ] ( ) (5)

where C is the constitutive matrix containing the material
properties. Following the thin plate theory, the transverse
normal and transverse shear stresses σ γ,zz yz, and γxz are
assumed to be zero, simplifying the stress state to the in‐plane
components. The constitutive matrix for an isotropic material,
considering these assumptions, is given by












C

E

ν

ν
ν

ν=
1 −

1 − 0
− 1 0

0 0
1 −

2

2
(6)

where E is the Young's modulus and ν is the Poisson's ratio.
These material properties fully characterize the in‐plane
response of isotropic materials under the assumptions of the
thin plate theory.

To start with finite element approximation, consider a three‐
node triangular inverse shell element defined in the physical
coordinate system x y z( , , ), where the nodes are located at the
mid‐plane of the shell. The thickness of the shell is represented
by z t t[− 2, 2]∈ ∕ ∕ , as illustrated in Figure 1. The master ele-
ment, shown in Figure 2, is defined in the natural barycentric
coordinate system ξ η( , ).

The transformation between the physical and natural coordi-
nate systems for the triangular element is achieved using linear
shape functions N ξ η( , )i , which are functions of the natural
barycentric coordinates ξ and η corresponding to the ith node of
the triangular element. These shape functions are defined as
follows:

N ξ η ξ η( , ) = 1 − − ,1 (7a)

N ξ η ξ( , ) = ,2 (7b)

N ξ η η( , ) = .3 (7c)
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In this shell formulation, six degrees of freedom (DOF) are
associated with each node, encompassing three translational
displacements and three rotational components. The nodal
displacement vector for the iKS3 inverse shell element is
defined as
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For the ith node of the inverse element, u v w, ,o o represent the
nodal displacements, while θx and θy denote the bending rota-
tions along the y‐ and x‐axis, respectively. The variable θz
corresponds to the drilling rotation, a hierarchical DOF intro-
duced to enhance element compatibility. Originally proposed by
Allman [25], drilling DOF are particularly beneficial in pre-
venting coplanar singularities in complex built‐up structures.
During iFEM‐based shape‐sensing analysis, these unknown
nodal displacements are reconstructed using discrete strain
measurements obtained from onboard sensors.

The in‐plane translational displacement components u and v for
the triangular inverse shell element are defined using the linear

shape functions from Equation (7) along with contributions
from the drilling DOF θz:

 u N ξ η u L ξ η θ= ( , ) + ( , ) ,
i

i o

i

i z

=1

3

=1

3

i i (9)

 v N ξ η v M ξ η θ= ( , ) + ( , ) ,
i

i o

i

i z

=1

3

=1

3

i i (10)

where L ξ η( , ) and M ξ η( , ) are anisoparametric shape functions
that incorporate the effect of the drilling DOF θz, and their
explicit forms are provided in Appendix B.

The membrane nodal variable vector U i
m, consisting of both

displacements and drilling rotation at each node, is expressed as
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where um represents the complete membrane displacement
field for the element. The elemental strain e u( )e for the mem-
brane formulation can be calculated by substituting Equations
(9) and (10) into the strain–displacement relationship, as shown
in Equation (12):

e u B u( ) = ,e m e (12)

where Bm is the membrane strain–displacement gradient ma-
trix and ue is the displacement vector for the element. The nodal
membrane gradient matrix Bi

m for node i is given as
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(13)

By assembling the nodal gradient matrices Bi
m for each node

i( = 1, 2, 3), the overall membrane gradient matrix Bm for the
element is obtained as

B B B B= [ ].m m m m
1 2 3 (14)

The bending gradient matrix formulation for the proposed
inverse shell element is derived from the discrete Kirchhoff
triangular (DQT) bending element, as initially presented by
Batoz et al. [24]. The derivation of the DQT bending element is
well documented in the literature; this discussion focuses on
utilizing its displacement field to formulate the bending gradi-
ent matrix for the current inverse shell element.

In a linear triangular domain, the independent bending rota-
tions θx and θy can be approximated using anisoparametric
shape functions, consistent with the discrete Kirchhoff
hypothesis:

FIGURE 1 | iKS3 defined in the physical coordinate system.

FIGURE 2 | Master element defined in the natural coordinate

system.
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H uθ ξ η= ( , ) ,x
x bT (15)

H uθ ξ η= ( , ) ,y
y bT (16)

where H ξ η( , )x and H ξ η( , )y are shape function vectors that
map the element displacement field ub to the bending rotations
θx and θy, respectively. Both H ξ η( , )x and H ξ η( , )y comprise
nine anisoparametric shape functions, as introduced by Batoz
et al. [24], and their explicit definitions, derived from the
standard quadratic basis functions of the six‐node triangular
element, can be found in Appendix A. The expressions for the
shape function vectors H x and H y are provided in Appendix C.

The bending nodal variables ui
b can be organized to represent

the bending displacement field for the element as follows:
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where ub represents the complete bending displacement field of
the element. The numerical elemental strains κ u( )e for the
bending part can be computed using Equations (15) and (16) in
the strain–displacement relationship:

κ u B u( ) = ,e b e (18)

where Bb denotes the element bending gradient matrix. The
nodal bending gradient matrix Bi

b is expressed in terms of the
shape functions H x and H y as follows:
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j i iwhere = 3( − 1), for = 1, 2, 3

where bending gradient matrix Bb for the entire element is
obtained by assembling Bi

b for each node i( = 1, 2, 3) of the
iKS3 inverse shell element:

B B B B= [ ].b b b b
1 2 3

(20)

The iFEM framework is based on the principle of the variational
method, where the displacement field is reconstructed by mini-
mizing a weighted least‐squares error functional. This functional is
formulated using discrete strain measures and their corresponding
numerical counterparts in a discretized geometric space. One sig-
nificant advantage of the iFEM approach is its independence from
material properties, such as elasticity or inertia, and loading con-
ditions for full‐field shape reconstruction.

The weighted least‐squares functional for the proposed iKS3
element is defined as the sum of the error terms between the

numerical and discrete strain measures for membrane and
bending strains as

   ϕ u e u e κ u κw w( ) = ( ) − * + ( ) − * .e e
e

e
k

e2 2 (21)

where e u( )e and κ u( )e represent the numerically computed
membrane and bending strains, while e* and κ* are the
in situ discrete strain measures obtained from strain sensors
located within the geometric domain of the inverse element.
we and wk are the weighting coefficients associated with the
squared norms corresponding to membrane and bending
strain errors, respectively. The squared norms from Equa-
tion (21) can be expressed over the inverse element domain
Ωiel as

 e u e e u e x y( ) − * = ( ( ) − *) d d ,e

A

e2 2

e
∬ (22)

 κ u κ κ u κt x y( ) − * = ( ( ) − *) d d ,e

A

e2 2 2

e
∬ (23)

where Ae is the area of an inverse element.

Discrete strain sensor measurements obtained from onboard
strain sensors are critical to the iFEM formulation. These
experimental strains are evaluated at discrete locations
x y( , )j j within an inverse element at its mid‐plane, as shown in
Figure 3. For general loading conditions and complex
structures, strain sensors on both surfaces (top and bottom) are
needed to compute accurate section strains. However, in
special cases, such as plane stress or pure bending, strain data
from one surface can suffice for iFEM analysis. The in situ
strain data typically collected from onboard sensors can be ex-
pressed as
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where e* and κ* are the discrete strain measures at location
x y( , )j j within the spatial domain of an inverse element. Su-
perscripts (+) and (−) indicate top and bottom surface strain
data, respectively.

FIGURE 3 | Strain rosettes at discrete locations x y( , , ± )j j
t

2
.
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The weighting coefficients we and wk, defined in Equation (21), are
selected based on the availability of strain data for the inverse ele-
ment. If strain measures e κ( *, *) are available within an inverse
element, the coefficients are set to unity, w w= = 1e k . If not,
minimal values w w, 1e k ≪ are used. This approach ensures that
missing data points do not disproportionately affect the error min-
imization. During the least‐squares error minimization process,
these weighting coefficients help to balance the influence of avail-
able discrete strain measures in the closed‐form solution. Setting the
coefficients to unity w w( = = 1)e k gives equal importance to all
data points, which are known with certainty when the strain
measures are available. On the other hand, setting the coefficients to
a minimal value w w( = = 10 to 10 )e k

−3 −6 when the strain data are
missing reduces the impact of these missing data points during the
error minimization process, preventing them from unduly affecting
the overall result. This approach helps to ensure that the iFEM
algorithm shows its intended robustness for real‐world SHM
applications.

Minimizing the least‐squares error functional in Equation (21)
with respect to unknown nodal displacements ue of an inverse
element yields the conventional system of the linear equations:

ϕ u

u
k u f

( )
= − = 0,

e e

e
e e e∂

∂
(26)

k u f= ,e e e (27)

where ke is the shape matrix for the numerical strains, f e is the
force vector derived from discrete strain measures, and ue is the
unknown element displacements. The detailed expressions for
ke and f e are as follows:

( )k B B B Bw t w x y= ( ) + ( ) ( ) d d ,e

A
e

m m
k

b bT 2 T

e
∬ (28)

( )f B e B κw t w x y= ( ) * + ( ) ( ) * d d .e

A
e

m
k

bT 2 T

e
∬ (29)

The global system of equations is assembled from the element
contributions:

KU F= , (30)

where K is the global stiffness matrix, U is the global dis-
placement vector, and F is the global force vector. These
matrices are assembled as

K T k T= ( ) ,
e

N
e e e

=1

T
iel

(31)

U T u= ( ),
e

N
e e

=1

T
iel

(32)

F T f= ( ).
e

N
e e

=1

T
iel

(33)

Here, Niel denotes the number of inverse elements, andT e is the
transformation matrix for each element. Further details on the

element transformation matrix are provided in Appendix D.
After applying boundary conditions, the partitioned global
system becomes

K U F= .p p p (34)

Consequently, K U,p p, and Fp are the prescribed global inverse
stiffness matrix, unknown displacement vector, and global inverse
force vector, respectively, in the iFEM formulation. The unknown
nodal displacements can then be computed using standard FEM
techniques, yielding the full‐field displacement reconstruction.

3 | Numerical Validation

The validation of the inverse formulation requires discrete
strain data, which can be obtained through two primary
methods. First, experimental strain data are obtained using
onboard strain sensors. Alternatively, synthetic strain data can
be generated via high‐fidelity FEM analysis. Under identical
loading and boundary conditions, FEM analysis reliably re-
produces experimental strain data. As FEM is a well‐established
analysis tool, the use of synthetic strain data for the numerical
validation of inverse formulations is widely accepted within the
engineering community. The literature supports this method-
ology, which has been commonly applied in developing inverse
elements [15, 19, 26].

The iFEM formulation for the iKS3 inverse shell element is
numerically validated by evaluating key benchmark problems
from the literature. A comprehensive validation plan involves
assessing the iKS3 element under in‐plane (membrane), out‐of‐
plane (bending), and combined loading scenarios for curved
shell structures. Numerical modeling is extensively used in
research and development to replicate real‐world behavior.
However, since numerical models like iFEM rely on various
assumptions and simplifications, validating them against ana-
lytical solutions is critical to ensure their accuracy and reli-
ability. For complex cases where analytical solutions are
unavailable, high‐fidelity FEM reference solutions provide a
dependable comparison for iFEM results.

The numerical cases presented here serve two essential pur-
poses: validating the iKS3 inverse shell element and comparing
its performance with the iMIN3 inverse shell element [14]. In
both cases, shear deformation effects are neglected when ana-
lyzing thin plate and shell structures, which is consistent with
the mechanics of such problems [27]. This exclusion is intrinsic
in the iKS3 inverse formulation, based on the CPT. The absence
of shear deformation terms simplifies the weighted least‐
squares error functional in iFEM analysis. On the other hand,
the iMIN3 formulation includes shear deformation terms and
requires the computation of numerical transverse shear strains.
Therefore, even if shear deformation effects are disregarded in
the iMIN3 element, it does not provide the computational
simplicity of the iKS3 formulation, which inherently omits
these terms and necessitates fewer strain sensors.

In iFEM applications, numerical validation is typically per-
formed using two sensor configurations: dense and sparse.
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Dense configurations provide strain data for all inverse ele-
ments to validate the accuracy of iFEM formulations, while
sparse configurations, where strain data are available only for
selected inverse elements, assess the robustness of the iFEM
algorithm by simulating realistic onboard sensor placements.
For straightforward comparison, the numerical validation of
iKS3 and iMIN3 elements is conducted using a standardized
dense sensor configuration. Another critical factor influencing
iFEM accuracy is the location of the strain rosette within the
inverse element domain.

In iFEM analysis, the strain rosette can be placed at various
positions within the inverse element domain, such as Gauss
points, as shown in Figure 4. Structural geometry, loading
conditions, and critical stress areas often govern the optimal
placement of discrete locations. For this study, the strain
rosettes are consistently placed at the center of the inverse
element domain (single‐point Gauss location) across all vali-
dation cases.

3.1 | In‐Plane Loading (Case ‐ I)

The plane stress condition represents one of the simplest sce-
narios in two‐dimensional structural analysis. Analytical solu-
tions exist for various problems involving point loads and edge
tractions. Several studies [28, 29] have used shear‐loaded can-
tilever beams to assess the membrane behavior of newly deve-
loped elements. In this case, this problem is revisited to evaluate
the membrane response capabilities of the newly formulated
iKS3 inverse shell element.

A rectangular beam with dimensions b = 1.2192m (length),
a = 0.3048m (width), and a constant cross‐sectional thickness
of t = 25.4mm is considered. The left edge is fixed, while the
right edge is subjected to a resultant shear load of
P = 177.929 kN, as illustrated in Figure 5. The beam material is
homogeneous and isotropic, with an elastic modulus
E = 206.84GPa and Poisson's ratio ν = 0.25. According to the
elasticity solution of Timoshenko and Goodier [30], the maxi-
mum vertical displacement at the tip of the free edge is given by

V
Pa

Etb

ν Pa

Etb
=

4
+
2(4 + 5 )

4
= 9.025 mm.

3

3
(35)

A high‐fidelity FEM analysis is conducted to solve the canti-
levered beam benchmark problem. The maximum vertical dis-
placement obtained from the forward FEM analysis is

9.034 mm (as shown in Figure 6A), which aligns well with the
analytical solution. The displacement field from the high‐
fidelity FEM solution is used to generate synthetic discrete
strain measures at the centroids of the inverse elements. These
discrete strain measures are utilized in the iFEM analysis using
the proposed inverse formulation and the iMIN3 inverse ele-
ment. For membrane problems, strain sensors on either side of
the beam generate the required strain data, as the displacement
field remains constant through the thickness under in‐plane
loading conditions.

The iFEM analysis uses two configurations of the iKS3 inverse
shell element: one configuration neglects the drilling rotation
(θz) DOF, given that drilling rotations are hierarchical and can
be omitted during analysis. In contrast, the other configuration
includes the drilling rotation (θz). This approach offers detailed
insight into the impact and significance of drilling rotations on
the performance of the iKS3 inverse shell element.

The reconstructed vertical displacement profiles for the 24 × 6

inverse discretization are shown in Figure 6B,C for the iKS3 inverse
element, omitting drilling rotations in the former and including
them in the latter. Since the membrane formulation is identical for
the iKS3 and iMIN3 inverse shell elements, their reconstructed
displacement profiles are similar. The absolute error in the
reconstruction of the maximum vertical displacement, compared to
the analytical solution Equation (35), is 12.17% when drilling
rotations are omitted and reduces to 2.86% when drilling rotations
are included. However, the reconstructed displacement contours for
both configurations are virtually indistinguishable compared to the
high‐fidelity FEM reference solution shown in Figures 6A.

Figure 7 illustrates the influence of inverse discretization on the
reconstruction of the vertical displacement profile. The con-
vergence plot demonstrates the monotonic convergence of the
reconstructed displacements for both configurations of the iKS3
inverse element (with and without drilling rotation DOF) and

(A) (B) (C)

FIGURE 4 | Gauss Locations as per the Gauss Quadrature for triangles in Master Element (A) Rule‐1, (B) Rule‐2, and (C) Rule‐3.

FIGURE 5 | Cantilevered beam ‐ Free edge under shear load.
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the iMIN3 inverse element as the number of inverse elements
increases. The enhanced membrane response capability of iKS3
and iMIN3 inverse shell elements is due to hierarchical drilling
rotation, which improves their ability to capture in‐plane rota-
tional effects, resulting in more accurate membrane behavior

and faster convergence. Without drilling rotation DOF, the
iFEM results slowly converge to the elasticity solution using
more inverse elements, consequently necessitating more on-
board strain sensors.

The high‐fidelity FEM reference solution in Figure 8A shows
the maximum horizontal displacement of 1.636 mm . Re-
constructed horizontal displacement contours of iKS3 (with and
without drilling rotation DOF) and iMIN3 inverse elements are
in close agreement with the high‐fidelity FEM reference solu-
tion, as shown in Figure 8B,C. The contours accurately reveal
the symmetric squeezing and stretching phenomena along the
upper and lower edges of the cantilevered beam. When drilling
rotations were not included, the iKS3 inverse element re-
constructed a maximum horizontal displacement of 1.421 mm

(absolute error of 13.14%). Upon including the drilling DOF,
both the iKS3 and iMIN3 inverse elements reconstructed a
maximum horizontal displacement of 1.583 mm (absolute error
of 3.23%).

The iFEM convergence chart presented in Figure 9 illustrates
the monotonic convergence of the reconstructed displace-
ments for both configurations of the iKS3 inverse element
(with and without drilling rotation DOF) and the iMIN3
inverse element as the number of inverse elements increases.
As anticipated, the iKS3 inverse shell element with drilling
rotations demonstrates rapid convergence to the reference
FEM solution, showing behavior that is identical to that of

FIGURE 6 | Case I ‐ Vertical displacement profiles: (A) FEMRef , (B) iFEM iKS3, and (C) iFEM iMIN3.

FIGURE 7 | Case I ‐ Influence of inverse discretization on re-

constructed vertical displacement.
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the iMIN3 inverse shell element. However, the straightfor-
ward inverse formulation of the iKS3 element is computa-
tionally more efficient, as its error functional does not require
the computation of numerical shear strains. This simplifica-
tion reduces numerical complexity and incurs less

computational overhead than more complex formulations
that account for shear effects. The analysis details for Case‐I
are summarized in Table 1.

The analysis of the in‐plane loading case highlights that the
iKS3 element effectively reconstructs horizontal and vertical
displacement profiles, achieving accuracy identical to that of
the iMIN3 inverse element. Both inverse shell elements
incorporate drilling rotation DOF to improve element mem-
brane behavior. However, distinctions in the reconstructed
displacements between the iKS3 and iMIN3 elements
will emerge in subsequent cases involving bending behavior,
as these elements are based on different plate theory
assumptions.

3.2 | Out‐of‐Plane Loading (Case ‐ II)

This benchmark case validates the proposed inverse formula-
tion within the iFEM framework by revisiting a classical pure
bending problem from ref [30]. The problem involves an iso-
tropic square plate with supported boundaries, subjected to a
uniform transverse pressure qo, as shown in Figure 10. The
dimensions of the plate (length a, width b, and thickness t) can
be chosen arbitrarily since the validation uses dimensionless
parameters, where a b c= = and t c<< , where c represents the
characteristic length of the plate.

FIGURE 8 | Case I ‐ Horizontal displacement profiles: (A) FEMRef , (B) iFEM iKS3, and (C) iFEM iMIN3.

FIGURE 9 | Case I ‐ Influence of inverse discretization on re-

constructed horizontal displacement.
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For this case, a square plate with a b= = 1m is subjected to a
uniform transverse pressure of q = 10 kNo . The plate's thick-
ness is set to t = 0.01m, with material properties E = 200 GPa

and ν = 0.3. The maximum dimensionless transverse deflection
at the center of the plate is given by ref [30] as

w w
D

q a
¯ = × × 10 = −4.062,

o

max 4
3 (36)

where D Et ν= 12(1 − )3 2∕ represents the flexural rigidity.

A high‐fidelity FEM analysis simulates the analytical solution
and the corresponding deformation profiles (see Figure 11A).
The normalized maximum out‐of‐plane displacement at the
plate's center is obtained as w̄ = −4.061max , closely matching
the analytical solution of Equation (36). Since the deformation
is purely due to bending, the strain distribution is anti‐
symmetric about the mid‐plane. With no mid‐plane stretching,
surface strain values differ only in sign across the thickness.
Therefore, strain measurements are needed only on one of the
plate surfaces (e.g., z t= ± 2∕ ). These discrete strain measures
are used in the iFEM analysis to validate the iKS3 inverse
element.

The iKS3 inverse element, using a 10 × 10 discretization, re-
constructs the dimensionless transverse displacement with an
absolute error of only 0.14% at maximum displacement (see
Figure 11B), nearly indistinguishable from the high‐fidelity
FEM solution. Similarly, the iMIN3 inverse element provides a

displacement field in agreement with the reference solution, as
can be seen in Figure 11C. However, the iMIN3 element shows
slower convergence for thin plates, requiring a finer 40 × 40
discretization to achieve comparable accuracy. It yields a 0.24%
absolute error in predicting maximum displacement. The im-
proved continuity of the discrete Kirchhoff shape functions in
the iKS3 formulation allows for a coarser discretization, accu-
rately capturing bending behavior while maintaining iFEM
accuracy.

Figure 12 highlights iFEM convergence trends for the iKS3 and
iMIN3 inverse elements. It shows that the iFEM solution con-
verges toward the analytical solution as the number of elements
increases. Notably, the iKS3 element converges faster, requiring
fewer elements to reconstruct the bending response accurately.
This efficiency is crucial for real‐time monitoring of dynamic
structural changes, allowing for timely damage detection with
reduced computational costs. The iKS3 element's reduced need
for onboard sensors enhances flexibility in sensor placement
and minimizes SHM costs. Thus, the iKS3 element offers im-
proved practicality and effectiveness for ensuring structural
safety and reliability in thin shell structures. Table 2 summa-
rizes the analysis details for Case II.

3.3 | General Loading (Case ‐ III)

A general loading condition is considered for a curved thin shell
structure. The pinched cylinder with diaphragm boundary
conditions is a well‐known benchmark problem, representing
one of the most challenging tests for both inextensional bending
modes and complex membrane states. This case is part of the
obstacle course for shell elements [31]. The cylinder, with a
length l = 600, radius r = 300, and thickness t = 3, is subjected
to a unit point load P = 1 at the center on opposite sides, as
shown in Figure 13. The cylinder's ends are equipped with rigid
diaphragms, and its material properties are E = 3.0 × 106 and
ν = 0.3. Due to symmetry, only one octant of the cylinder is
analyzed using both FEM and iFEM approaches (see Figure 13).
Symmetric boundary conditions are applied along sides AB, BC,
and CD, while rigid diaphragm conditions are imposed at the
AB end. A radial point load of P− 4∕ is applied at point C. The
reference solution for this case yields a maximum transverse
displacement of w = −1.824 × 10z

−5 at the point of load
application.

First, a high‐fidelity FEM analysis is performed to replicate the
reference result. The numerical solution converges steadily to
the reference value, with a maximum radial displacement of
−1.828 × 10−5. This displacement is highly localized at the node
where the radial point load is applied, as shown in Figure 14A.

TABLE 1 | Analysis details of Case ‐ I.

Analysis Sensors Max vy Max ux Error [vy]

Reference FEM ‐ ‐ ‐ ‐ ‐ 9.034mm 1.636mm 0.09% (abs)

iFEM‐iKS3 24 × 8 8.766mm 1.583mm 2.86% (abs)

iFEM‐iMIN3 24 × 8 8.766mm 1.583mm 2.86% (abs)

Analytical solution [30] 9.025mm

FIGURE 10 | Simply supported square plate under an arbitrary

uniform transverse load.
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FIGURE 11 | Case II ‐ Transverse displacement profiles: (A) FEMRef ,

(B) iFEM iKS3, and (C) iFEM iMIN3.

FIGURE 12 | Case II ‐ Influence of inverse discretization on re-

constructed transverse displacement.

TABLE 2 | Analysis details of Case ‐ II.

Analysis Sensors Max w̄z Error [w̄z]

Reference FEM ‐ ‐ ‐ ‐ ‐ −4.061 0.02% abs

iFEM‐iKS3 10 × 10 −4.052 0.24% abs

iFEM‐iMIN3 10 × 10 −3.911 3.71% abs

iFEM‐iMIN3 40 × 40 −4.053 0.22% abs

Analytical solution [30] −4.062

FIGURE 13 | Pinched cylinder with diaphragm boundary

conditions.
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The concentration of the load causes significant deformation at
this point. Synthetic strain data, derived from the displacement
profile of the high‐fidelity model, are used for the subsequent
iFEM analysis. Accurate deformation reconstruction requires
discrete strain measures on both surfaces for three‐dimensional
structures.

A comparison between the iKS3 and iMIN3 inverse shell elements
highlights the efficacy of iKS3 in terms of accuracy and sensor
efficiency. The iKS3 element (using a 24× 24 discretization
arrangement) reconstructs a maximum radial deflection of
−1.754 × 10−5, resulting in an absolute error of 4.04% despite the
complexity of the problem (Figure 14B). In contrast, the iMIN3
element, even with a finer 32 × 32 discretization, produces a slightly
lower maximum radial displacement of −1.733 × 10−5, with a
higher absolute error of 5.19% (Figure 14C). This comparison
highlights the efficiency and accuracy of the iKS3 inverse element
in achieving accurate displacement reconstructions with fewer
inverse elements. Since the maximum displacement occurs in a
highly localized region, finer discretization is required for accurate
displacement reconstruction. Interpolation of discrete strain data
(available at centroids) to other locations within inverse elements
may introduce slight interpolation errors in regions with steep
displacement gradients. A finer mesh is, therefore, essential to
capture these localized effects. Table 3 summarizes the analysis
details for Case III.

The influence of inverse discretization on the accuracy of dis-
placement profile reconstruction is also investigated for both iKS3
and iMIN3 inverse shell elements (Figure 15). As the number of
inverse elements increases, both elements gradually converge to the
reference solution. The convergence trend lines reveal that the iKS3
element demonstrates a faster convergence rate than iMIN3, high-
lighting its effectiveness in reconstructing an accurate displacement
field. Also, the iKS3 element requires fewer inverse elements while
offering improved computational efficiency, making it a cost‐
effective choice. These advantages emphasize the potential appli-
cations of the proposed inverse formulation for SHM implementa-
tions designed for thin shell structures.

4 | SHM Applications of the iKS3 Inverse
Element

After the successful numerical validation of the proposed
inverse formulation, the iKS3 inverse shell element is now
applied to real‐world SHM tasks, including shape‐sensing,
defect identification, and damage assessment. In industrial
SHM applications, several factors influence the determination
of the optimal number of sensors for shape‐sensing, including
available space for sensor installation, budgetary constraints,
structural health, and the balance between computational
accuracy and efficiency. Achieving an optimal sensor arrange-
ment requires optimizing the iFEM framework, which involves
optimal inverse element discretization, selecting suitable sensor
locations, and adjusting weighting functions in the error func-
tional. Because each structure experiences unique in‐service
loading conditions, there is no universal, closed‐form solution
for determining the optimal sensor arrangement across

FIGURE 14 | Case III ‐ Transverse displacement profiles: (A) FEMRef ,

(B) iFEM iKS3, and (C) iFEM iMIN3.
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different systems. However, advanced techniques such as sen-
sor fusion and signal processing can help improve the robust-
ness of iFEM under practicable sensor arrangements.

The following numerical cases use sparse sensor arrangements
with coarser discretizations and fewer sensors than denser ar-
rangements used for numerical validation. The aim is to eval-
uate the robustness of the iFEM algorithm with a limited
number of onboard strain sensors. A standardized analysis
setup assumes strain sensors at the centroid of each inverse
element to compute synthetic strain data. When discrete strain
measures are available within an inverse element for sparse
sensor arrangement, the weighting coefficients are set to unity
(w w= = 1e k ). Conversely, when these measures are unavail-
able, the coefficients are fixed to (w w= = 10e k

−3). While both
sensor locations and weighting functions are integral to the
variational formulation of iFEM, their fixed values facilitate an
intuitive interpretation of the iFEM results.

4.1 | Shape‐Sensing of a Stiffened Panel

Stiffened panels are extensively utilized in airframes and barge
structural systems due to their high load‐bearing capacity,
lightweight design, and resistance to buckling and fatigue.
These panels efficiently distribute loads and withstand dynamic

forces, significantly enhancing structural integrity. Their supe-
rior strength‐to‐weight ratio makes them essential in applica-
tions demanding aerodynamic or hydrodynamic efficiency and
structural resilience.

Consider a wide‐body aircraft operating at a cruise altitude of
39 000 ft, with cabin pressure maintained at an equivalent
altitude of 8000 ft, creating a pressure differential of 8.06 psi (or
0.56 bar). Under these conditions, the fuselage experiences a
uniform pressure load of 55 571.71 Pa, accurately simulating the
operational scenarios where cabin pressurization induces
deformation in the fuselage structure. The aircraft fuselage
consists of thin, stiffened curved panels that are securely fas-
tened and sealed along their edges to the main airframe. This
arrangement effectively simulates a clamped boundary condi-
tion (BC) on all sides to withstand aerodynamic loads and
internal pressures during flight.

The curved stiffened panel geometry, as shown in Figure 16,
has a radius of r = 1.960m and a thickness of t = 0.002m,
with dimensions a = 0.563m, b = 0.795m, c = 0.198m, and
d = 0.281m. Three stiffeners, each with a height of l = 0.019m,
are positioned along the width of the panel, reinforced by a
main stiffener at the center that extends along its length, with a
height of p = 0.038m. The panel is made from Aluminum
Alloy 2024‐T3, a material widely used in aerospace applications
due to its favorable strength‐to‐weight ratio. The material
properties include Young's modulus of E = 73.1 GPa and
Poisson's ratio of ν = 0.33.

Initially, the fuselage stiffened panel is analyzed using a high‐
fidelity FEM model composed of 2080 structured triangular
elements. Under the given conditions, the stiffened panel ex-
periences significant transverse deformations (bulging), pri-
marily between the frames and stringers. Figure 17A illustrates
the transverse displacement profile of the stiffened panel,
highlighting a maximum displacement of 1.739 mm at its cen-
ter. The displacement field obtained from the high‐fidelity FEM
model generates synthetic strain data and serves as the refer-
ence solution for subsequent iFEM analysis.

TABLE 3 | Analysis details of Case ‐ III.

Analysis Sensors Max w̄z Error [w̄z]

Reference FEM ‐ ‐ ‐ ‐ ‐ −1.828 × 10−5 0.21% abs

iFEM‐iKS3 24 × 24 −1.754 × 10−5 4.04% abs

iFEM‐iMIN3 24 × 24 −1.695 × 10−5 7.27% abs

iFEM‐iMIN3 32 × 32 −1.733 × 10−5 5.19% abs

Reference solution [31] −1.824 × 10−5

FIGURE 15 | Case III ‐ Influence of inverse discretization on re-

constructed transverse displacement.

FIGURE 16 | Case IV ‐ Aircraft fuselage stiffened panel under cabin

pressurization.
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The iFEM framework uses a coarse discretization scheme for
the shape‐sensing analysis, utilizing 520 iKS3 inverse shell
elements to map the entire geometric domain (illustrated in
Figure 17B). Only 120 inverse elements with discrete strain
measures are used to reconstruct the displacement field, sim-
ulating a practical sensor arrangement. The inverse elements
with discrete strain measures are highlighted in yellow (see
Figure 17B), with sensor locations marked by red dots at the
centroids of these elements.

The reconstructed transverse displacement contour depicts
close agreement with the reference displacement contour
obtained from the FEM solution, as depicted in Figure 17C. The
maximum reconstructed transverse displacement shows an
absolute error of only 6.49%, showing the effectiveness of the
iKS3 inverse shell element in reliable reconstruction of the

displacement field with fewer onboard sensors. The proposed
inverse formulation offers advantages over FSDT‐based inverse
elements in addressing the challenges of thin aerospace struc-
tures. It provides computational efficiency and requires fewer
sensors for shape‐sensing applications. While the sparsely
arranged sensors in this study have proven effective for this
scenario, they are intended to inspire further designs for ap-
plications involving more complex structures.

4.2 | Damage Assessment

In practical engineering applications, not all structural defects
present apparent geometric discontinuities. Material degrada-
tion, mainly due to cyclic loading, is a significant concern in the
aerospace, naval, and energy sectors. Repeated stress induces
fatigue, causing gradual deterioration of material properties.
These changes are often latent, making them difficult to detect
early and posing serious risks to structural integrity. Therefore,
an effective SHM system can detect early signs of material
degradation, facilitate timely maintenance, and ensure the
reliability and safety of structures.

Consider a rectangular plate with length b = 0.3m, width
a = 0.1m, and thickness t = 0.001m. The plate is fixed along
the left and right edges, and a uniform transverse pressure
q = 1000 Pao is applied across its surface, as depicted in
Figure 18. The plate is assumed to be made of an isotropic
material with Young's modulus E = 200GPa and Poisson's
ratio ν = 0.3. A material degradation defect is modeled at the
center of the plate, as illustrated in Figure 18, representing a
region with reduced material stiffness. This setup is used to
analyze the structural response of the plate under transverse
loading conditions, accounting for the effects of material
degradation.

To accurately model the defective domain in finite element
analysis, a degradation factor λ, ranging between 0 and 1, is
used. A healthy material corresponds to λ = 1, while λ0 < < 1

represents degraded material. In this case, λ = 0.75 is used in
high‐fidelity FEM analysis, incorporated into the stiffness ma-
trix to reflect the material degradation defect. The displacement
field obtained is then used to generate synthetic strain measures
for iFEM analysis.

The iFEM results for transverse deflection wz and bending
rotations θx and θy are shown in Figure 19A–C. The transverse
displacement wz and rotation θy show slight deviations in areas

FIGURE 17 | Case IV ‐ Transverse displacement profile: (A)

FEMRef , (B) Sparse Sensor Arrangement, and (C) iFEM iKS3 under a

Sparse Sensor Arrangement.

FIGURE 18 | Case V ‐ Material degradation defect under transverse

loading.
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affected by the defect, whereas θx shows a more pronounced
variation. The defect sensitivity of these displacement variables
depends on the defect's position, orientation, and the applied
boundary and loading conditions. Equivalent von Mises strain
contours also help identify and quantify subtle defects when
comparing reconstructed displacement profiles of healthy and
defective structures. The equivalent von Mises strains are
computed using the following expression:

ε ε ε ε ε= ( ) − + ( ) ,vm 1
2

1 2 2
2 (37)

where ε1 and ε2 can be calculated as
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Here, ε ε,xx yy, and γxy are the in‐plane normal and shear strain
components. These von Mises strain contours enable the detection
of localized defects by revealing strain anomalies in the material.

The von Mises strain contours for both defective and healthy
structures are presented in Figure 20A,B. Comparison of these
contours aids in identifying and quantifying the defective region
at the plate's center. However, the use of damage index (DI)
criteria based on von Mises strains offers more precise insights
into the defect's location and size, leading to a more thorough
structural integrity evaluation. This DI criterion is general en-
ough to assess a variety of structural defects, including material
degradation, discontinuities (such as cracks and voids),
delamination, and corrosion. The DI can be calculated using the
following expression:

ε
ε ε

ε
DI( ) =

− *
× 100%,vm

vm vm

vm
max

(38)

where εvm represents the equivalent von Mises strain calculated
from the iFEM framework for an intact structure and εvm

max denotes
the maximum reconstructed von Mises strain observed during the
analysis. ε*vm refers to the vonMises strain of the degraded structure.
In SHM applications, the DI is a valuable metric for quantifying the
severity of material degradation, facilitating informed decisions for
preventive maintenance to ensure structural safety and reliability.

FIGURE 19 | Case V ‐ iFEM iKS3 reconstructed displacement profiles: (A) transverse displacement, (B) bending rotation θx , and (C) bending rotation θy.
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Figure 21 illustrates the DI contour for this case, computed
using Equation (38). The contour effectively pinpoints the
location of material degradation and enables preliminary sizing
of the defect. Furthermore, DI values provide insight into the
structural integrity, where a DI 10≤ is generally considered
minor damage. While minor damage may not immediately
compromise structural integrity, it requires continuous mon-
itoring. This analysis highlights the utility of the iKS3 inverse
shell element in assessing structural health and identifying
areas in need of preventive maintenance, thereby contributing
to the overall reliability and safety of thin shell structures.

5 | Conclusion

This study uses discrete Kirchhoff assumptions to introduce a
three‐node triangular inverse shell element (iKS3) for thin
plates and shell structures widely used in aerospace, naval, and

energy sectors. Triangular elements offer excellent flexibility in
handling structured and unstructured discretizations for regular
and complex built‐up structures. The inverse formulation
neglects transverse shear effects in accordance with CPT as-
sumptions, simplifying the error functional and enhancing
computational efficiency compared to existing inverse elements
based on the FSDT. Incorporating the drilling DOF improves
inter‐element continuity and compatibility between membrane
and bending behaviors.

The proposed inverse formulation is subjected to numerical
validation against benchmark problems under in‐plane, bend-
ing, and mixed‐loading conditions. Its full‐field displacement
reconstruction capability is also compared to the existing iMIN3
inverse shell element. The iKS3 formulation demonstrates
numerical stability and outperforms the iMIN3 inverse shell
element in convergence rates for pure bending and general
loading conditions. As a result, the iKS3 inverse element offers

FIGURE 20 | Case V ‐ iFEM iKS3 reconstructed equivalent von Mises strains (A) with defect and (B) without defect.

FIGURE 21 | Case V ‐ iFEM iKS3 reconstructed damage index (DI) profile.
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computational advantage and improved accuracy while reduc-
ing the number of onboard sensors needed for shape‐sensing
applications.

After extensive numerical validation, the iKS3 inverse shell
element is further evaluated for SHM applications, considering
real‐world industrial cases. The inverse formulation reveals
reliable accuracy in shape‐sensing and defect resolution, suc-
cessfully detecting and quantifying material degradation
defects. These capabilities are crucial for modern health mon-
itoring systems, enabling efficient maintenance scheduling
while ensuring structural reliability and safety. For thin shell
structures, the iKS3 inverse shell element, characterized by its
straightforward formulation and computational efficiency,
presents significant potential for industrial SHM applications to
reduce sensor requirements and minimize overall project costs.
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Appendix A

Triangular Basis Functions

The explicit forms of linear basis functions used for the triangular
inverse element are presented here. These basis functions are utilized
for geometric mapping and interpolation of the in‐plane translational
displacement variables.

N ξ η ξ η( , ) = 1 − − ,1 (A1a)

N ξ η ξ( , ) = ,2 (A1b)

N ξ η η( , ) = ,3 (A1c)

where ξ and η are the natural barycentric coordinates of the three‐node
triangular element.

Similarly, the explicit forms of quadratic basis functions for the six‐node
triangular element are outlined below for interpolating out‐of‐plane
displacement variables.

S ξ η ξ ξ( , ) = (2 − 1),1 (A2a)

S ξ η η η( , ) = (2 − 1),2 (A2b)

S ξ η η ξ η ξ( , ) = ( + − 1)(2 + 2 − 1),3 (A2c)

S ξ η ξη( , ) = 4 ,4 (A2d)

S ξ η η ξ η( , ) = 4 (1 − − ),5 (A2e)

S ξ η ξ ξ η( , ) = 4 (1 − − ).6 (A2f)

Here, ξ and η are the natural barycentric coordinates of the six‐node
triangular element.

Appendix B

Drilling Rotation DOF

The anisoparametric shape functions Li andMi are crucial for capturing
rotational DOF in finite element models. These functions allow accu-
rate representation of drilling rotations and are defined as follows for
the inverse triangular element:

L
S y S y

=
−

8
,1

6 13 4 21 (B1a)

L
S y S y

=
−

8
,2

4 21 5 32 (B1b)

L
S y S y

=
−

8
,3

5 32 6 13 (B1c)

M
S x S x

=
− +

8
,1

6 13 4 21 (B2a)

M
S x S x

=
− +

8
,2

4 21 5 32 (B2b)

M
S x S x

=
− +

8
.3

5 32 6 13 (B2c)

Here, S4 to S6 are basis functions for the six‐node triangular element
defined in Equations (A2d)–(A2f), and the nodal distances xij and yij
defined as:

x x x y y y
x x x y y y
x x x y y y

= − , = −
= − , = −
= − , = − .

13 1 3 31 3 1

21 2 1 21 2 1

32 3 2 23 3 3

Appendix C

Discrete Kirchhoff's Triangular Shape Functions

In this section, the shape function vectors H x and H y are defined in the
local element coordinate system based on discrete Kirchhoff assump-
tions and proposed by Batoz et al. [24]. The anisoparametric shape
functions satisfy continuity requirements for displacement and rotation
across the element edges, which is crucial for accurate structural
analysis, particularly for thin plates.













H

a S a S

b S b S

S c S c S

a S a S

b S b S

S c S c S

a S a S

b S b S

S c S c S

=

1.5( − )

−( + )

−( − − )

1.5( − )

−( + )

−( − − )

1.5( − )

−( + )

−( − − )
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4 4 6 6

6 6 4 4

1 6 6 4 4

5 5 4 4

5 5 4 4

2 5 5 4 4

6 6 5 5

5 5 6 6

3 5 5 6 6

(C1)













H

d S d S

S e S e S

b S b S

d S d S

S e S e S

b S b S

d S d S

S e S e S

b S b S

=

1.5( − )

−(− + + )

−(− − )

1.5( − )

−(− + + )

−(− − )

1.5( − )

−(− + + )
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.y

4 4 6 6

1 6 6 4 4

6 6 4 4

5 5 4 4

2 5 5 4 4

5 5 4 4

6 6 5 5

3 5 5 6 6

5 5 6 6

(C2)

Here, S4 to S6 are basis functions for the six‐node triangular element
defined in Equations (A2d)–(A2f). The shape functions are derived
based on the local coordinates of the triangular element, denoted by
subscripts p and q, representing the positions of the element nodes. The
expressions for x y,pq pq, and rpq define the geometric relationships
between adjacent nodes, essential for ensuring the consistency and
smoothness of the shape functions.

x x x= − ,pq p q (C3)

y y y= − ,pq p q (C4)

r x y= + ,pq pq pq
2 2 (C5)
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r pqwhere = 4, 5, 6 when = 12, 23, 31

The coefficients a b c d, , ,r r r r , and er depend on the triangular's geometry
and node positions.

a
x

r
= − ,r

pq

pq
(C6)

b
x y

r
=
3

4
,r

pq pq

pq
(C7)

c
x y

r
=

− 2

4
,r

pq pq

pq

2 2

(C8)

d
y

r
= − ,r

pq

pq
(C9)

e
y x

r
=

− 2

4
.r

pq pq

pq

2 2

(C10)

Appendix D

Coordinate Transformation System

Typically, two‐dimensional shell elements, formulated by a super-
imposing membrane and bending components, are computationally
efficient and relatively simple. In such formulations, the transformation
between the element's local and global coordinate systems is crucial,
particularly for the proposed inverse shell element. Given the position
vectors between any two nodes within the element, the unit vectors
defining the local coordinate system x y z( ′, ′, ′) can be determined using
vector calculus.

The vector between two nodes i and j is defined as

























V

x x

y y

z z

x

y

z
=

−

−

−
= .ij

e

j i

j i

j i

e
ij

ij

ij

e

(D1)

The corresponding unit vector is













v
V

V
ˆ

l

x

y

z
=

1
= ,ij

e

ij
e

ij

ij

ij

e

ij
e

ij
e

(D2)

where lij
e is the length of the side between nodes i and j.

( )l x y z= + + .ij
e

ij ij ij

e2 2 2 (D3)

First, the unit vector along the local z′ axis is determined to define
the local coordinate system. For the given triangular inverse ele-
ment, this transverse local unit vector is calculated using the cross
product of vectors V e

12 and V e
13, which lie along nodes 1‐2 and 1‐3,

respectively.













v
V V

V V
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λ
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×
= .

z
e

e e
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12 13

12 13
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′

′

(D4)

The local y′ axis is now defined by intersecting the element with a plane
parallel to the global yz plane, and the unit vector along the local y′ axis is













v λ

λ

ˆ =

0

.
y
e y y

y z

e

′
′

′

(D5)

Here, the projection of x′ onto the global y axis is zero. The unknown
components λ y y′ and λ y z′ are determined by ensuring that the unit
vector v̂

y
e
′ maintains a length of unity:

( ) ( )λ λ+ = 1y y
e

y z
e

′

2

′

2
(D6)

and the second necessary equation comes from the condition that the
scalar product of the unit vectors v

y
e
′ and v

z
e
′ is zero. Additionally,

the unit vectors v̂
y
e
′ and v̂

z
e
′ must be orthogonal, which provides

the second equation:

λ λ λ λ+ = 0.y y
e

z y
e

y z
e

z z
e

′ ′ ′ ′ (D7)

From Equations (D6) and (D7), the unknown components ( )λ λ,y y y z′ ′ of
the unit vector v̂

y
e
′ can be obtained easily.
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(D8)
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(D9)

Finally, the unit vector along the local x′ axis is obtained by de-
termining the cross product of v̂

y
e
′ and v̂z

e
′.
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′

(D10)

These local unit vectors v v vˆ , ˆ , ˆ
x
e

y
e

z
e

′ ′ ′ define the direction cosines

that describe the orientation of the local coordinate system
x y z[ ′, ′, ′] relative to the global coordinate system x y z[ , , ]. The
transformation matrix T can be assembled using Equations (D4),
(D5), and (D10).












T

λ λ λ

λ λ λ

λ λ λ
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x x
e

x y
e

x z
e

y x
e

y y
e

y z
e

z x
e

z y
e

z z
e

′ ′ ′

′ ′ ′

′ ′ ′

(D11)

Here,T is a 3 × 3 matrix that transforms global coordinates x y z[ , , ] into
local coordinates Tx y z x y z[ ′, ′, ′] = [ , , ]. This transformation is critical
in shell element formulations to ensure accurate alignment between
local and global coordinate systems.

After computing the local stiffness matrix k′e, it is transformed
into a global stiffness ke matrix using the element transformation
matrix T e.

k T k T= [ ] ′ [ ].e e e eT (D12)

For the entire iKS3 inverse shell element, which has six DOFs
per node, the complete element transformation matrix is repre-
sented as
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T

T
T

T
T

T

T

0

=

sym

.e (D13)

This 18 × 18 block‐diagonal matrix T e is used to transform local ele-
ment stiffness matrices into the global coordinate system. Its structure is
essential for accurately mapping the local stiffness contributions to the
global system, especially in three‐dimensional problems where each
node has six DOFs (three translations and three rotations).
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