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Photonic spiking neural network built with
a single VCSEL for high-speed time series
prediction
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Photonic technologies hold significant potential for creating innovative, high-speed, efficient and
hardware-friendly neuromorphic computing platforms. Neuromorphic photonic methods leveraging
ubiquitous, technologically mature and cost-effective Vertical-Cavity Surface Emitting Lasers
(VCSELs) are of notable interest. VCSELs have demonstrated the capability to replicate neuronal
optical spiking responses at ultrafast rates. Previously, a photonic Spiking Neural Network (p-SNN)
using a single VCSEL has been demonstrated for use in classification tasks. Here, it is applied to a
more complex time-series prediction task. The VCSEL p-SNN combined with a technique to induce
network memory, is applied to perform multi-step-ahead predictions of a chaotic time-series. By
providing the feedforward p-SNN with only two temporally separated inputs excellent accuracy is
experimentally demonstrated over a range of prediction horizons. VCSEL-based p-SNNs therefore
offer ultrafast, efficient operation in complex predictive tasks whilst enabling hardware
implementations. The inherent attributes and performance of VCSEL p-SNNs hold great promise for
use in future light-enabled neuromorphic computing hardware.

Artificial Neural Networks (ANNs) form a core component of many
implementations of Artificial Intelligence (AI) due to their demonstrated
capability to deliver high-level performance in various complex information
processing tasks like pattern recognition, data classification, and image and
language processing. ANNs are inspired by the functioning of biological
neurons in the brain, consisting of parallel arrays of large numbers of nodes
(neurons) that use non-linear transformations to achieve efficient proces-
sing and decision-making. Neuromorphic (brain-like) processing aims at
reproducing and exploiting the spike-based signalling in biological neurons
for computation andhas gathered extensive research interest in recent years.
Drivenby thedesire tofindnovel computing architecturesnot limitedby the
challenges of traditional digital computing platforms, research into neuro-
morphic processinghas led to spike-operating electronic processing systems
suchasLoihi 21, TrueNorth2, Spinnaker 23 andBrainScaleS-24 (see ref. 5 for a
review).

Photonic systems, offer further avenues of development in neuro-
morphic computing6 thatmake use of the fundamental advantages intrinsic
to the optical medium (e.g. high bandwidth, reduced cross-talk, long
communication links, etc.) and that can help overcome inherent limitations
arising in electronic-based platforms. Optical devices offer high data
throughput due to the capability to transmit many signals in the same

channel without interference, granting high computation densities and
parallelism via wavelength and mode multiplexing techniques. Addition-
ally, photonics has access to a range of linear and nonlinear interactions that
can be implemented with high efficiency and leveraged for information
processing functionalities. Furthermore, photonics offers prospects for the
implementation of low power data links, with faster baseline operating
speeds, for a promising highly energy efficient neuromorphic computing
platform. The realisation of such neural networks using photonic technol-
ogies have been shown recently using a number of systems such as optical
modulators7, micro-ring weight banks8, phase change materials9 and
semiconductor lasers10,11. Semiconductor lasers are of particular interest due
to their dynamical behaviour, which allow for the implementation of
neuronal-like responses at ultrafast speeds. In particular, one type of
semiconductor laser, the Vertical-Cavity Surface-Emitting Laser (VCSEL)
has been the subject of extensive research as it has been demonstrated to
exhibit spiking dynamics similar to those of biological neurons but at
ultrafast sub-nanosecond speeds.

VCSELs are industrially ubiquitous semiconductor lasers, found in a
wide variety of consumer devices (e.g. mobile phones, automotive sensors),
as well as in telecommunications and data centres. Interestingly, VCSELs
operating in the 1310 and 1550 nm telecom windows have demonstrated
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excitable neuronal behaviours, emitting controllable optical spikes in
response to optical signals injected into the laser cavity12. The neural-like
optical spikes produced by VCSELs are short (∼100ps-long) and can be
triggered at rates up to a few GHz. They also exhibit other useful neuro-
morphic properties such as spike-firing thresholding, integration-and-fire
responses and refractoriness13–15. Theseproperties havebeenused for several
purposes: implementing logical XOR operation16; and image processing
tasks ranging from pattern recognition17–19 to rate-coding20. Due to the
maturity of VCSEL technology, this increasingly promising approach to
photonic artificial spiking neurons can be realised with off-the-shelf optical
components at key telecom wavelengths and in hardware-friendly config-
urations, helping remove the barrier of expensive bespoke designs.

One established use of VCSELs for ANNs is in photonic-based reser-
voir computing (RC). These are large scale, recurrent neural networks in
which all internal connections and input layerweights arefixed, andonly the
output layer weights require training. Photonic RC systems have demon-
strated good performance in several complex tasks, and as the parameters
and connectivity of the reservoir are fixed, they are ideal to implement in
purpose-built photonic hardware. Photonic RC systems have been imple-
mented in recent years using optoelectronic and a wide range of optical
devices21–26, including micro-ring resonators, photonic integrated systems
and semiconductor lasers. In particular, VCSEL-based photonic RC sys-
tems, have attracted important research attention due to their dual linear
polarisation emission and lower energyoperation,which canbe leveraged to
improve computing performance27,28. VCSEL photonic RC systems have
been constructed using space-29,30, and time-multiplexing31,32 paradigms, in
which the nodes and connections of the network are defined by the time
varying (or spatial) dynamics of light in the laser cavity (see ref. 33 for a
review of VCSEL-based approaches to RC).

Recently, the optical spiking dynamics exhibited byVCSELs have been
utilised in combination with time-multiplexing techniques to construct a
photonic Spiking Neural Network (p-SNN)34. This p-SNN was built with a
single time-multiplexedVCSEL, the network connections and thenonlinear
transformation were provided by the excitable optical spiking dynamics of
the device. These link information between many network nodes for
effective data processing, demonstrating excellent performance on classifi-
cation tasks, as they enable separating data with complex decision bound-
aries. Importantly, the use of optical spiking signals to process information
offers key benefits when compared to traditional non-spiking photonic
neural network implementations. These include the possibility to use novel
training algorithms that only require the training of very few network nodes
(increasing training simplicity and overall processing speed), they allow
operation with sparse signalling and weight matrices, and they can perform
accurately even when low dataset sizes are used for training35.

However, to date these p-SNNs lack internal memory and cannot
therefore operate in key tasks, such as time-series prediction, which are of
strategic importance in a variety of sectors (e.g. predictive maintenance,
weather forecasting, etc.). This work tackles this fundamental challenge by
demonstrating the successful operation of a p-SNN built with a single,
commercially-sourced, telecom-wavelength VCSEL on a chaotic timeseries
prediction task. Specifically, we demonstrate experimentally the p-SNN’s
successful execution of multi-step-ahead prediction of the chaotic Mackey-
Glass time series. This task requires that the system produces an output
corresponding to a real number (the time-series value), and that the system
has knowledge of previous temporal data inputs (memory). This requires
goingbeyond the simpler operation inclassification tasks forwhichmemory
is not required andwhose output is limited to anelement of afinite set (equal
to the number of datapoint classes). Here, we demonstrate the successful
performance of the p-SNN overcoming these fundamental challenges
caused by the representation of real numbers with discrete neural-like
spikes, and the lack of (memory enhancing) feedback network connections.
We achieve this by applying a memory-inducing technique in the pre-
processing of the input data that has recently been shown to be an effective
means of improving the performance of reservoir computers on tasks
requiring memory36,37.

The p-SNN created in this work deploys concepts from spiking and
time-multiplexed neural networks as well as from the Reservoir Computing
(RC) paradigm. Unlike standard neural network approaches that imple-
ment in hardware many (spatial) nodes and network connections, time-
multiplexed systems require only one non-linear (spatial) node for opera-
tion. Time-multiplexing involves treating the time-varying output intensity
of a single non-linear node as the output of many distinct non-linear (vir-
tual) neurons. By sampling the non-linear device at a discrete temporal
separation (referred to as θ) the output for a set number of virtual nodes
(Nv) can be interpreted, realising a virtual neural network (see ref. 38 for a
review on time-multiplexed photonic RC). Whilst spiking neural networks
(SNNs) and reservoir computers (RCs) are typically regarded as separate
concepts, the p-SNN in thiswork has the architecture of a so-calledExtreme
LearningMachine (ELM).ELMs canbeunderstoodas a specific case ofRCs,
but without recurrent connections (and therefore without in-built system
memory), and where the information only flows in a feed-forwardmanner.
However, as in theRCparadigm inELMs (and thus also in thep-SNNof this
work), the connections betweennodes in the network are determinedby the
systemandarenot trained. In the caseof thep-SNNof thiswork (defining as
said a photonic spiking ELM), the threshold-and-fire feature of the spiking
mechanism in the VCSEL is used as the activation function, whilst network
connectivity is enabled by the temporal integrate-and-fire and refractory
period of the spiking dynamics in the VCSEL. In particular the refractori-
ness in the system allows to inhibit later nodes from spiking in the p-SNN
from spiking despite the direct (temporal) input to those nodes, creating
longer range connections extending throughout the network.Wemust also
note that whilst the p-SNN of this work shares with traditional spatially-
extended SNNs (typically implemented with electronic hardware or in
software) its use of spiking signals to process information, it differs from
them in that it does not make use of many individual spatially distributed
spiking neurons encoding information in the exact timings of the spikes.On
the contrary, the p-SNN of this work relies on time-multiplexing approa-
ches, allowing for an extremely hardware-friendly implementation using a
single nonlinear (photonic spiking) node. In particular, this work uses a
single telecom 1300 nm-VCSEL yielding a temporal high-speed non-linear
spiking optical output to realise an entire p-SNN of hundreds of (virtual)
spiking neurons. Figure 1a provides the experimental setup developed to
implement and investigate theVCSEL-based p-SNNof this work (Methods
section). Figure 1b plots a schematic diagram of the node coupling scheme
and architecture of the p-SNN for its use in the chaotic time-series pre-
diction tasks.

In our experiments, the selected individual node time was equal to
θ = 250 ps (approximately one quarter of the 1 ns refractory period of this
VCSEL’s spiking behaviour); thus, readily allowing without any further
optimisation to operate at 4 GHz input data rates. Additionally, we inves-
tigated experimentally three different p-SNN sizes with total node counts of
Nv = 256, 512 and 1024. In the p-SNN of this work, the connections
between (virtual) nodes within the network are fixed and are dictated by the
temporal carrier dynamics of the spikingVCSEL34. Therefore, in this type of
p-SNN (defining in fact a photonic spiking ELM), as in the RC paradigm,
both the input and hidden layer connections are fixed and only the output
layer weights require training. This allows for highly-reduced training
protocols compared with fully trained networks, whilst simultaneously
permitting hardware-friendly implementations and high-accuracy in key
processing tasks (for a review onVCSEL-basedphotonic RC systems see for
example33 and references therein). The input weights mapping the feature
space to the input values for each virtual node are not trained and are
selected randomly from a uniform distribution between 0 and 1. This offers
the same benefits as in RC systems in terms of lightweight training process.
Importantly, the use of (optical) spikes to process information in theVCSEL
p-SNNs of this work, has further benefits when compared to traditional
non-spiking photonic neural network implementations. These include the
possibility to use novel training algorithms that only require the training of
very fewnetwork nodes (only in the output layer), they allow operationwith
sparse signalling and weight matrices, permit the use of binary (0 or 1)
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weights, and they yield accurate operation even when low dataset sizes are
used for training (particularly for classification tasks, as reported in
refs. 34,35).

Recent works have reported the application of VCSEL-based p-SNNs
to perform complex classification tasks, achieving very good
performance34,35. Notably, the use of ultrafast optical spikes in the p-SNN to
process information, offered important additional advantages, including the
ability to operate with very small training dataset sizes (down to just a few
examples), the ability to tune its node count and change therefore the
network architecture, and the possibility to operate with highly-efficient
learning protocols requiring only the use of less than 1% of the output layer
nodes for operation34,35. However, to date these p-SNNs given their feed-
forward architecture (without in-built recurrent connections) lack internal
system memory, and therefore their use in strategic memory-requiring
processing functionalities has remained elusive. The present work tackles
this crucial challenge, demonstrating an induced memory technique in the
p-SNN of this work to enable its successful operation in memory-requiring
chaotic time-series prediction tasks, achieving high accuracy, whilst
enabling hardware-friendly implementation using a single VCSEL.

Results
Time series prediction is the task of predicting a future value in a sequenceof
numbers in a time-series, given the preceding values. This is a highly
interesting task for different key applications, such as predictive main-
tenance, weather forecasting, to name but a few. However, for sequences
(time-series) defined by complex or chaotic dynamics, multi-step-ahead
predictions can be a very challenging task, as subsequent values are not
strongly correlated to previous historic values in the sequence.

Time-series prediction has been previously investigated in traditional
(non-spiking) photonic reservoir computing (RC) systems, especially in
photonic implementations based upon time delay reservoirs (TDRs) using
semiconductor lasers, and also including VCSELs as core nonlinear ele-
ments (see for example32,33 and references therein). In such systems, there is
an explicit optical delayed-feedback loop (typically implemented by an
optical fibre link), forming recurrent connections and therefore allowing
data injected in previous steps to continue circulating in the system; hence
creating internal memory and influencing the output and subsequent pre-
dictions. Thismemory effect allowsphotonicTDRs to combine information
from several data points in the input time series to make accurate future-
value predictions39–42.

However, to date VCSEL-based p-SNNs34,35 do not include in its
structure any intrinsic mechanism to create recurrent connections, and
within them the information flows in a feed-forward manner. This cir-
cumstance means that the internal system memory inherent to photonic

TDRs is not present in theVCSELp-SNN,disabling their use for time-series
prediction functionalities. We tackle this key challenge proposing an
alternative data encoding approach allowing to creatememory effects in the
p-SNN. This is realised during the input data stage, by adding to the original
data input a delayed copy of the time series. In this situation, at a given time-
instant the input information contains two data input points, namely the
present and a delayed value36, using which the system is able tomakemulti-
step-ahead predictions of a time-series. With this simple, yet very powerful
approach, information about the long-range dynamics of the time-series to
be predicted is made available to the p-SNN, thus effectively creating
memory in the system.Notably, this is donewithout theneed toadd external
fixedoptical delay feedback lines, which increase complexity, require precise
temporal control and can limit the total processing rate of the system.
Importantly, the lack of external optical feedback lines in the p-SNN, also
permits to drive the system in a so-called ExtremeLearningMachine (ELM)
configuration, with the information flowing in a feed-forwardmanner. This
readily allows the tuning of the total number of nodes in the p-SNN,without
influencing thedynamical characteristics of thenodes, simply by controlling
the temporal spread of the input information34,35. This permits the user to
easily set diverse networks with higher or lower node counts depending on
the complexity of the task to be processed by the p-SNN.

To investigate the operation of the VCSEL p-SNN for time-series
prediction,we focus ondemonstrating the system’s ability toperformmulti-
step-ahead predictions of the Mackey Glass chaotic time series, defined by
the delay differential equation in Eq. (1)37.

dy
dt

¼ β0yðt � τÞ
1þ y t � τð Þn � γyðtÞ ð1Þ

For the experimental demonstrations of this work we used a data set of
8000 inputs and targets to demonstrate the time-series prediction func-
tionality of the VCSEL p-SNN. Figure 2 shows the 8000 time-series point
sequence used as data input. To encode the inputs of theMackey-Glass time
series for their optical injection into the VCSEL p-SNN, each given data
point was combined into a two-component vector with the data point
delayed by 10 steps (as shown graphically in Fig. 3). These resulting vectors
were then multiplied by a randomly chosen input weight ’mask’ to give the
input values for each of the virtual nodes forming the p-SNN. The input
mask was thus amatrix with a dimension of 2 ×Nv, whereNv describes the
total number of nodes in the network, with entries drawn uniformly at
random from the interval [0,1). The resulting masked input was then
normalised so that all values were in the range [0,1) and were concatenated
to generate the RF signal with the input data to be encoded optically (with
theMach-ZehnderModulator in the setup) for injection into the 1300 nm-

Fig. 1 | Experimental layout and logical archi-
tecture of the neural network. a Diagram of the
experimental photonic spiking neural network. A
tuneable laser (TL) provides light which is intensity
modulated by a Mach Zehnder (MZ) modulator.
The input to theMZmodulator is given by aDC bias
(generated by a Power Source, PS) and an arbitrary
wave generator (AWG) followed by an RF amplifier
(AMP), encoding the data to be processed into the
time varying intensity of the light. Polarisation
controllers (PC) are used to match the light polar-
isation of the input signal to that of the MZ mod-
ulator and theVCSEL. The input signal ismonitored
with a Power Meter (PM) and oscilloscope (OSC).
The modulated light signal is then injected into the
VCSEL where it can trigger ultrafast optical spikes.
The VCSEL’s output is read by an optical spectrum
analyser (OSA) and a photodiode and oscilloscope
(OSC). b Schematic diagram of the architecture of
the VCSEL-based p-SNN34,35.
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VCSEL at the core of the p-SNN. The input delay of 10 steps was chosen to
enable multi-step-ahead predictions resulting in predictions horizons of
about 10-time units of the Mackey-Glass system36,43.

Figure 4a, b shows exemplar input and output optical signals from the
VCSEL p-SNN after their temporal analysis with the high-speed photo-
detector and real time oscilloscope in the setup. In particular, Fig. 4a depicts
the temporal varying nature of the optical input signal entering the p-SNN
with the encoded Mackey-Glass data points. Figure 4b shows in turn the
high-speed optical spike firing signal obtained at the output of the p-SNN in
response to the input shown inFig. 4a. For the results inFig. 4a, b, thep-SNN
was set with a node time of 250 ps and a total network node count of
Nv = 1024; hence yielding a total processing time of 256 ns per data-point.
Figure 4a, b therefore depicts the input and output signals of the p-SNN
when two consecutive data input points of theMackey-Glass time series are
injected into the system.

The Mackey-Glass chaotic time series prediction task was run on the
VCSEL p-SNN using three total node counts, namely Nv = 256, 512 and
1024, which for a set node time of 250 ps gave processing times of 64, 128
and 256 ns per data point respectively. In all cases of analysis, the 1300 nm-
VCSEL at the core of the p-SNN was biased with a driving current of
3.51mA at a temperature of 293 K35, and the detuning of the injection
frequency from the peak frequency of the subsidiary (orthogonally-polar-
ised) mode of the VCSEL was −3.6 GHz. The average injection power
in each case was 127 μW, 123 μW and 131 μW for the p-SNN archi-
tecture set with 256, 512 and 1024 nodes, respectively. We must note

that while the average injection power differed slightly, in all cases the
VCSEL was in the same dynamical regime that allowed for excitable
spikes. The small specific differences were due to the variations in the
randomly generated input weights and did not have a significant effect
on the optical spiking dynamics (integration and refractoriness) trig-
gered in our photonic SNN and which were used to perform the time-
series prediction tasks described in this work.

To train the p-SNN to perform the chaotic Mackey-Glass time-series
prediction task, the following procedure was applied: first the optical spike
pattern (binary) vectors obtained from the p-SNN for all input data points
used for training are collected into a statematrix. Then, the statematrix and
vector of target time-series values are used to find the output layer weight
matrix (a vector of lengthNv) bymeans of least-squares regression.After the
training process, during the testing phase, the binary vectors with the p-
SNN’s output spiking response obtained for subsequent input data points,
are multiplied by the calculated output layer weight matrix, to obtain the
predicted values of the Mackey-Glass chaotic time-series. This process
permits to transform the binary (spiking/non-spiking) temporal output of
the p-SNN into a real number providing the next-ahead predicted value.

The spike pattern vectors for the entire dataset used in this work is
shown in Fig. 5, sorted according to the value that is to be predicted. Dif-
ferent nodes are active (i.e. contain spikes) for different ranges of the value,
which is learned by the least-squares regression fitting.

The performance of the p-SNN onmulti-step-ahead prediction of the
Mackey-Glass chaotic time-series for predictionhorizons of 1 to 15 is shown

Fig. 3 | Operation of the p-SNN in the time series
prediction task. The time series defined by the
Mackey-Glass equations is shown in blue and
dashed orange. The task is to use the values before a
particular time step (in this case time-step 2810) to
predict the value several steps ahead. To do this, the
value at the time step and the value 10 steps pre-
ceding (both marked with green circles) are com-
bined and processed in the p-SNN to find a
prediction (represented with the purple circle). The
inset provides the half of the full time-series.

Fig. 2 | The Mackey Glass time series. Time-trace
showing the 8000 data points of the chaoticMackey-
Glass time-series used for the experimental investi-
gation of the next-step ahead prediction task in the
VCSEL-based p-SNN.

Fig. 4 | Input and output signals. Photodetector recording of the intensity of light
injected and resulting intensity output from the VCSEL p-SNN showing the trig-
gered ultrafast (sub-nanosecond long) optical spikes. The p-SNNwas set here with a
total node count ofNv = 1024; thus, giving a total processing time per point of 256 ns.

The plots show the trace for two data points of the Mackey-Glass time-series lasting
from 0 ns to 256 ns (shaded region), and from 256 ns to 512 ns (unshaded region)
and the achieved optical spiking outputs.
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in Fig. 6. The accuracy of the p-SNN has been measured using the Nor-
malisedMean Squared Error (NMSE)which is calculated using the relation
provided inEq. (2). There, the true values are denoted y and theprediction is
denoted ŷ. Figure 6 shows that despite the lack of intrinsic hardware
memory of the p-SNN and the limited temporal information provided to it,
very good prediction performance is achieved over the entire prediction
range. A local minimum in the prediction error is evident around 10-steps-
ahead, where a low NMSE value equal to only 0.051 is achieved. This is
because the input delay of 10 used in this setup, is optimised to 10-step-
ahead predictions36. The lowest errors are achieved for one-step-ahead
predictions (with NMSE reducing to only 0.021), as the time-series values
are highly correlated over this time range37.We selected theNMSEmetric as
this has widely used to analyse accuracy in traditional photonic RC systems
(including those recently reported based upon VCSELs), in chaotic time
series prediction tasks32,33. Hence, we also use it here to allow for a better
comparison between the performance of the VCSEL p-SNN of this work
with other photonic approaches.

NMSE ¼
P

i yi � ŷi
� �2

σ2y
ð2Þ

Recent works have outlined that p-SNNs, thanks to their use of spikes
to process information, offer very good performance in classification tasks,
even when highly reduced training dataset sizes are used35. This provides an
advantage when compared with traditional photonic RC implementations,
which typically require larger dataset sizes during the training phase to
achieve good accuracy across complex tasks. Following on these recent
promising reports in p-SNNs34,35, in this work we have analysed the effect of
the trainingdata set size in theVCSELp-SNNsperformanceon theMackey-
Glass time-series prediction task. Figure 7 shows the influence of the
training data set size for 10-step-ahead predictions. Here we find very good
performance for training sets as small as 1600 datapoints (20% of total data
points applied to the system) using the p-SNN with a 512-node network
architecture. Figure 7 also shows that for a larger network node count of
1024 nodes, larger training sets are needed to avoid overfitting.

To highlight the system operation, detailed results are provided in this
work for three different training data sizes, namely 1600, 4000 and 6400
points (20%, 50% and 80% of total), and for the three different network
architectures (with 256, 512 and 1024 nodes) investigated. Figure 8 plots as
an example of the VCSEL p-SNN performance in the Mackey-Glass time
series prediction task for both 10 steps-ahead (Fig. 8a) and 1 step-ahead
(Fig. 8b) predictions. For the results in Fig. 8a, b, a dataset formed by thefirst
time-ordered 4000 points (50%of the total 8000 points applied) in the time-

Fig. 5 | Spiking patterns generated by the VCSEL.
Temporal maps depicting the optical spike patterns
delivered by the VCSEL p-SNN in response to the
input data values of the Mackey-Glass time-series.
Three different network architectures with total
node count (Nv) of Nv = 256 (a, d), Nv = 512 (b, e)
and Nv = 1024 (c, f) are investigated. The panels
(d–f) provide zoomed in regions of the temporal
maps that demonstrate differences in the optical
spiking patterns achieved in different network nodes
for different values of the Mackey-Glass time-series.

Fig. 6 | Multi-step-ahead prediction performance. Performance of the VCSEL
p-SNN using input pairs comprised of the current value of the Mackey-Glass time-
series and the value delayed by 10-steps for each node number (Nv) used. The x-axis
is the number of steps ahead of the target and the y-axis gives the accuracy of the
predictions in terms of the Normalised Mean Squared Error (NMSE). Training and
testing parameters: training set size is 6000, testing set size is 1500 and the reg-
ularisation parameter is 0.03.

Fig. 7 | Performance against Training set size. Performance of the VCSEL p-SNN
in the 10-step-ahead prediction of the Mackey-Glass time-series as a function of the
training data set size, for each node number (Nv) used. The prediction error is the
Normalised Mean Squared error (NMSE). Training and testing parameters: testing
set size is 1500 and the regularisation parameter is 0.03.
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series is used for the training phase, and the last 4000 points are used during
inference. For the specific cases investigated in Fig. 8 the p-SNN was con-
figured with a total node count of 512 nodes, which at 250 ps/node, yields a
total processing time of 128 ns per data point. The blue and orange traces in
Fig. 8a, b plot respectively the original time-series and the predicted values
delivered by the p-SNN. Figure 8a, b shows that very good performance is
obtained in both the 10 and 1 steps-ahead prediction tasks with the p-SNN.
This is further illustrated in the insets in Fig. 8a, b showing in detail different
smaller temporal sequences, highlighting the high-accuracy performance in
the time-series prediction task delivered by the p-SNN, even when a very
small dataset size (50% of total points) is utilised for training and with all
data points fed in a timely-ordered manner.

The accuracy of the p-SNN has also been measured using the corre-
lation between true and predicted values. To that end we calculated the
Pearson correlation coefficient using Eq. (3). There, the true values are
denoted y and the prediction is denoted ŷ. This measures how well the
predictions depend linearly on the true value (a Pearson coefficient of 1.0
implies perfect linearity between the two variables). The plots at the right
side of Fig. 8a, b provide the correlation between true and predicted values
for the two examples considered, further highlighting the goodperformance
of the system in predicting different step-ahead values of the Mackey-Glass
time-series. A full set of experimental results on this chaotic time-series
prediction task obtained for the selected trainingdataset sizes, 20%, 50%and
80%, and for the network architectures with 256, 512 and 1024 nodes are

provided in the supporting information accompanying this article. In all
cases investigated, for all cases of training data set sizes and network node
count, the results highlight the successful, high-accuracy performance of the
p-SNN in the chaotic time series prediction task investigated in this work.

ρ ¼ covðy; ŷÞ
σyσ ŷ

ð3Þ

Table 1 shows the performance of the p-SNN in the 10 steps-ahead
valueprediction of the chaoticMackey-Glass time series,measured from the
calculated NMSE and correlation coefficients for the 3 specific cases of
training dataset sizes of 20%, 50%and 80% (as percentage of the 8000 points
used) and for network architectures with Nv = 256 (see Supplementary
Figs. 1–3), 512 (Supplementary Figs. 4–6) and 1024 nodes (Supplementary
Figs. 7–9), investigated in thiswork. The results inTable 1 highlights that for
all cases of analysis high-accuracy is found in the 10 steps-ahead prediction
of the Mackey-Glass time-series, as per the small obtained values of NMSE
(as low as NMSE = 0.051, whenNv = 512) and high levels of correlation (up
to 0.97 is achieved inmultiple cases of analysis) between true and prediction
values.

While the performance of this p-SNN is comparable to that of typical
photonic reservoir computing platforms23,32, the distinct lack of a fixed length
optical feedback loop reduces hardware complexity and allows arbitrarily
changing the number of nodes used by the p-SNN at will, allowing improved
performance in exchange for processing speed (or vice versa) as desired. It
must be noted that only the output weight matrix is trained in this process,
and the input weights are chosen randomly. The use of spikes also offers
potential advantages over continuous value reservoir computers such as
binary output weights and simplified training algorithms35.

Conclusion
This work reports experimentally the successful operation of a VCSEL-based
photonic Spiking Neural Network (p-SNN) on complex time-series pre-
diction tasks. Specifically, we demonstrate the system’s accurate performance
on multi-step-ahead predictions of the chaotic Mackey-Glass time series.
Our results reveal that the p-SNN of this work offers excellent performance
yielding high prediction accuracy whilst benefitting from ultrafast and effi-
cient operation (~120 µW avg. optical input power, and ~3.5mA bias cur-
rent requirements) as well as from a highly hardware-friendly and
inexpensive implementation using a single telecom-wavelength VCSEL and
commercially-sourced telecom components. The VCSEL p-SNN of this
work uses time-multiplexing to create a feed-forward network, with con-
nectivity between neighbouring (virtual) optical spiking nodes, and the

Table 1 | Error and correlation against training set size

Node count Training set % NMSE Correlation

20 0.148 0.91

256 50 0.134 0.92

80 0.131 0.92

20 0.066 0.97

512 50 0.055 0.97

80 0.051 0.97

20 0.213 0.87

1024 50 0.087 0.95

80 0.051 0.97

Experimentally obtained values of NMSE (Normalised Mean Square Error) and correlation
coefficient for 10-steps ahead predictions for three different configured network node architectures
in the p-SNN and different training set sizes (as a percentage of 8000).

Fig. 8 | Examples of time series prediction. Per-
formance of the p-SNN in the prediction of step-
ahead values of theMackey-Glass time series using a
network with 512 virtual nodes and applying a
training dataset using 4000 points (50% of total).
a, b Predicting 10 steps ahead. c, d Predicting the
next step ahead. a, c Predicted (orange) and true
(blue) time-series values, with the first 4000 points
shown in blue providing the training dataset. The
inset in plots (a) and (c) shows a zoomed in region
between data points 6500 and 6700 of the Mackey-
Glass time-series showcasing inmore detail the good
system performance in this prediction task.
b, d Correlation between true and predicted values
(in red is shown the line where prediction = truth).
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nonlinear network responses provided by the VCSEL’s ultrafast neural-like
excitability, its leaky-integrate and fire optical spiking dynamics, alongside
the inhibitory effects induced by the refractoriness of spiking in the VCSEL.
Training of the p-SNN is done only on the output layer weights, and the
network operates with fixed (random) weights used in the input and hidden
layers; hence reducing computational complexity while retaining highly
accurate performance. Notably, our approach also eliminates the need of
fixed optical delayed feedback loops to induce network recurrent con-
nectivity and the memory needed to perform on time-series prediction tasks.
Instead, a method is introduced for creating memory in the p-SNN by
combining in the input data signals delayed copies of the time series; to allow
past and current information to combine in the network to arrive to a
successful step-ahead prediction. This is similar to typical approaches using
feedforward networks or non-linear vector regression. However, here we
have demonstrated a minimal approach by using only one additional time-
delayed version of the input timeseries. Due to the lack of recurrent con-
nectivity of the p-SNN the number of nodes in the network can be freely
tuned as needed, without requiring any hardware modifications or controls.
This permits the p-SNN to offer additional flexibility to optimise for pre-
diction accuracy or computation speed.Moreover, the use of optical spikes to
process information in the p-SNN offers inherent advantages, such as the
direct use of optical spiking patterns (rather than continuous signals) to
distinguish between different time-series values and accurate operation with
very small training data set sizes. We demonstrate that our VCSEL-based p-
SNN offers high accuracy operation (down to NMSE values as low as 0.051
for a prediction horizon of 10-steps-ahead are demonstrated experimentally)
in the Mackey-Glass chaotic multi-step-ahead prediction.

Methods
Experimental setup
The Photonic Spiking Neural Network (p-SNN) of this work is built using
the experimental setup shown in Fig. 1. At its core, the p-SNN employs a
single telecom-wavelength 1300nm-VCSEL as a non-linear element for the
transformation of light-encoded input data information into fast optical
(neuronal) spiking signals. Standard fibre-optic telecom components are
used in the setup to control, inject and analyse the system’s optical signals,
keeping this p-SNN approach hardware-friendly, affordable, and fully-
compatible with optical communication networking and data-centre
technologies. The widely employed technique of optical injection is used
to introduce the input data information into the VCSEL-based p-SNN. In
the optical injection arm of the setup, Continuous Wave (CW) light pro-
duced by a 1300 nm tuneable laser (TL) source is intensitymodulated using
a 10 GbpsMach-Zehnder (MZ)Modulator. A Power Source (PS) generates
theDCbias voltage applied to theMZModulator, whilst a 12GSa/s, 5GHz-
bandwidth Arbitrary Wave Generator (AWG) coupled to an RF amplifier
(AMP), is used to drive the MZModulator with an RF signal providing the
encoded input information. The optical signal in the injection arm is split by
a 50:50 fibre-optic directional coupler. A first output is connected to an
optical power meter to monitor the optical injection strength, whilst the
second branch is split again by a 99:1 coupler. The lowpower (1%) branch is
used to read the optical injection, and the second branch is connected to an
optical circulator. The latter is used to inject the optical input signal into the
1300nm-VCSELaswell as to capture its optical output signal for subsequent
analysis. The polarisation of the injected light is set using fibre polarisation
controllers (PC) to ensure maximal coupling into the MZ Modulator and
the VCSEL. Signal analysis was performed using a 9 GHz amplified pho-
todetector, a 40 GSa/s, 16 GHz-bandwidth real-time Oscilloscope (OSC)
and an Optical Spectrum Analyser (OSA). At room temperature
(T = 293 K) the threshold current of the VCSEL measured 1.4mA, and
when operated at the selected bias current of 3.51mA, the device produced
fundamental mode emission with two orthogonally-polarised peaks at
1287.65 nm and 1287.506 nm (see ref. 35 for details on the LI curve and
optical spectrum of the VCSEL). These correspond to the two orthogonal
polarisations of the fundamental transverse mode of the device. Injection
was made into the subsidiary mode (at 1287.668 nm) with mode-matched

polarisation and a frequency detuning of −3.2 GHz. An average optical
injectionpowerof∼120μWwas incident on theVCSEL,whichwhen run in
the absence ofmodulation, achieved the injection lockingof thedevice to the
external signal from theTL44. Fastmodulation of the injection signal around
these injection conditions induced fast (sub-nanosecond) optical (neural-
like) spiking responses, key to the operation of the system as a p-SNN34,35.

Mackey-glass timeseries
The Mackey-Glass equations were numerically integrated using a fourth
order Runge-Kutta method with Hermitian interpolation for the delayed
mid-steps. The integration time step was 0.01. The timeseries was then
down-sampled to time steps of 1.

Training and testing
The p-SNN was trained using least-squares regression. Using this method,
the weights for each node were calculated using Eq. (4).

Wout ¼ STSþ λI
� ��1

STy ð4Þ

Where thematrix S is formed of the optical spiking output of theVCSEL for
each data point arranged row wise, where a node containing a spike is
denoted by a one, and a node without a spike by a zero. The vector y is the
(column) vector of corresponding output values that the p-SNN should
predict. The regularisation parameter λwas chosen tominimize theNMSE.

Data availability
All data underpinning this publication are openly available from the Uni-
versity of StrathclydeKnowledgeBase at https://doi.org/10.15129/7350af10-
809d-4c5d-b41b-0951f31e7f6c.
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