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 30 

Abstract 31 

Background: Antibiofilm agents serve as an essential tool in the fight against antibiotic 32 

resistance, and natural products provide a promising source for potential drug leads. 33 

Objective: This study investigates the activity of twenty Bangladeshi medicinal plants against 34 

Staphylococcus aureus and Pseudomonas aeruginosa biofilms and predicts the interactions of 35 

selected phytochemicals from five of the best performing plants with the active sites of 36 

transcriptional regulatory proteins SarA of S. aureus and LasR of P. aeruginosa. 37 

Methods: The plant extracts were tested by microtiter plate-based assay against S. aureus and 38 

P. aeruginosa biofilms. Molecular docking and molecular dynamics simulation (MD) were 39 

conducted using PyRx and GROMACS, respectively.  40 

Results: The best activity was identified for Cassia fistula and Ananas comosus, showing ≥ 41 

75% inhibition of biofilm formation. ent-Epicatechin-(4α→8)-epiafzelechin (EEE) of C. 42 

fistula, cyanidin-3,3',5-tri-O-β-D-glucopyranoside (CTG) of A. comosus, and 7-O-(4-hydroxy-43 

E-cinnamoyl)-spinoside of A. spinosus showed the best predictive binding affinity (-7.6, -7.6 44 

and -7.7 kcal/mol, respectively) for SarA. EEE was the only ligand to exhibit a stable ligand-45 

protein complex with SarA in the MD simulation of 200 ns (binding energy of MMPBSA 46 

analysis -39.899 kJ/mol). Chrysophanol, epicatechin and physcion, of C. fistula (-10.5, -10.5, 47 

and -11.0 kcal/mol, respectively) and auraptene of F. limonia (-10.8 kcal/mol) showed the best 48 

predictive binding affinity for LasR. Epicatechin showed the most stable ligand-protein 49 

complex with LasR (binding energy of MMPBSA analysis -63.717 kJ/mol). 50 
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Conclusion: Epicatechin and its derivative EEE could be used as scaffolds for the development 51 

of new antibiofilm agents against P. aeruginosa and S. aureus, respectively. 52 

 53 

Keywords: Antibiofilm; Natural products; Staphylococcus aureus; Pseudomonas aeruginosa; 54 

Cassia fistula; Epicatechin. 55 

1. INTRODUCTION 56 

Biofilms are formed when microbes produce an extracellular polymeric matrix, composed 57 

mainly of polysaccharides, proteins and nucleic acids, to help them adhere to surfaces [1-2]. 58 

This matrix acts as a reservoir for the microbial community to thrive, protected from the host’s 59 

defence system and from disinfectants or antibiotics [3-4]. Most of the currently available 60 

antibiotics are unable to target bacteria residing inside biofilms, resulting in the persistence and 61 

recurrence of infection [5]. The exposure of microbes to sub-inhibitory concentrations of some 62 

antibiotics also favours biofilm formation, which further exacerbates the problem [6-8].  The 63 

formation of microbial biofilms on surfaces and medical devices such as catheters, endoscopes 64 

or implants is an important cause of infection in hospital settings [9-10].  65 

Pseudomonas aeruginosa and Staphylococcus aureus are common nosocomial pathogens that 66 

are able to form biofilms in human tissues and medical devices [11]. In the search for new 67 

antibiofilm agents, the SarA protein of S. aureus and LasR protein of P. aeruginosa have 68 

become attractive targets [12-13]. Both are transcriptional activators of bacterial quorum‐69 

sensing (QS) that control biofilm formation and the expression of virulence factors. The 70 

binding of quorum sensing molecules with these transcriptional regulatory proteins activates 71 

the transcription of virulence factors such as exotoxins, exoproteases and secondary 72 

metabolites necessary for biofilm formation. SarA is one of the most extensively studied 73 
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transcription regulatory protein. It controls 120 genes associated with proteins that influence 74 

biofilm formation [14-15]. LasR is a global regulator of virulence genes. It has been established 75 

that a lack of LasR function results in QS inactivation and loss of pathogenicity [16-17]. 76 

Natural products, including plants and their phytoconstituents, may offer an alternative 77 

approach to prevent microbial biofilm formation and/or eradicate biofilms [13, 18-19]. Plants 78 

from Bangladesh have a long history of use in traditional medicine, including in the treatment 79 

of infection [20]. In this study, we tested the in vitro activity of twenty Bangladeshi medicinal 80 

plants against S. aureus and P. aeruginosa biofilms. These plants were selected on the basis of 81 

their previously reported antibacterial activity against various pathogens and/or of their use in 82 

traditional medicine for the management of infections (Table S1). Such ethnobotanical 83 

considerations provide a rational approach for drug discovery purposes since biological activity 84 

is often established following a long history of use with success [21-22].  Plants showing the 85 

most potent antibiofilm activity were further selected for an in silico study. A molecular 86 

docking approach was performed to predict the binding affinity of selected phytoconstituents 87 

from these plants towards SarA and LasR. The ligands with the highest binding affinities were 88 

further checked for the stability of their protein-ligand complexes using molecular dynamics 89 

simulations. 90 

 91 

2. MATERIALS AND METHODS 92 

2.1. Plant material  93 

Plants, traditionally used for infections and/or previously reported to have antibacterial activity, 94 

were collected during July-Oct from different regions of the Khulna district (Bangladesh) 95 

(Table S1). Plants were identified by the experts at Bangladesh National Herbarium while 96 
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voucher specimen were submitted for five plants, which showed best in vitro antibiofilm 97 

activity and were chosen for in silico studies. Voucher specimen were submitted for A. spinosus 98 

(DACB 90388), A. comosus (DACB 92284), C. fistula (DACB 90385), F. limonia (DACB 99 

92285) and T. indica (DACB 90386). Accepted names of these plants as appears on World 100 

Flora Online database were used throughout this manuscript 101 

(http://www.worldfloraonline.org/). 102 

 103 

2.2. Extraction 104 

The plant materials were washed, shade-dried and ground into coarse powder. The powdered 105 

materials were then macerated in ethanol for 3 days with occasional stirring (Table S2). The 106 

filtrate was evaporated to dryness under reduced pressure at < 45 °C to afford each crude extract 107 

(Table 1). The latter were transferred to glass vials and stored at -20 °C until further analysis. 108 

 109 

2.3. Bacterial cultures 110 

Staphylococcus aureus (NCTC 12981) and Pseudomonas aeruginosa (NCTC 12903) were 111 

obtained from the Microbiology Laboratory of Biotechnology and Genetic Engineering 112 

Discipline, Khulna University. Following two sub-cultures on nutrient agar and incubation at 113 

37 °C for 16-18 h, the bacterial inoculum was prepared in sterile 0.9% saline to reach a density 114 

of 0.5 McFarland using a Grant-bio DEN-1 McFarland densitometer [23]. Further dilutions 115 

were made to achieve a bacterial stock concentration of 5×105 CFU/mL for the microbiological 116 

assays. 117 

 118 

2.4. Chemicals and reagents 119 
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Ethanol, nutrient agar, nutrient broth, sulphuric acid and glacial acetic acid were obtained from 120 

Merck (India) while resazurin, crystal violet and barium chloride were obtained from Loba 121 

Chemie Private Ltd (India).  Eugenol and epicatechin were purchased from Tokyo Chemical 122 

Industries Company Ltd (Japan). Ciprofloxacin and gentamicin were generously provided by 123 

Incepta Pharmaceuticals Ltd (Bangladesh). 124 

 125 

2.5. Determination of MIC values 126 

Prior to screening for antibiofilm activity, the minimum inhibitory concentration (MIC) values 127 

of all plant extracts were first determined using a broth microdilution assay [24]. Stock 128 

solutions of extracts and antibiotic standards were prepared with 5% DMSO in sterile 0.9% 129 

saline to achieve concentrations of 2000 and 100 μg/mL, respectively. Serial dilutions were 130 

made in 96-well round-bottomed microtitre plates (Sigma-Aldrich, USA) containing nutrient 131 

broth to get a starting concentration of 500 µg/mL (extracts) and 25 µg/mL (antibiotics) and a 132 

final volume of 100 μL in each well. After addition of the bacterial inoculum (100 μL, 1×106 133 

CFU/mL), the microtitre plates were incubated at 37 °C for 24 h. At the end of the incubation 134 

period, 5 µL resazurin was added and after 2 h, the MICs were recorded through visual 135 

inspection of the colour change of resazurin. The experiments were carried out in duplicate on 136 

different days.  137 

 138 

2.6. Antibiofilm assay 139 

This assay followed a previously published methodology [25-26]. In this case, after incubation 140 

of the microtitre plates at 37 °C for 24 h, the liquid medium containing sessile bacteria was 141 

removed before 100 μL of 1% w/v aqueous solution of crystal violet was added. Then, the dye 142 
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was removed and the wells were washed with distilled water. For the quantification of biofilm 143 

adherence, 125 µL of 30% acetic acid was added to each well and kept for 30 min. The resulting 144 

solution was transferred into new flat-bottomed microtitre plates (Sigma-Aldrich, USA) and 145 

the absorbance was measured at 570 nm using a microplate reader (Multiskan GO, Thermo 146 

Scientific). Eugenol and epicatechin were used as the positive controls [27-28]. The 147 

experiments were done in duplicate and the inhibition of biofilm formation was calculated 148 

using the following equation where OD stands for optical density.  149 

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙
× 100 150 

 151 

2.7. Molecular docking 152 

2.7.1. Preparation of proteins  153 

The three-dimensional structures of S. aureus SarA (PDB ID:2FRH) and P. aeruginosa LasR 154 

(PDB ID: 2UV0) were downloaded from the Protein Data Bank (https://www.rcsb.org/). The 155 

protein structures were prepared for the docking using BIOVIA Discovery Studio Visualizer 156 

v.4.5 (DSv.4.5) and AutoDock Tools (v.1.5.7), removing water molecules and co-crystallised 157 

ligands, selecting protein chains, adding polar hydrogens and Kollman charges, distributing 158 

charges evenly and repairing missing atoms. 159 

 160 

2.7.2. Preparation of ligands  161 

The Dictionary of Natural Products (DNP) published by Routledge (Taylor and Francis Group) 162 

was consulted to compile all compounds previously reported from the five plant extracts with 163 

the most prominent antibiofilm activity (A. spinosus, A. comosus, C. fistula, F. limonia and T. 164 
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indica). The 3D chemical structures of 161 secondary metabolites were downloaded in SDF 165 

format from the NCBI PubChem database (https://pubchem.ncbi.nlm.nih.gov/) or drawn using 166 

ChemOffice v.21.0.0.  The preparation of the ligands, including energy minimisation, was done 167 

using the Open Babel module of PyRx (v.0.8) using a universal force field (uff). N-3-oxo 168 

dodecanoyl-L homoserin lactone (OHN), retrieved from its co-crystallized complex with 169 

2UV0, was used as the control inhibitor for LasR while 2,4-diflurobenzyl)amino]cyclohexanol 170 

(SarABI) [29] and ZINC00990144 [30] were used as the control inhibitors for SarA. 171 

 172 

2.7.3. Grid box generation and molecular docking  173 

The binding sites of SarA and LasR were identified from previous literature reports [12, 31]. 174 

Docking of the ligands at the binding sites of selected proteins were conducted with the 175 

Autodock Vina based virtual screening module of PyRx (v.0.8). The centre of the grid box was 176 

set to x = 37.5, y = -2.7, z = 20.8 and x = 25.3, y = 38.2, z = 43.2 for SarA and LasR, 177 

respectively. Their sizes were 26 × 32 × 31 and 27 × 24 × 23, respectively with the spacing set 178 

at 1Å and exhaustiveness set to 8. The docking scores were calculated as the predicted free 179 

energies of binding (ΔG in kcal/mol). Ligands were ranked according to their docking scores 180 

with RMSD 0 and ligands with best docking scores were checked for their binding pose [32-181 

33]. Discovery Studio v.4.5 and LigPlot+ v.2.2 were used to visualise the specific 182 

intermolecular interactions between the best ligand docking poses and the binding sites of the 183 

studied proteins. 184 

 185 

2.8. Molecular dynamics simulations 186 

https://doi.org/10.2174/0113892010348855241113031323
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GROMACS 2021 was employed to perform molecular dynamics (MD) simulations, using a 187 

CHARM36 force field [34-35]. The CHARMM General FF (CGenFF) 188 

(https://cgenff.silcsbio.com) server was used for ligand parameterization [36]. The system was 189 

then solvated using a TIP3P water model in a cubic box. Further neutralisation was performed 190 

by addition of Na+ and Cl− ions following energy minimisation. To equilibrate the system, NVT 191 

and NPT ensembles for 1 ns were performed at 300 °K and 1 bar. The system was projected 192 

for final MD runs for 200 ns of the best docked ligands and control molecules with LasR and 193 

SarA. Root means square deviations (RMSD), root means square fluctuations (RMSF), radius 194 

of gyration (Rg), solvent accessible surface area (SASA) and hydrogen bond analysis were 195 

used to analyse the trajectories. The g_mmpbsa tool was used for the Molecular Mechanics 196 

Poisson-Boltzmann Surface Area (MMPBSA) analysis of the last 100 ns, and snapshots were 197 

taken at the 100 ps time step [37]. 198 

 199 

2.9. Pharmacokinetics and drug-likeness prediction 200 

Canonical SMILES of selected ligands were retrieved from the PubChem database. The 201 

SwissADME online tool (http://www.swissadme.ch/) and OSIRIS property explorer software 202 

(https://www.organic-chemistry.org/prog/peo/) were used to obtain the physicochemical 203 

descriptors, pharmacokinetic and drug-likeness properties, as well as other important 204 

parameters that have to be taken into account before a compound can be considered as a 205 

possible drug lead [38].  206 

 207 
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3. RESULTS 208 

3.1. Determination of MIC values 209 

The best antibacterial activity was observed for M. longifolium extract with MICs of 62.5 and 210 

125 μg/mL against S. aureus and P. aeruginosa, respectively. Both A. spinosus and J. adhatoda 211 

extract showed MICs of 250 μg/mL against S. aureus and 62.5 μg/mL against P. aeruginosa. 212 

The remaining plant extracts exhibited MIC values of either 250 or 500 μg/mL against the test 213 

pathogens. Ciprofloxacin and gentamicin showed MICs of 1.56 and 0.78 μg/mL, respectively 214 

against both pathogens (Table 1). 215 

3.2. Antibiofilm activity 216 

The percentage inhibition of biofilm formation by the best performing five plant extracts, 217 

namely A. comosus, C. fistula, A. spinosus, F. limonia and T. indica are depicted in Fig. 1 and 218 

Fig. 2. The highest inhibition of biofilm formation was observed for C. fistula extract against 219 

both pathogens with strong inhibition maintained at all the concentrations tested. The rest of 220 

the plant extracts showed some degree of antibiofilm activity against the test pathogens (Table 221 

S3 and S4). Eugenol and epicatechin, used as standard antibiofilm agents, displayed mild to 222 

moderate antibiofilm activity against both test pathogens (Table S3 and S4). 223 

 224 

3.3. Molecular docking  225 

Docking score of all the phytoconstituents against SarA and LasR proteins are listed in Table 226 

S7. Among all the ligands, 7-O-(4-Hydroxy-E-cinnamoyl)-spinoside (HCS) (-7.7 kcal/mol) 227 

from A. spinosus, 14-dihydroxycard-20(22)-enolide-xylopyranosyl (-7.7 kcal/mol) from T. 228 

indica, cyanidin-3,3',5-tri-O-β-D-glucopyranoside (CTG) (-7.6 kcal/mol) from A. comosus, 229 

and ent-epicatechin-(4α→8)-epiafzelechin (2S,2'R,3S,3'R,4β form) (EEE) (-7.6 kcal/mol) from 230 
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C. fistula showed the highest binding affinity for SarA, with scores above that of the control 231 

inhibitor SarABI (-5.8) and similar to that of ZINC00990144 (-7.9) (Table 2). Physcion (-11.0 232 

kcal/mol), epicatechin (-10.5 kcal/mol) and chrysophanol (-10.5 kcal/mol) from C. fistula as 233 

well as auraptene (-10.8 kcal/mol) from F. limonia, showed the highest binding affinity for 234 

LasR, with scores above that of the control OHN (-9.0 kcal/mol) (Table 3). Eugenol, used as a 235 

control in our antibiofilm assay, displayed a binding affinity of -4.8 and -6.8 kcal/mol for SarA 236 

and LasR, respectively.  These phytoconstituents showed interactions with key amino acid 237 

residues at the binding site of each protein (Table S5, S6 and Fig. 3, 4, S1-S8). Physcion, 238 

auraptene, epicatechin, HCS, CTG, EEE and the control ligands OHN and ZINC00990144 239 

were selected for further molecular dynamics simulations studies. 240 

 241 

3.4. Molecular dynamics simulations 242 

3.4.1 RMSD analysis 243 

Among the investigated compounds, the epicatechin-LasR complex showed the highest stable 244 

trajectories (mean, 1.9 Å) over the MD simulations. At the beginning of the simulation, this 245 

complex showed higher fluctuations that decreased after 24 ns. From 24 ns to 71 ns, it showed 246 

a gradual increasing trend with minimal fluctuations (mean, 1.8 Å). From 71 ns to the end of 247 

the simulation, this complex fluctuated near a mean of 2.0 Å. In contrast, the physcion-LasR 248 

complex showed an initially lower RMSD that became higher, particularly within 28-54 ns, 249 

153-160 ns, and from 179 ns to the end of the study. In addition, this complex showed multiple 250 

fluctuations during the simulation period with an overall mean of 2.0 Å. The auraptene-LasR 251 

complex showed a comparatively stable RMSD within 20-43 ns, after that the value gradually 252 
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increased till 162 ns (mean, 2.5 Å). From 163 ns onwards, the fluctuations decreased steadily 253 

until the end of the simulation, with a mean fluctuation of 2.5 Å.  The OHN-LasR complex 254 

fluctuated highly during the initial 50 ns and stabilised after 50 ns (Fig. 5a). In addition, this 255 

complex showed higher stability, compared to the epicatechin-LasR complex, during the last 256 

65 ns of the study.  257 

Unlike CTG, HCS and ZINC00990144 which left the binding site of SarA, EEE was found to 258 

bind effectively to this protein and was therefore the only ligand considered for further MD 259 

analysis. The apo protein showed high fluctuations before 89 ns and stabilised after 121 ns 260 

(Fig. 7a). By contrast, the EEE-SarA complex showed high fluctuations initially and achieved 261 

convergence between 39-54 ns of the study. After 55 ns and until the end of the study, no 262 

noticeable abrupt fluctuations were noticed, and fluctuations near a mean of 4.5 Å suggested 263 

higher stability and lower structural deviations. 264 

 265 

3.4.2 RMSF analysis 266 

The Cα atoms of the LasR apo protein showed higher fluctuations, notably in the N and C-267 

terminal, 13–14, 38–50, and 119–125 residues. All ligand-bound proteins exhibited minimal 268 

fluctuations compared to the apo protein, and this scenario was noticeable for the epicatechin, 269 

auraptene, and OHN-bound proteins, indicating higher stability (Fig. 5b). In addition, the 270 

physcion bound protein showed higher fluctuations within 88-98 residues. In the case of SarA, 271 

high fluctuations in the N-terminal region were observed for both the apo protein and the EEE-272 

bound protein, although the fluctuations were relatively low for the latter (Fig. 7b). The EEE-273 

bound protein showed high fluctuation in its C-terminal region compared to the apo protein. 274 
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Additionally, the EEE-SarA complex showed high fluctuations within residues 182-191, which 275 

includes the binding site residues. 276 

 277 

3.4.3 Radius of gyration analysis 278 

The Rg for LasR protein-ligand complex with epicatechin, physcion, and OHN showed a stable 279 

trajectory within an almost identical mean value of 15.6 Å for each of the protein-ligand 280 

complex. On the other hand, the auraptene-LasR also showed a slightly higher mean of 15.7 281 

Å, since it showed higher Rg value from the beginning to 38 ns of the study (Fig. 5c). The apo 282 

protein SarA showed a lower mean Rg (16.3 Å) than that of the EEE-protein complex (17.1 Å) 283 

(Fig. 7c).  284 

 285 

3.4.4 SASA analysis 286 

All LasR-ligand complexes demonstrated similar extent of SASA (90.41, 90.64, 91.37, 92.75 287 

nm2 for physcion, OHN, epicatechin and auraptene, respectively) (Fig. 5d). The EEE-SarA 288 

complex initially showed a high SASA value which decreased after 23 ns. The SASA value for 289 

SarA apoprotein was low compared to the EEE-SarA complex (Fig. 7d). 290 

 291 

3.4.5 Number of hydrogen bonds 292 

EEE showed the highest number of hydrogen bonds with LasR (1-6) followed by OHN (1-5), 293 

physcion (1-4) and then auraptene (1-4) (Fig. 6). The control OHN maintained three hydrogen 294 

bonds over the MD simulation period. In contrast, EEE also maintained three hydrogen bonds 295 

with LasR over the simulation time and two additional hydrogen bonds until 34 ns. Physcion 296 

showed two primary hydrogen bonds with LasR throughout the entire experimental period of 297 
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200 ns whereas auraptene showed two strong hydrogen bonds over the whole MD simulation 298 

period of 200 ns (Fig 6b). In the case of SarA, EEE showed a high number of hydrogen bonds 299 

(1-8), with three strong hydrogen bonds and two moderate hydrogen bonds over the whole MD 300 

simulation (Fig. 7e). 301 

 302 

3.4.6. Binding free energy analysis 303 

For further insights about the stability of the protein-ligand complex, the MMPBSA binding 304 

free energy values were analysed (Table 4). For the LasR protein, the analysis was carried out 305 

on the most stable complexes (i.e with epicatechin and OHN). The epicatechin-LasR complex 306 

demonstrated a binding energy (ΔEBind) of -63.717 kJ/mol, whereas the OHN-LasR complex 307 

showed a binding energy of -107.223 kJ/mol. Regarding the contribution of active site residues 308 

for this energy, it was observed that epicatechin formed strong bonds with Trp60, Thr75, and 309 

Arg61 with the values of 9.7056, -3.7003, and -0.4977 kJ/mol, respectively. On the other hand, 310 

residues Thr75, Trp60, Asp73, and Arg61 contributed significantly to the binding of OHN with 311 

binding energy values of -7.056, 2.066, -0.5164, 0.6377 kJ/mol, respectively (Fig. 8). On the 312 

other hand, EEE in complex with SarA showed a binding energy value of -39.899 kJ/mol. This 313 

compound interacted with the active site residues Asp188, Glu189 and Arg190 with binding 314 

energy values of -1.3837, 9.9308, and 1.536 kJ/mol, respectively (Fig. 9). 315 

 316 

3.5. Pharmacokinetic and drug-likeness predictions 317 

Among the ligands displaying the best scores against SarA, 7-O-(4-Hydroxy-E-cinnamoyl)-318 

spinoside (HCS), 14-dihydroxycard-20(22)-enolide-xylopyranosyl, cyanidin-3,3',5-tri-O-β-D-319 

glucopyranoside (CTG), ent-epicatechin-(4α→8)-epiafzelechin (2S,2'R,3S,3'R,4β form) (EEE) 320 
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failed to pass the Lipinski’s rule of five  (RO5) mainly due to their high molecular weight 321 

and/or high logP value [39]. This was also true for the control inhibitor ZINC00990144. On 322 

the other hand, all best-scoring ligands against LasR (i.e. physcion, epicatechin, chrysophanol, 323 

auraptene) as well as the OHN and eugenol controls presented no violations of the RO5 (Table 324 

S8). All the ligands showed positive drug scores with the best value observed for epicatechin 325 

(0.87). The drug score is a composite metric derived from various physicochemical parameters 326 

and the toxicity of a ligand. A score of 1.0 indicates no risk, 0.8 denotes medium risk, and 0.6 327 

represents high risk [40]. 328 

 329 

4. DISCUSSION 330 

Many plants are used worldwide in traditional medicine for the treatment of infectious diseases 331 

and multiple studies have reported that plant extracts and/or constituents have promising 332 

antibiofilm activity against various microorganisms [41-44]. This provides a good rationale for 333 

selecting plants as a source of possible new antibiofilm agents [18-19, 45-46]. The screening 334 

of plant extracts for the discovery of new antibiofilm agents has to date resulted in the 335 

identification of several phytomolecules with promising activity that belong to diverse 336 

chemical classes including alkaloids, terpenoids, anthraquinones, and polyphenols. Such 337 

antibiofilm compounds, which may also possess antibacterial activity on their own, exert their 338 

effects through a range of mechanisms and could serve as useful adjunct therapies to common 339 

antibiotic treatments [18, 47]. This would be of particular interest in managing drug-resistant 340 

bacterial infections where phytochemicals with antibiofilm activity could synergise the effects 341 

of existing antibiotics [48-49]. 342 
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In the current study, a selection of 20 Bangladeshi plants, used traditionally for infections 343 

and/or previously reported to have antibacterial properties, were screened for antibacterial and 344 

antibiofilm activity. The tested extracts showed activity to various extents against S. aureus 345 

and P. aeruginosa in agreement with previous reports (Table S1).  Although some plants 346 

showed similar MICs, they varied greatly in terms of their antibiofilm activity. C. fistula 347 

showed the highest inhibition of biofilm formation against the pathogens tested and this effect 348 

was maintained even at the lowest concentration tested. This species is used extensively in 349 

traditional medicine as an effective remedy against infections and its antibacterial activity has 350 

previously been demonstrated against several human pathogens including chloramphenicol-351 

resistant S. aureus [50-51]. This is the first report of its antibiofilm activity. A. comosus is 352 

another plant that showed good antibiofilm activity in our study. To the best of our knowledge, 353 

there has been only one previous report of its antibiofilm activity against Porphyromonas 354 

gingivalis, a causative agent of periodontal disease [52].  355 

It has been previously established that the in vitro screening of plant extracts followed by in 356 

silico screening of phytomolecules can help identify potential molecules for advanced studies 357 

[53]. Thus, the plant extracts showing the best antibiofilm activity in the present study were 358 

further selected for in silico screening to investigate which of their constituent(s) may interact 359 

with SarA and LasR, two important proteins involved in biofilm formation in S. aureus and P. 360 

aeruginosa, respectively. Our molecular docking study identified a number of phytomolecules 361 

with good binding affinity for SarA and LasR. Interestingly, the highest number of 362 

phytomolecules showing the best docking scores against SarA and LasR were from C. fistula, 363 

a plant which demonstrated the best antibiofilm activity in our assay. This suggests that C. 364 

fistula extract contains a range of antibiofilm natural products that might have contributed to 365 
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its observed in vitro antibiofilm activity. The molecular docking results identified 14-366 

dihydroxycard-20(22)-enolide-xylopyranosyl, CTG, HCS and EEE as ligands with a high 367 

binding affinity for SarA. These compounds interacted with, at least one or more, important 368 

residues (i.e. Arg184, Asp188, Glu189 and Arg190) present in the wing region of SarA, which 369 

is responsible for DNA binding and activation [12]. Chrysophanol, epicatechin and physcion 370 

and auraptene had a high binding affinity for LasR and interacted with important binding site 371 

residues (Tyr56, Trp60, Arg61, Asp73, Thr75, Leu110, Ser129) present in the active site of 372 

this protein [13, 31]. Detailed molecular interaction analysis revealed several key interactions 373 

between physcion and LasR, including hydrogen bonds and hydrophobic contacts, which likely 374 

dominate the overall binding (Fig. S2). In addition to this, two unfavourable donor-donor and 375 

acceptor-acceptor interactions were found to occur. The significance of these unfavourable 376 

interactions or local steric clashes may be compensated by the formation of two hydrogen 377 

bonds and several hydrophobic interactions at the binding site. Chrysophanol and physcion 378 

belong to the chemical class of anthraquinones. The latter are known for their antibacterial 379 

activity [54] and their antibiofilm activity has recently been investigated against methicillin-380 

resistant S. aureus with promising results [55-56]. However, neither of these two 381 

phytomolecules have previously been investigated for in vitro antibiofilm activity. It is 382 

interesting to note that a Rumex japonicus extract has previously exhibited antibiofilm activity 383 

against multidrug-resistant S. aureus with chrysophanol and physcion identified among the 384 

major components of that extract [57]. Auraptene belongs to the chemical class of coumarins. 385 

A series of coumarins were recently investigated for in vitro antibiofilm activity against P. 386 

aeruginosa, where auraptene increased biofilm formation at sub-inhibitory concentration [58]. 387 

Further investigations are required to provide conclusive evidence on the effect of coumarins 388 
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like auraptene on biofilm formation. Although, it is possible that some antimicrobial 389 

compounds may work inversely at subinhibitory concentrations as they could trigger resistance 390 

mechanisms in pathogens [27]. 391 

MD simulations were further performed to assess the possible conformational changes and 392 

stability of each protein-ligand complex. RMSD and RMSF analyses evaluated the stability of 393 

the binding of each ligand to its protein target while Rg and SASA analyses indicated the 394 

compactness and solvent accessibility of each protein-ligand complex. Hydrogen bonds 395 

analyses helped to understand the critical role played by this type of interactions in the 396 

stabilisation of ligands within the binding pocket of each protein. Altogether, this evaluated 397 

how successfully each ligand could bind to its target in order to induce a biological effect [59].  398 

Epicatechin, followed by auraptene and physcion, exhibited the most stable behaviour and 399 

highest number of hydrogen bonds in complex with LasR over the MD simulation period, 400 

compared with the other ligands and the control inhibitor OHN. Although the molecular 401 

docking results indicated possible donor-donor and acceptor-acceptor unfavorable interactions, 402 

the MD results showed that this did not affect the stability of the physcoin-LasR complex. The 403 

epicatechin-LasR complex showed the highest compactness and significantly decreased 404 

fluctuations of the residues compared to other LasR-ligand complexes. In addition, the 405 

epicatechin-LasR exhibited a high binding affinity and interacted strongly with numerous 406 

active site residues in the MMPBSA analysis. Epicatechin has previously been reported to 407 

increase P. aeruginosa biofilm formation at sub-inhibitory concentrations and to display 408 

antibiofilm/anti-QS activity against P. aeruginosa and other Gram negative bacteria such as E. 409 

coli and Chromobacterium violaceum at higher concentrations [27]. Two of its derivatives, 410 

namely catechin and epigallocatechin gallate also inhibited virulence factors production in P. 411 
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aeruginosa and showed QS inhibitory activity in P. putida, respectively [60]. EEE, an epi-412 

afzelechin derivative of epicatechin, complexed with SarA demonstrated a stable profile in the 413 

MD analysis along with a high binding energy towards the target protein. Further MMPBSA 414 

analysis clarified that EEE interacted with multiple key residues of the DNA binding region of 415 

SarA. Overall, the MD simulations revealed that epicatechin and EEE formed the most stable 416 

ligand-protein complexes with LasR and SarA proteins, respectively. It is interesting to note 417 

that both phytomolecules belong to C. fistula, which as aforementioned is an important 418 

medicinal plant for infections.  419 

 420 

CONCLUSION 421 

The present study provides some support to justify the use of the selected Bangladeshi plants 422 

in traditional medicine for the treatment of infectious diseases. Generally speaking, it provides 423 

a good example of how existing knowledge on the traditional uses of medicinal plants, 424 

combined with in vitro and in silico screening, can guide the search for new drugs. Further 425 

studies are warranted on the most active plants identified in this study as these may prove useful 426 

for the discovery of new agents against S. aureus and P. aeruginosa biofilms. Among the 20 427 

plant extracts tested, C. fistula extract exhibited the best antibiofilm activity in the in vitro 428 

assay. Additionally, epicatechin and EEE, two natural compounds of this plant, were identified 429 

as promising ligands against transcriptional regulatory proteins LasR of P. aeruginosa and 430 

SarA of S. aureus, respectively. Further studies are warranted to confirm whether epicatechin 431 

and its derivative EEE can be used as model scaffolds for the development of new antibiofilm 432 

agents against P. aeruginosa and S. aureus, respectively.  433 

 434 
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 653 

 654 

Table 1: MIC values of the studied plant extracts against S. aureus and P. aeruginosa. 655 

Plant name 
Part used for 

extraction 

Yield 

(%) 

MIC (μg/mL) 

S. aureus 
P. 

aeruginosa 

Amaranthus spinosus L. Whole plant 1.84 250 62.5 

Amaranthus blitum L. Whole plant 0.55 500 500 

Ananas comosus (L.) Merr. Fruits 7.84 500 250 

Calotropis gigantea (L.) Dryand. Leaves 1.49 250 500 

Capsicum frutescens L. Fruits 0.47 500 500 

Carica papaya L. Leaves 1.46 500 500 

Cassia fistula L. Leaves 3.23 500 500 

Centella asiatica (L.) Urb. Whole plant 2.69 500 500 

Chenopodium album Bosc ex Moq. Whole plant 0.66 250 250 

Citrus maxima (Burm.) Merr.  Fruit peels 1.17 500 500 

Coccinia grandis (L.) Voigt Whole plant 1.77 500 500 

Feronia limonia Swingle Leaves 0.83 250 500 

Ficus benghalensis L. Leaves 0.22 500 500 

Hibiscus rosa-sinensis L. Leaves 1.39 500 500 

Justicia adhatoda L. Leaves 0.66 250 62.5 

Mangifera indica L. Stem bark 11.58 500 500 
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 656 

 657 

  658 

Monoon longifolium (Sonn.) B.Xue 

& R.M.K.Saunders 
Leaves 

1.99 62.5 125 

Tamarindus indica L. Leaves 1.49 250 250 

Terminalia chebula Retz. Fruits 11.67 500 500 

Vitex negundo L. Leaves 8.02 500 250 

Ciprofloxacin - - 1.56 1.56 

Gentamicin - - 0.78 0.78 

Eugenol - - >25 >25 

Epicatechin - - >25 >25 
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This is the author accepted manuscript of: Shilpi, J. A., Sarker, D. K., Seidel, V., Ali, M. T., 

Uddin, S. J., Basak, A., Chakraborty, S., Khairuzzaman, M., Nahar, A. U., & Salam, F. B. A. 

(2025). In vitro antibiofilm activity-directed in silico identification of natural products 

targeting bacterial biofilm regulators SarA and LasR. Current Pharmaceutical 

Biotechnology. Advance online 

publication. https://doi.org/10.2174/0113892010348855241113031323. For the purposes of 

open access, a CC BY 4.0 licence has been applied to this manuscript. 

 

27 

 

 659 

Table 2: Predicted free binding energy (docking score ΔG in kcal/mol) of A. comosus, A. 660 

spinosus, C. fistula, T. indica phytoconstituents and control ligands towards SarA 661 

 662 

Origin Ligand Docking 

score 

A. comosus Cyanidin-3,3',5-tri-O-β-D-glucopyranoside (CTG) -7.6 

Ergosterol peroxide -7.0 

A. spinosus Oleanolic acid-3-O-[β-D-Glucopyranosyl-(1→4)-β-D-

glucopyranosyl-(1→4)-β-D-glucuronopyranoside] 

-7.3 

7-O-(4-Hydroxy-E-cinnamoyl)-spinoside (HCS) -7.7 

C. fistula Cassiaflavan-(4β→6)-epiafzelechin, (2S,2'R,3'R,4α form) -7.1 

Cassiaflavan-(4α→6)-epiafzelechin (2S,2'R,3'R,4β form) -7.1 

ent-Epicatechin-(4α→8)-epiafzelechin (2S,2'R,3S,3'R,4β form) 

(EEE) 

-7.6 

Epicatechin-(4β→8)-ent-epiafzelechin (2R,2'S,3R,3'S,4α form) -7.3 

T. indica 14-Dihydroxycard-20(22)-enolide-xylopyranosyl -7.7 

 

Control 

 

ZINC00990144 -7.9 

SarABI -5.8 

Eugenol -4.8 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 
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 672 

 673 

 674 

 675 

Table 3: Predicted free binding energy (docking score ΔG in kcal/mol) of A. comosus, A. 676 

spinosus, C. fistula, F. limonia phytoconstituents and control ligands towards LasR 677 

Origin Ligand Docking score 

A. comosus Ananasate -9.8 

Chrysoeriol -10.0 

A. spinosus Amaricin -9.9 

Quercetin -10.4 

C. fistula 4-Hydroxy-5-methoxyanthraquinone-2-carboxaldehyde -9.9 

3,4,4',7,8-Pentahydroxyflavan (2ξ,3ξ,4ξ form) -9.8 

Chrysophanol -10.5 

Epicatechin -10.5 

Physcion -11.0 

F. limonia Auraptene -10.8 

 

Control 

N-3-oxo dodecanoyl-L homoserin lactone (OHN) -9.0 

Eugenol -6.8 
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Table 4: Predicted MMPBSA binding free energy analysis.  694 

Ligand Energy terms (kJ/mol) 

ΔE Van der Waal ΔE 

Electrostatic 

ΔE Solvation; 

Polar 

ΔE Solvation; 

SASA 

ΔE Bind 

Epicatechin-LasR -158.753 ± 

9.965 

-29.031 ± 

8.700 

140.763 ± 

19.098 

-16.698 ± 

0.723 

-63.717 ± 

12.610 

OHN-LasR -182.464 ± 

10.909 

-84.845 ± 

11.308 

180.809 ± 

13.049 

-20.723 ± 

0.698 

-107.223 

± 1.749 

EEE- SarA -133.144 ± 

15.870 

-89.621 ± 

29.099 

201.125 ± 

29.886 

-18.260 ± 

1.380 

-39.899 ± 

17.917 
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Fig. 1: % Inhibition of S. aureus biofilm formation by the best performing five plant 716 

extracts. 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

https://doi.org/10.2174/0113892010348855241113031323


This is the author accepted manuscript of: Shilpi, J. A., Sarker, D. K., Seidel, V., Ali, M. T., 

Uddin, S. J., Basak, A., Chakraborty, S., Khairuzzaman, M., Nahar, A. U., & Salam, F. B. A. 

(2025). In vitro antibiofilm activity-directed in silico identification of natural products 

targeting bacterial biofilm regulators SarA and LasR. Current Pharmaceutical 

Biotechnology. Advance online 

publication. https://doi.org/10.2174/0113892010348855241113031323. For the purposes of 

open access, a CC BY 4.0 licence has been applied to this manuscript. 

 

32 

 

 730 

Fig. 2: % Inhibition of P. aeruginosa biofilm formation by the best performing five plant 731 

extracts. 732 
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 745 

 746 

Fig. 3: Docked pose of ent-epicatechin-(4α→8)-epiafzelechin (2S,2'R,3S,3'R,4β form) in 747 

the binding site of S. aureus SarA, showing hydrogen bonds with key amino acid 748 

residues. Bond distances are in angstrom.  749 
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 755 

Fig. 4: Docked pose of physcion in the binding site of P. aeruginosa LasR, showing 756 

hydrogen bonds with key amino acid residues. Bond distances are in angstrom.  757 
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 761 

 762 

Fig. 5: Plot of a) RMSD, b) RMSF c) Rg, and d) SASA of apo protein (black) and physcion 763 

(green), epicatechin (blue), auraptene (magenta) and N-3-oxo dodecanoyl-L homoserine 764 

lactone (red) in complex with P. aeruginosa LasR 765 
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 775 

Fig. 6: Hydrogen bond plot of a) epicatechin, b) physcion, c) OHN, and d) auraptene in 776 

complex with P. aeruginosa LasR 777 
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 790 

Fig. 7: Plot of a) RMSD, b) RMSF c) Rg, and d) SASA of EEE-SarA complex (blue) and 791 

apo protein of S. aureus SarA (magenta). e) Hydrogen bond plot of EEE in complex with 792 

S. aureus SarA. 793 
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 808 

Fig. 8: Plot of MMPBSA analysis of LasR in complex with epicatechin (blue), and OHN 809 

(black).  810 
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 822 

Fig. 9: Plot of MMPBSA analysis of SarA in complex with EEE. 823 
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