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We consider a PH/M/c queue with multiple working vacations where the customers waiting in queue for service are impatient.The
working vacation policy is the one in which the servers serve at a lower rate during the vacation period rather than completely
ceasing the service. Customer’s impatience is due to its arrival during the period where all the servers are in working vacations and
the arriving customer has to join the queue. We formulate the system as a nonhomogeneous quasi-birth-death process and use
finite truncation method to find the stationary probability vector. Various performance measures like the average number of busy
servers in the system during a vacation as well as during a nonvacation period, server availability, blocking probability, and average
number of lost customers are given. Numerical examples are provided to illustrate the effects of various parameters and interarrival
distributions on system performance.

1. Introduction

In communication networks, multiple servers are used to
reduce the traffic congestion and improve the system per-
formance. Multiple services are also used in highly effi-
cient bandwidth-intensive applications. Different services
may require different channel capacities and capacity of a
channel depends upon the number of resources allocated
to it. To understand the network behavior and to make
intelligent decisions in their management, these systems can
be modelled as multiserver queueing systems with server
vacations. Levy and Yechiali [1] first discussed an M/M/c
queue with exponentially distributed vacations. Tian and Li
[2], Tian et al. [3], and Tian and Zhang [4] studied a variety
of vacation models with multiple servers. They established
the conditional stochastic decomposition properties on the
steady-state queue length and the waiting time when all the
servers are busy and obtained the stationary distributions
for queue length and waiting times. Tian and Zhang [5]
considered a two-threshold vacation policy in the context
of a multiserver queueing model M/M/c. A multiserver

queueing system with identical unreliable servers with PH-
distributed service times is considered by Yang and Alfa
[6]. Chakravarthy [7] studied an MAP/M/c queueing sys-
tem, in which a group of servers take a simultaneous PH
vacation.

The phenomenon of customer impatience is commonly
observed in queueing systems, where customers leave a
service system before receiving service due to the long
waiting time or due to uncertainty of receiving service.
Customer impatience or reneging represents loss in revenues
and customer goodwill to the service provider. The problem
of queues with impatient customers was first analyzed by
Palm [8]. A bibliography can be found in Gross et al.
[9]. Perel and Yechiali [10] considered a two-phase service
impatient model where the customers become impatient
if the server is in slow service phase. There are situations
where customer’s impatience is due to the absence of the
server, more precisely due to the server being on vacation,
and is independent of the customers in system. Altman and
Yechiali [11, 12] studied the customer impatience in a classical
vacation model and system with additional task, respectively.
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Economou and Kapodistria [13] considered an unreliable
queue where the customers leave the system at system failure
times.

Multiserver queues with impatience, however, have
attracted much attention in queueing literature possibly
because of explosive demands to efficiently design and
manage call or contact centres. Baccelli et al. [14] studied
the waiting time distribution in M/M/c queue with general
impatience bound on queueing times by constructing a
simple Markov process and also gave the waiting time
distribution in the M/G/1 queue with general impatience
on queueing times. Yechiali [15] considered an M/M/c
system which as a whole suffers occasionally a disastrous
breakdown, upon which all present customers (waiting and
served) are cleared from the system and lost. Stationary
distribution of a multiserver vacation queue with con-
stant impatient times is studied by Sakuma and Inoie [16].
Chen et al. [17] studied M/M/m/k queue with preemptive
resume and impatience of the prioritised customers and
derived the queue length distraction in stationary state
and performance measures using the method of matrix
analysis.

In communication systems, wavelength division multi-
plexing (WDM) is a method of transmitting packets from
different sources, over the same fiber optic link, to the
destination. A WDM network divides the available fiber
bandwidth into WDM channels, details in Ho and Woei [18]
and also inWang [19]. This division of bandwidth or channel
allocation is based on the capacities required for various
services. For a high performance system, WDM channel
allocation should lead to optimized resource utilization in a
given network, which is physically feasible and cost-effective.
A reconfigurable WDM system can be modelled as a queue
with working vacations (WVs) as explained in Goswami and
Selvaraju [20]. This vacation cannot be put in a classical
vacation framework because here, unless the system is empty,
the service does not cease completely. Servi and Finn [21]
were the first to model such a WDM network into a WV
queueing model. Liu et al. [22] studied the M/M/1/WV
model with multiple WVs whereas the single WV model is
analyzed by Tian et al. [23]. The same model is studied by
Xu et al. [24] and also by Xiu et al. [25] with single WV
and setup times. Wang et al. [26] presented the M/M/1/WV
model using Newton’s method to compute the steady-state
probabilities and system performance measures. Wu and
Takagi [27] extended Servi and Finn’s work to M/G/1/WV
model with generally distributed service times and vacation
duration times. Baba [28] considered the GI/M/1/WV system
with general independent arrival process where the distri-
butions of the vacation duration times and service times
are exponential. Chen et al. [29, 30] proposed an N-policy
WV and a cyclic polling system for WDM taking the service
times as exponential and PH distribution, respectively. Lin
and Ke [31] considered a multiserver M/M/c queue and a
cost model is derived to determine the optimal values of
the number of servers and the WV rate simultaneously,
in order to minimize the total expected cost per unit
time.

Short distance networks, like local area networks (LANs),
mostly usemultimodeWDMlinks.Multimode link is a single
fiber link that supports many propagation paths or transverse
modes through it. Aronson et al. [32] explained how the
bandwidth of the fiber is multiplied by the number of paths
used by using WDM in multimode fiber. LAN over Internet
Protocol (IP) allows the forwarding of LAN packets over the
Internet or an intranet network. One of the most critical
performance measures in LAN over IP is the percentage
of packets that are transmitted within hard delay bound or
time constraint. If quality of service requirements is not met
within the time bound, end users may terminate the Internet
connections. A connection is terminated by pressing the stop
button, refreshing the connection, or following a different
link. This behavior can be termed the impatience of a user
in LANs. To study the effect of multiple servers and user
impatience on the performance in a WDM network, we con-
sider in this paper a multiserver model with asynchronous
multiple working vacation (AMWV) policy and impatient
customers. In an AMWV policy, the servers take vacations
individually and continue taking vacations till they do not
find any customer in the system. An M/M/1/WV impatient
model with single and multiple WV policies is studied by
Selvaraju andGoswami [33]. Analysis of a finite bufferM/M/2
working vacations queue with balking and reneging wherein
the servers operate under a triadic (0,Q,N,M) policy is
done recently by Laxmi and Jyothsna [34]. Lin and Ke
[31] presented a multiserver WV queue with exponential
interarrivals but none of these models represent systems with
nonexponential arrivals or state-dependent systems. To study
the role of arrival processes in a multiserver model having
impatient customers, we consider here the PHarrival process.
PH distribution is a general, nonexponential distribution
characterized by a Markov chain. Importance of considering
PH interarrivals is the fact that PH distribution is able to
capture the nonexponential effects on arrivals while infor-
mation flows in modern communication systems are rarely
exponential. PH distribution is able to capture the profound
effect of arrivals in system performance measures and makes
the mathematical model more convincing to fit a real world
scenario.

The paper is organized as follows. In Section 2, we
formulate the system as a three-dimensional continuous-
time Markov chain whose generator matrix is a level-
dependent quasi-birth-death (QBD) process. Section 3 gives
the finite truncation method used to find the station-
ary probability vector of the level-dependent process. The
various performance measures are listed in Section 4 and
in Section 5 the numerical illustrations of the system are
presented.

2. Model Description

We consider a PH/M/c queue with multiple WVs and impa-
tient customers. The interarrival times of customers follow a
PH distribution, PH(𝛼, 𝑇), of dimension 𝑛 and with arrival
rate 𝜆. A PH distribution denotes the distribution of time
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until absorption in a finite Markov chain whose transition
rate matrix is of type

𝑃 = [
𝑇 𝑇
0

0 0
] (1)

and 𝛼 is the initial probability vector satisfying 𝛼e
𝑛
= 1 and

𝑇
0
= −𝑇e

𝑛
, where e

𝑛
is the column vector of dimension 𝑛

with all the entries equal to one.Thematrix𝑇 is a nonsingular
square matrix with (𝑇)

𝑖𝑖
< 0, 1 ≤ 𝑖 ≤ 𝑛, and (𝑇)

𝑖𝑗
≥ 0,

1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛. The matrix 𝑇0 is a nonnegative, 𝑛-dimensional
column vector, grouping the absorption rates from any state
to the absorbing one. The matrix 𝑇0𝛼 gives the transition
fromone phase to another with an arrival of a customer to the
system.

The customers are served according to FCFS basis. An
arriving customer who finds all the 𝑐 servers busy has to
wait in queue; that is, when the number of customers in
the system is more than 𝑐, a queue begins to form. The
servers work independently of each other. The service times
of each server during the nonvacation period follow an
exponential distribution with rate 𝜇

𝑏
, denoted by Exp(𝜇

𝑏
). A

server goes to a WV as soon as it completes a service and
finds no customer to serve in the system. For each server,
the duration of WVs follows Exp(𝜃) distribution. During a
WV period of a server, if a customer arrives to that server,
it will serve the customer with Exp(𝜇V) distribution, where
𝜇V < 𝜇𝑏; that is, the customer will be served at a lower
service rate. When a server returns from its vacation, if it
finds at least one customer in queue waiting for service or
finds an ongoing service in that server, the server switches
its service rate from 𝜇V to 𝜇𝑏 and a nonvacation period starts.
Otherwise, if the server finds an empty queue, after return-
ing from one vacation, it immediately leaves for another
WV.

An arriving customer gets service immediately upon its
arrival, if it finds any of the 𝑐 servers empty. But if all the
servers are busy, the customer has to wait in a queue. A
waiting customer becomes impatient when it finds all the
servers serving at rate 𝜇V; that is, if the waiting customer finds
all the servers in their WV period, the customer activates an

impatient timer 𝑋. This impatient timer 𝑋 follows Exp(𝜉)
distribution and is independent of the number of customers
in the queue at thatmoment. If no server returns from itsWV
period by the time𝑋 expires, the customer leaves the system
and never returns. Otherwise, if any of the servers returns
from its vacation before the time 𝑋 expires, the customer
stops the timer and stays in the system until its service
is completed. Here, the customer’s impatience depends not
only on waiting time in a queue but also on the number of
servers that are inWVs.The interarrival times, service times,
vacation duration times, and the impatient times all are taken
to be mutually independent.

To model this system, we define a continuous-time
Markov chain:

Δ = {(𝑁
𝑡
, 𝑄
𝑡
, 𝐽
𝑡
) , 𝑡 ≥ 0} , (2)

where 𝑁
𝑡
denotes the total number of customers in the

system,𝑄
𝑡
denotes the number of busy servers in nonvacation

state, and 𝐽
𝑡
gives the phase of the arrival process. The state

space of this Markov chain is

𝐸 = {(𝑖, 𝑗, 𝑘) ; 0 ≤ 𝑖 < 𝑐, 𝑗 ≤ 𝑖, 1 ≤ 𝑘 ≤ 𝑛}

∪ {(𝑖, 𝑗, 𝑘) ; 𝑖 ≥ 𝑐, 0 ≤ 𝑗 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛} .

(3)

The lexicographical order of the states, that is, (0, 0,
1), . . . , (0, 0, 𝑛), (1, 0, 1), . . . , (1, 0, 𝑛), (1, 1, 1), . . . , (1, 1, 𝑛),
(2, 0, 1), . . . , (2, 0, 𝑛), (2, 1, 1), . . . , (2, 1, 𝑛), (2, 2, 1), . . . ,
(2, 2, 𝑛), . . ., (𝑐, 0, 1), . . . , (𝑐, 𝑐, 𝑛), (𝑐 + 1, 0, 1), . . . , (𝑐 +
1, 𝑐, 𝑛), . . ., gives the infinitesimal generator matrix of the
Markov chain as with

𝑄 =

(
(
(
(
(

(

𝐴
(0)

1
𝐴
(0)

0

𝐴
(1)

2
𝐴
(1)

1
𝐴
(1)

0

𝐴
(2)

2
𝐴
(2)

1
𝐴
(2)

0

𝐴
(3)

2
𝐴
(3)

1
𝐴
(3)

0

d d d

)
)
)
)
)

)

, (4)

where, for 1 ≤ 𝑖 < 𝑐,

𝐴
(𝑖)

2
=

[
[
[
[
[
[
[
[
[
[
[

[

𝑖𝜇V𝐼

(𝜇
𝑏
+ (𝑖 − 1) 𝜇V) 𝐼

(2𝜇
𝑏
+ (𝑖 − 2) 𝜇V) 𝐼

d

((𝑖 − 1) 𝜇
𝑏
+ 𝜇V) 𝐼

𝑖𝜇
𝑏
𝐼

]
]
]
]
]
]
]
]
]
]
]

](𝑖+1)𝑛×(𝑖+1)𝑛

(5)

and, for 0 ≤ 𝑖 < 𝑐,
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𝐴
(𝑖)

1
=

[
[
[
[
[
[
[

[

𝑇 − (𝑐𝜃 + 𝑖𝜇V) 𝐼 𝑐𝜃𝐼

𝑇 − ((𝑐 − 1) 𝜃 + 𝜇
𝑏
+ (𝑖 − 1) 𝜇V) 𝐼 (𝑐 − 1) 𝜃𝐼

d

𝑇 − 𝑖𝜇
𝑏
𝐼

]
]
]
]
]
]
]

](𝑖+1)𝑛×(𝑖+1)𝑛

,

𝐴
(𝑖)

0
=

[
[
[
[
[
[

[

𝑇
0
𝛼

𝑇
0
𝛼

d

𝑇
0
𝛼

]
]
]
]
]
]

](𝑖+1)𝑛×(𝑖+1)𝑛

.

(6)

For 𝑖 ≥ 𝑐,

𝐴
(𝑐+𝑙)

2
=

[
[
[
[
[
[
[
[
[
[

[

(𝑐𝜇V + 𝑙𝜉) 𝐼

(𝜇
𝑏
+ (𝑐 − 1) 𝜇V) 𝐼

(2𝜇
𝑏
+ (𝑐 − 2) 𝜇V) 𝐼

d

𝑐𝜇
𝑏
𝐼

]
]
]
]
]
]
]
]
]
]

](𝑐+1)𝑛×(𝑐+1)𝑛

,

𝐴
(𝑐+𝑙)

1
=

[
[
[
[
[
[
[

[

𝑇 − (𝑐 (𝜃 + 𝜇V) + 𝑙𝜉) 𝐼 𝑐𝜃𝐼

d d

𝑇 − (𝜃 + 𝜇V + (𝑐 − 1) 𝜇𝑏) 𝐼 𝜃𝐼

𝑇 − (𝑐𝜇
𝑏
) 𝐼

]
]
]
]
]
]
]

](𝑐+1)𝑛×(𝑐+1)𝑛

,

𝐴
(𝑐+𝑙)

0
=

[
[
[
[
[
[

[

𝑇
0
𝛼

𝑇
0
𝛼

d

𝑇
0
𝛼

]
]
]
]
]
]

](𝑐+1)𝑛×(𝑐+1)𝑛

.

(7)

The matrix 𝐼 is an identity matrix of dimension 𝑛. Here,
for 0 ≤ 𝑖 ≤ 𝑐 − 1, dimension of the matrices 𝐴(𝑖)

0
,

𝐴
(𝑖)

1
, and 𝐴(𝑖)

2
increases with the levels; and for 𝑖 ≥ 𝑐, the

matrices are of dimensions (𝑐 + 1)𝑛 × (𝑐 + 1)𝑛 each. It
can be observed that 𝑄 given above is the generator of a
nonhomogeneous QBD process, which we assume to be irre-
ducible, with levels denoting the number of customers in the
system.

3. Stationary Distribution

The queueing system under study is stable for 𝜌 = 𝜆/𝑐𝜇
𝑏
< 1

[28, 35].

Let 𝑥 be the stationary probability vector associated with
𝑄 satisfying

𝑥𝑄 = 0,

𝑥e = 1.
(8)

Aggregating terms depending on levels, we get 𝑥 =
[𝑥0 𝑥1 𝑥2 ⋅ ⋅ ⋅]. Further depending on number of busy
servers in nonvacation, we get, for 0 ≤ 𝑖 ≤ 𝑐 − 1, 𝑥

𝑖
=

[𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑖
], which are row (𝑖 +1)𝑛-vectors and, for 𝑖 ≥ 𝑐,

𝑥
𝑖
are row (𝑐+1)𝑛-vectors. Each𝑥

𝑖𝑗
vector is an 𝑛-dimensional

row vector, 𝑥
𝑖𝑗
= [𝑥
𝑖𝑗1
, . . . , 𝑥

𝑖𝑗𝑛
] for 𝑗 ≤ 𝑖, depending on the

phases of arrivals.
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In this model, the generator matrix 𝑄 is spatially non-
homogeneous and a closed-form analytical solution or a
direct algorithmic computation of the stationary probability
vector 𝑥 is quite difficult, if not impossible. For such level-
dependent QBDs (LDQBDs), the stationary vectors are usu-
ally approximated by using various numerical approximation
methods like finite truncation method (Artalejo et al. [36]
and Chakravarthy et al. [37]), generalized truncationmethod
(Falin [38] and Artalejo and Pozo [39]), truncation method
using LDQBD processes (Bright and Taylor [40] and Krish-
namoorthy et al. [41]), andmatrix-geometric approximations
(Neuts and Rao [42]).

Different methods have different levels of computable
efficiency but it is expected that whichever method is used,
the general behavior of the performance measures of a
system with a change in system parameters is not affected
by the method used. Since the finite truncation method is
comparatively tractable compared to the others, we choose
this method to derive the stationary distributions of the
nonhomogeneous QBD with the generator matrix given by
(4).

In the finite truncation method, the infinite generator
matrix is truncated at a finite level 𝐾. That is, the system
of equations given by 𝑥𝑄 = 0 and 𝑥e = 1 is truncated
at a sufficiently large value, say 𝐾, and the resulting finite
system is solved for the equilibrium probability vector. The
level 𝐾 is arbitrary but fixed and it is chosen such that
customer loss probability due to truncation is small. As for
higher dimension generator matrices, the level 𝐾 is difficult
to find analytically; a trial-and-error approach needs to be
adopted. An appropriate level, say 𝐾

𝑓
, is determined by

starting with a reasonable initial value for𝐾 and increasing it
progressively until an appropriately chosen cut-off criterion
is met. Stationary probability vector 𝑥 can then be evaluated
by an iterative method, such as that by Gauss-Seidel [43],
which takes advantage of the sparsity and structure of 𝑄.
For each new value of 𝐾, the previously computed vector
𝑥 is used as the initial solution to reduce the number of
iterations required [42].Thus, the numerical implementation
of the approximation based on finite truncation implies the
determination of an appropriate cut-off level𝐾

𝑓
. Here, we use

the algorithm given by Artalejo et al. [36], the steps of which
are described below.

For𝐾 as the cut-off point, the modified generator will be

�̂� (𝐾)

=

(
(
(
(
(
(
(
(
(

(

𝐴
(0)

1
𝐴
(0)

0

𝐴
(1)

2
𝐴
(1)

1
𝐴
(1)

0

𝐴
(2)

2
𝐴
(2)

1
𝐴
(2)

0

d d d

𝐴
(𝐾−1)

2
𝐴
(𝐾−1)

1
𝐴
(𝐾−1)

0

𝐴
(𝐾)

2
𝜙
(𝐾)

1

)
)
)
)
)
)
)
)
)

)

,

(9)

where 𝜙(𝐾)
1
= 𝐴
(𝐾)

1
+𝐴
(𝐾)

0
. Let 𝜋 be the stationary distribution

of �̂�(𝐾) which satisfies

𝜋�̂� (𝐾) = 0,

𝜋e = 1,
(10)

where 𝜋 = [𝜋(0), 𝜋(1), . . . , 𝜋(𝐾)], by aggregating terms of the
QBD �̂�(𝐾), depending on levels. Define 𝑧 = [𝑧

0
(𝐾), 𝑧

1
(𝐾)]

with

𝑧
0
(𝐾) = [𝜋 (0) , 𝜋 (1) , . . . , 𝜋 (𝐾 − 1)] ,

𝑧
1
(𝐾) = 𝜋 (𝐾) .

(11)

And 𝑧(𝐾, 𝑖) = 𝜋(𝑖), 0 ≤ 𝑖 ≤ 𝐾. Here, 𝑧
0
(𝐾) is a row vector

of dimension𝑚 = 𝑛𝑐(𝑐 + 1)/2 + 𝑛(𝑐 + 1)(𝐾 − 𝑐) and 𝑧
1
(𝐾) is

a row vector with dimension 𝑛(𝑐 + 1). By partitioning �̂�(𝐾)
according to 𝑧

0
(𝐾) and 𝑧

1
(𝐾), we have

(𝑧
0
(𝐾) , 𝑧

1
(𝐾)) (

𝐵
00
(𝐾) 𝐵

01
(𝐾)

𝐵
10 (𝐾) 𝐵11 (𝐾)

) = (0
𝑚
, 0
𝑛(𝑐+1)
) , (12)

where 𝐵
00
(𝐾) is the matrix obtained by deleting the last

column matrices and last row matrices from �̂�(𝐾), 𝐵
01
(𝐾) =

trans[0, 0, . . . , 0, 𝐴(𝐾−1)
0
], 𝐵
10
(𝐾) = [0, 0, . . . , 0, 𝐴

(𝐾)

2
], and

𝐵
11
(𝐾) = 𝜙

(𝐾)

1
. These are block structured matrices with

(𝐾 × 𝐾), (𝐾 × 1), (1 × 𝐾), and (1 × 1) blocks, respectively.
0
𝑚
and 0
𝑛(𝑐+1)

are row vectors of dimensions 𝑚 and 𝑛(𝑐 + 1),
respectively, with all entries equal to zero. From (12), we find
that

𝑧
1 (𝐾) 𝐵10 (𝐾) 𝐵

−1

00
(𝐾) = −𝑧0 (𝐾) , (13)

𝑧
1
(𝐾) [𝐵

11
(𝐾) − 𝐵

10
(𝐾) 𝐵
−1

00
(𝐾) 𝐵
01
(𝐾)] = 0

𝑛(𝑐+1)
. (14)

Further, we can have

𝐵
00
(𝐾) = (

𝐵
00
(𝐾 − 1) 𝐵

01
(𝐾 − 1)

𝐶
0
(𝐾 − 1) 𝐶

1
(𝐾 − 1)

) , (15)

where

𝐶
0 (𝐾 − 1) = [0𝑛, 02𝑛, . . . , 0, 𝐴

(𝐾−1)

2
] ,

𝐶
1
(𝐾 − 1) = −𝐴

(𝐾−1)

1
.

(16)

The inverse of matrix 𝐵
00
(𝐾) can be determined, using

methods given in Hunter [44] as

𝐵
−1

00
(𝐾) = (

𝐷
00 (𝐾) 𝐷01 (𝐾)

𝐷
10
(𝐾) 𝐷

11
(𝐾)
) , (17)
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6 Advances in Operations Research

where

𝐷
00 (𝐾) = [𝐵00 (𝐾 − 1)

− 𝐵
10
(𝐾 − 1) 𝐶

−1

1
(𝐾 − 1) 𝐶

0
(𝐾 − 1)]

−1

,

𝐷
10
(𝐾) = −𝐶

−1

1
(𝐾 − 1) 𝐶

0
(𝐾 − 1)𝐷

00
(𝐾) ,

𝐷
11 (𝐾) = [𝐶1 (𝐾 − 1)

− 𝐶
0
(𝐾 − 1) 𝐵

−1

00
(𝐾 − 1) 𝐵

01
(𝐾 − 1)]

−1

,

𝐷
01
(𝐾) = −𝐵

−1

00
(𝐾 − 1) 𝐵

01
(𝐾 − 1)𝐷

11
(𝐾) .

(18)

As the dimensions of the matrices increase in each iteration,
the calculations to compute the above matrices involve
multiplications and inversion of increasingly large matrices.
If we exploit the structure of matrices in the above equations,
we notice that the sparse blocks of 𝐵

01
(𝐾 − 1) and C

0
(𝐾 − 1)

simplify the calculations. 𝐵
01
(𝐾 − 1) has only one nonzero

square matrix 𝐴(𝐾−1)
0

of dimension 𝑛(𝑐 + 1) in the last rows
and 𝐶

0
(𝐾−1) has one𝐴(𝐾−1)

2
in the last columns. So 𝐵−1

00
(𝐾−

1)𝐵
01
(𝐾 − 1) can be written in simplified form as [𝐷

10
(𝐾 −

1), 𝐷
11
(𝐾−1)]𝐴

(𝐾−1)

0
. Further,𝐶

0
(𝐾−1)𝐵

−1

00
(𝐾−1)𝐵

01
(𝐾−1)

becomes 𝐴(𝐾−1)
2
𝐷
11
(𝐾 − 1)𝐴

(𝐾−1)

0
. These substitutions make

the remaining operations in 𝐷
01
(𝐾) and 𝐷

11
(𝐾) simple, as

they involve multiplications and inversion of only known
simple matrices of size 𝑛(𝑐 + 1). The key step is to compute
the matrix 𝐷

00
(𝐾). The inverse in the definition of 𝐷

00
(𝐾)

can be computed by using small-rank adjustment; that is, if
we have the inverse of a matrix 𝐴 and we want the inverse of
its adjustment 𝐵 = 𝐴+𝑋𝑊𝑌, where𝑊 is a matrix of smaller
order than 𝐴, then we have

𝐵
−1
= [𝐼 − 𝐴

−1
𝑋(𝑊

−1
+ 𝑌𝐴
−1
𝑋)
−1

𝑌]𝐴
−1
. (19)

Here, we have 𝐴 = 𝐵
00
(𝐾 − 1), 𝑋 = −𝐵

01
(𝐾 − 1), 𝑊−1 =

𝐶
−1

1
(𝐾 − 1), and 𝑌 = 𝐶

0
(𝐾 − 1). Thus, we obtain that

𝐷
00
(𝐾) = 𝐵

−1

= [𝐼 − 𝐷
01 (𝐾)𝐶0 (𝐾 − 1)] 𝐵

−1

00
(𝐾 − 1) ,

(20)

so𝐷
00
is obtained bymultiplications and additions of already

computed matrices. Finally, we have

𝐷
11
(𝐾)

= [𝐶
1
(𝐾 − 1) − 𝐴

(𝐾−1)

2
𝐷
11
(𝐾 − 1)𝐴

(𝐾−1)

0
]
−1

,

𝐷
01
(𝐾)

= − [𝐷
10
(𝐾 − 1) , 𝐷

11
(𝐾 − 1)] 𝐴

(𝐾−1)

0
𝐷
11
(𝐾) ,

(1) 𝐾 := 𝑐 + 1;
(2) compute 𝐵−1

00
(𝐾)

(3) compute 𝑧
1
(𝐾) by (14) and (22)

(4) compute 𝑧
0
(𝐾) by (13)

(5) store 𝐵
00
(𝐾), 𝐵

−1

00
(𝐾), 𝐵

01
(𝐾) and 𝐵

10
(𝐾)

(6) 𝐾 := 𝐾 + 1
(7) while 𝐾 ≤ 𝐾

𝑓

(8) do
(9) compute 𝐵−1

00
(𝐾) by (17)

(10) compute 𝑧
1
(𝐾) by (14) and (22)

(11) compute 𝑧
0
(𝐾) by (13)

(12) update 𝐵
00
(𝐾), 𝐵−1

00
(𝐾), 𝐵

01
(𝐾) and 𝐵

10
(𝐾)

(13) if max
0≤𝑖≤𝐾
‖𝑧(𝐾, 𝑖) − 𝑧(𝐾 − 1, 𝑖)‖

∞
< 𝜖

(14) then 𝐾
𝑓
= 𝐾

(15) break
(16) else 𝐾 := 𝐾 + 1

Algorithm 1: Finite truncation method.

𝐷
00
(𝐾) = [𝐼 − 𝐷

01
(𝐾)𝐶

0
(𝐾 − 1)] 𝐵

−1

00
(𝐾 − 1) ,

𝐷
10 (𝐾) = −𝐶

−1

1
(𝐾 − 1) 𝐶0 (𝐾 − 1)𝐷00 (𝐾) .

(21)

So, the computation of vector 𝑧
1
(𝐾) is reduced to solving

system (14) subject to the normalization condition

𝜋 (𝐾) [e𝑛(𝑐+1) − 𝐵10 (𝐾) 𝐵
−1

00
(𝐾) e𝑛𝐾(𝑐+1)] = 1, (22)

where e
𝑛(𝑐+1)

and 𝑒
𝑛𝐾(𝑐+1)

are column vectors of dimensions
𝑛(𝑐 + 1) and 𝑛𝐾(𝑐 + 1), respectively, with all entries equal to
one. Finally, the vector 𝑧

0
(𝐾) can be solved substituting 𝑧

1
(𝐾)

in (13). To get the cut-off value, successive increments of 𝐾
are made, starting from 𝐾 = 𝑐 + 1, and we stop at the point
𝐾 = 𝐾

𝑓
when

max
0≤𝑖≤𝐾𝑓


𝑧 (𝐾
𝑓
, 𝑖) − 𝑧 (𝐾

𝑓
− 1, 𝑖)
∞
< 𝜖, (23)

where 𝜖 is an infinitesimal quantity and ‖ ⋅ ‖
∞

is the infinity
norm.The whole method of computing the stationary distri-
bution using the finite truncation method is summarized in
Algorithm 1.

4. Performance Measures

The performance measures give the qualitative behavior of
the model under study. In a multiserver queueing model,
the efficiency of the model depends upon the mean num-
ber of busy servers, the mean queue length, the blocking
probability, and the mean number of customers lost due to
impatience.

In our model, the server serves even during its vacation.
Therefore, the number of busy servers will be 𝑖, 0 ≤ 𝑖 ≤ 𝑐, if
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Advances in Operations Research 7

there are 𝑖 customers in the system and when the system has
more than 𝑐 customers, all the servers will be busy serving
customers either in WV or in nonvacation with rates 𝜇V
and 𝜇

𝑏
, respectively. The mean number of servers busy in

nonvacation is

𝐵
𝑠
=

𝑐−1

∑

𝑖=0

𝑖

∑

𝑗=1

𝑗𝑥
𝑖𝑗
e
𝑛
+

∞

∑

𝑖=𝑐

𝑐

∑

𝑗=1

𝑗𝑥
𝑖𝑗
e
𝑛
. (24)

The mean queue length of the system under study is

𝐿 = 𝐸 (𝑁) =

𝑐−1

∑

𝑖=1

𝑖𝑥
𝑖
e
(𝑖+1)𝑛
+

∞

∑

𝑖=𝑐

𝑖𝑥
𝑖
e
(𝑐+1)𝑛
. (25)

Availability of the server, 𝑅, is the probability that an arrival
finds a server free. It can happen only if the number of total
customers in the system in less than 𝑐 and is given by

𝑅 = 𝑃 (𝑁 < 𝑐) =

𝑐−1

∑

𝑖=0

𝑥
𝑖
e
(𝑖+1)𝑛
. (26)

The blocking probability of a multiserver queue is the proba-
bility of refraining a customer from service. In our model, a
customer is kept waiting in the queue for service when all the
servers are in busy state, either inWV or in nonvacation, that
is, when the number of customers in the system is more than
𝑐:

𝐵
𝑝
= 𝑃 (𝑁 > 𝑐) = 1 −

𝑐−1

∑

𝑖=0

𝑥
𝑖
e
(𝑖+1)𝑛
= 1 − 𝑅. (27)

The mean number of customers lost by the system is the
average of customers who have abandoned the system as a
result of waiting in a queue (𝑖 > 𝑐) with all servers in WV
(𝑗 = 0); therefore,

𝑁
𝑐
=

∞

∑

𝑖=𝑐+1

𝑖𝑥
𝑖0
e
𝑛
. (28)

5. Numerical Examples

Let us illustrate the behavior of our PH/M/c/WV queue
with the help of some numerical examples. Algorithm 1 is
coded in MATLAB©. The algorithm computes the stationary
distribution and its main objective is to find the termination
criteria of the level 𝐾

𝑓
. We start with an initial value 𝐾 ≥

𝑐 + 1 and progressively increase the value of𝐾 until a change
in the stationary probability 𝑧 is sufficiently small due to
increased 𝐾. We choose the smallest value of 𝐾

𝑓
such that

max
0≤𝑖≤𝐾𝑓
‖𝑧(𝐾
𝑓
, 𝑖) − 𝑧(𝐾

𝑓
− 1, 𝑖)‖

∞
< 𝜖, for 𝜖 = 10−6. With

this selection criterion, we find the values of 𝐾
𝑓
, the mean

queue lengths, and the blocking probabilities for various sets
of parameter values and for different arrival processes. Here,
we take some examples (from Chakravarthy et al. [37]) of

well known distributions and give their PH representations
below:

(1) Exponential (Exp):

𝑇 = −1,

𝑇
0
= 1,

𝛼 = 1.

(29)

(2) Erlang-2 (Erl):

𝑇 = (

−2 2

0 −2
) ,

𝑇
0
= (

0

2
) ,

𝛼 = [1 0] .

(30)

(3) Hyperexponential-2 (Hyp):

𝑇 = (

−1.9 0

0 −0.19
) ,

𝑇
0
= (

1.9

0.19
) ,

𝛼 = [0.9 0.1] .

(31)

All these PH distributions have the same mean arrival rate
𝜆 = 1. The standard deviations of the three distributions are
1.0, 0.70711, and 2.24472, respectively.The service rate during
nonvacation period, 𝜇

𝑏
, is calculated for specific values of

𝜌 using the formula 𝜌 = 𝜆/𝑐𝜇
𝑏
. We have chosen 𝜌 =

0.1, 0.5, and 0.9 for given values of 𝑐 (𝑐 = 1, 3, 6). The
effect of parameters on system performance is illustrated
here. We will mention the models having interarrivals as
exponential, Erlang, and hyperexponentially distributed as
exponential model, Erlang model, and hyperexponential
model, respectively.

5.1. Effect on Cut-Off Value 𝐾
𝑓
. We have illustrated here the

effect of the parameters, namely, traffic intensity (𝜌), rate of
vacation duration (𝜃), service rate during WV (𝜇V), and the
type of arrival process, on the truncation cut-off value 𝐾

𝑓
.

For three different values of 𝑐 (𝑐 = 1, 3, 6), different tables
are presented. The impatient rate is fixed at 𝜉 = 0.1 for the
tables. We have the following observations from Tables 1, 2,
and 3:

(1) The cut-off value increases with the increase in the
variance of the distribution of the interarrival times.
For Erlang model, the termination is the fastest
whereas for the hyperexponential one it is the slowest.
This behavior seems to be the same for all sets of
parameter values and for all 𝑐.
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8 Advances in Operations Research

Table 1: Multiserver model with 𝑐 = 1.

𝜌 𝜃 𝜇V
𝐾
𝑓

𝐿 𝐵
𝑝

Erl Exp Hyp Erl Exp Hyp Erl Exp Hyp

0.1

0.1

0.0 25 28 36 6.4229 6.4127 6.3354 0.9354 0.9143 0.7955
3.0 10 13 18 1.3951 1.4544 1.5802 0.3211 0.3173 0.3088
6.0 7 9 13 1.1771 1.1963 1.2238 0.1652 0.1647 0.1639
9.0 6 8 11 1.1149 1.1244 1.1358 0.1109 0.1108 0.1107

1

0.0 14 16 22 2.0525 2.0533 2.0481 0.6062 0.5479 0.4325
3.0 8 11 15 1.3040 1.3342 1.3793 0.2650 0.2562 0.2421
6.0 6 8 12 1.1656 1.1811 1.2011 0.1561 0.1545 0.1524
9.0 6 7 11 1.1137 1.1229 1.1337 0.1099 0.1097 0.1094

100

0.0 5 6 10 1.1131 1.1215 1.1305 0.1097 0.1089 0.1082
3.0 5 6 10 1.1099 1.1184 1.1273 0.1066 0.1061 0.1056
6.0 5 6 10 1.1068 1.1153 1.1243 0.1037 0.1034 0.1031
9.0 5 6 10 1.1040 1.1124 1.1214 0.1009 0.1008 0.1008

0.5

0.1

0.0 25 28 42 6.4099 6.5109 6.9481 0.9579 0.9412 0.8236
0.5 21 25 41 4.4283 4.5761 5.2829 0.9062 0.8788 0.7457
1.0 17 21 40 2.9028 3.1115 3.9708 0.7716 0.7451 0.6520
1.5 15 20 38 2.1227 2.3112 3.0542 0.6121 0.5987 0.5579

1

0.0 17 19 38 2.7191 2.8952 3.6542 0.7863 0.7442 0.6270
0.5 16 21 38 2.3956 2.5839 3.3851 0.7113 0.6784 0.5949
1.0 16 21 38 2.1386 2.3326 3.1440 0.6331 0.6121 0.5616
1.5 15 20 38 1.9441 2.1339 2.9316 0.5605 0.5505 0.5280

100

0.0 14 18 37 1.8203 2.0117 2.8092 0.5061 0.5049 0.5027
0.5 14 20 37 1.8178 2.0080 2.8066 0.5046 0.5037 0.5021
1.0 15 20 37 1.8146 2.0055 2.8041 0.5030 0.5025 0.5014
1.5 15 20 37 1.8121 2.0030 2.8016 0.5015 0.5012 0.5007

0.9

0.1

0.0 74 99 246 11.2890 13.2254 28.5672 0.9893 0.9846 0.9509
0.3 73 98 253 10.0678 11.9600 27.1965 0.9805 0.9735 0.9350
0.6 71 97 260 8.7709 10.6206 25.7831 0.9593 0.9495 0.9139
0.9 75 102 265 7.4716 9.2882 24.3478 0.9142 0.9057 0.8880

1

0.0 73 96 231 8.7160 10.8465 27.2102 0.9574 0.9479 0.9187
0.3 72 96 233 8.4580 10.5880 26.9545 0.9445 0.9361 0.9135
0.6 72 96 234 8.2028 10.3341 26.7009 0.9289 0.9228 0.9080
0.9 71 95 235 7.9573 10.0868 26.4490 0.9111 0.9080 0.9022

100

0.0 81 110 265 7.8679 10.0268 26.8945 0.9013 0.9010 0.9004
0.3 81 110 265 7.8651 10.0240 26.8905 0.9010 0.9007 0.9003
0.6 81 110 265 7.8623 10.0213 26.8865 0.9006 0.9005 0.9002
0.9 81 110 265 7.8596 10.0185 26.8825 0.9003 0.9002 0.9001

(2) For a particular arrival process when the traffic load
is small, the value of 𝐾

𝑓
decreases with increase in

𝜇V and also with the increase in 𝜃. But for high 𝜌 (>
0.5) and high 𝜃, it shows the reverse property for all
arrival processes and for any number of servers 𝑐; that
is, when the system load is heavy and the system has
small vacation duration, the cut-off value seems to be
high for all types of arrival processes and any number
of servers.

(3) When the vacation duration rate 𝜃 is too high (=100),
𝐾
𝑓
value remains unaffected by vacation-service rate
𝜇V for any number of servers.

These observations show that the cut-off value depends on
the system parameters and also on the arrival process but
becomes independent of vacation-service rates when we have
systems with small vacation duration.
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Advances in Operations Research 9

Table 2: Multiserver model with 𝑐 = 3.

𝜌 𝜃 𝜇V
𝐾
𝑓

𝐿 𝐵
𝑝

Erl Exp Hyp Erl Exp Hyp Erl Exp Hyp

0.1

0.1

0.0 22 25 33 4.1401 4.1552 4.1155 0.4953 0.4909 0.4452
1.0 10 13 18 1.8312 1.8449 1.8849 0.0376 0.0606 0.1064
2.0 8 10 13 1.4721 1.4743 1.4805 0.0050 0.0133 0.0294
3.0 7 8 11 1.3301 1.3307 1.3326 0.0013 0.0049 0.0117

1

0.0 9 12 16 1.6336 1.6535 1.6721 0.0203 0.0421 0.0730
1.0 7 10 13 1.4723 1.4792 1.4875 0.0056 0.0163 0.0343
2.0 7 9 12 1.3787 1.3811 1.3847 0.0022 0.0078 0.0181
3.0 6 8 11 1.3165 1.3172 1.3189 0.0011 0.0044 0.0107

100

0.0 6 7 11 1.3037 1.3051 1.3062 0.0009 0.0039 0.0096
1.0 6 7 11 1.3026 1.3039 1.3049 0.0009 0.0039 0.0095
2.0 6 7 11 1.3015 1.3027 1.3036 0.0009 0.0038 0.0093
3.0 6 7 11 1.3005 1.3016 1.3023 0.0009 0.0037 0.0092

0.5

0.1

0.0 36 41 58 6.1463 6.5540 8.1834 0.7544 0.7535 0.7094
0.2 26 30 48 4.4310 4.7592 6.1809 0.5820 0.5952 0.6062
0.4 20 24 43 3.3472 3.5687 4.6449 0.3792 0.4116 0.4878
0.6 16 20 39 2.7521 2.8807 3.5933 0.2308 0.2694 0.3736

1

0.0 17 19 37 3.1041 3.2843 4.0155 0.3311 0.3663 0.4414
0.2 16 19 37 2.9373 3.0968 3.8141 0.2832 0.3217 0.4116
0.4 17 21 37 2.7875 2.9234 3.6269 0.2421 0.2821 0.3825
0.6 16 21 37 2.6620 2.7814 3.4534 0.2074 0.2473 0.3544

100

0.0 16 19 37 2.6304 2.7513 3.4302 0.1989 0.2385 0.3468
0.2 16 21 37 2.6286 2.7437 3.4280 0.1984 0.2380 0.3463
0.4 16 21 37 2.6267 2.7418 3.4257 0.1978 0.2375 0.3459
0.6 16 21 37 2.6249 2.7399 3.4234 0.1973 0.2370 0.3455

0.9

0.1

0.0 78 100 224 14.0668 16.3843 33.6740 0.9618 0.9582 0.9403
0.1 75 98 224 12.7466 14.9913 31.9614 0.9424 0.9390 0.9251
0.2 73 95 229 11.3801 13.5544 30.1618 0.9089 0.9077 0.9052
0.3 71 93 234 9.9871 12.0651 28.2970 0.8541 0.8593 0.8796

1

0.0 76 101 239 9.7276 11.7783 28.3667 0.8612 0.8643 0.8806
0.1 76 100 238 9.5526 11.6045 28.1630 0.8466 0.8523 0.8758
0.2 75 100 237 9.3873 11.4217 27.9598 0.8312 0.8397 0.8708
0.3 75 99 237 9.2075 11.2421 27.7421 0.8149 0.8265 0.8656

100

0.0 82 111 269 9.1219 11.1422 29.3701 0.8041 0.8176 0.8622
0.1 82 111 269 9.1194 11.1398 29.3614 0.8038 0.8175 0.8621
0.2 82 111 269 9.1169 11.1375 29.3527 0.8036 0.8173 0.8621
0.3 82 111 269 9.1144 11.1351 29.3440 0.8033 0.8171 0.8620

5.2. Effect on Mean Queue Length

(1) The mean queue length of the system depends upon
the arrival process. Tables 1, 2, and 3 show that systems
with interarrival distributions of high variance have
higher number of customers in the queue for any
number of servers.We have fixed the impatient rate at
𝜉 = 0.1. For 𝑐 = 1, 3, 6 with 𝜌 = 0.5, we have Figures
1, 2, and 3, respectively, and with 𝜌 = 0.9, we have

Figures 4, 5, and 6, where the changes in mean queue
lengths are given for increasing vacation-service rates.
A hyperexponential model always has the highest
mean queue length compared to the corresponding
Erlang and exponential models, irrespective of the
number of servers.

(2) When the traffic load is heavy, 𝜌 = 0.9, increase
in vacation-service rate does not affect the mean
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Table 3: Multiserver model with 𝑐 = 6.

𝜌 𝜃 𝜇V
𝐾
𝑓

𝐿 𝐵
𝑝

Erl Exp Hyp Erl Exp Hyp Erl Exp Hyp

0.1

0.1

0.0 20 23 32 3.2118 3.2976 3.4094 0.0679 0.0887 0.1405
0.5 11 13 18 2.1893 2.2065 2.2152 0.0008 0.0034 0.0159
1.0 9 11 14 1.8365 1.8407 1.8401 0.0000 0.0003 0.0024
1.5 8 9 12 1.6458 1.6464 1.6462 0.0000 0.0001 0.0005

1

0.0 8 11 15 1.7766 1.7958 1.8184 0.0000 0.0005 0.0035
0.5 8 10 14 1.7120 1.7219 1.7334 0.0000 0.0002 0.0016
1.0 8 9 13 1.6587 1.6631 1.6680 0.0000 0.0001 0.0008
1.5 8 9 12 1.6136 1.6145 1.6155 0.0000 0.0000 0.0004

100

0.0 8 8 12 1.6022 1.6050 1.6039 0.0000 0.0000 0.0004
0.5 8 8 12 1.6016 1.6041 1.6028 0.0000 0.0000 0.0004
1.0 8 8 12 1.6009 1.6032 1.6016 0.0000 0.0000 0.0004
1.5 8 8 12 1.6002 1.6024 1.6005 0.0000 0.0000 0.0004

0.5

0.1

0.0 30 34 52 6.3770 6.8052 8.4877 0.4072 0.4526 0.5456
0.1 24 30 46 5.3485 5.6091 6.9287 0.2546 0.3073 0.4411
0.2 21 25 41 4.6431 4.8028 5.7143 0.1445 0.1924 0.3376
0.3 18 22 39 4.1697 4.2487 4.8192 0.0797 0.1170 0.2476

1

0.0 18 20 39 4.5180 4.6593 5.1256 0.1208 0.1617 0.2889
0.1 18 20 39 4.3618 4.4869 4.9560 0.1007 0.1399 0.2679
0.2 19 23 38 4.2119 4.2803 4.8001 0.0837 0.1208 0.2477
0.3 18 22 38 4.0862 4.1494 4.6449 0.0696 0.1042 0.2284

100

0.0 17 20 38 4.0659 4.1500 4.6956 0.0662 0.1001 0.2233
0.1 17 20 38 4.0633 4.1474 4.6923 0.0659 0.0998 0.2230
0.2 18 23 38 4.0514 4.1099 4.6889 0.0657 0.0995 0.2226
0.3 18 23 38 4.0489 4.1074 4.6856 0.0655 0.0993 0.2223

0.9

0.1

0.00 78 101 229 15.1572 17.3703 35.4516 0.9045 0.9054 0.9082
0.05 76 99 227 14.2268 16.3514 34.0044 0.8719 0.8759 0.8903
0.10 75 98 225 13.1999 15.2452 32.4807 0.8265 0.8360 0.8684
0.15 73 96 222 12.1491 14.0835 30.9017 0.7663 0.7840 0.8418

1

0.00 79 105 246 12.0928 13.9233 31.2097 0.7748 0.7881 0.8391
0.05 79 104 245 11.9039 13.7614 30.9647 0.7595 0.7758 0.8343
0.10 78 103 245 11.7512 13.5946 30.6805 0.7436 0.7629 0.8292
0.15 78 103 244 11.5535 13.4025 30.4553 0.7270 0.7496 0.8241

100

0.00 84 114 272 11.5312 13.3305 35.6288 0.7160 0.7407 0.8207
0.05 84 114 272 11.5273 13.3271 35.6049 0.7157 0.7405 0.8206
0.10 84 114 272 11.5235 13.3237 35.5810 0.7155 0.7403 0.8205
0.15 84 113 272 11.5196 13.3446 35.5572 0.7152 0.7401 0.8204

queue lengths, regardless of the arrival process or the
number of servers (Figures 4, 5, and 6).

(3) For 𝜌 = 0.1 and 𝑐 = 1, 3, 6, we plot Figures 7, 8, and
9, respectively. Here, the hyperexponential model has
the least queue length compared to the corresponding
Erlang and exponential models. For 𝑐 = 6, the
queue lengths are the same and all of them are shown

in Figure 9. Also, it can be seen that, for increased
vacation-service rates, arrival processes do not have
much influence on mean queue lengths.

(4) The impatient rate 𝜉 affects the queue lengths sig-
nificantly, especially when 𝜌 = 0.1. In Figures
10, 11, and 12, the change in queue lengths with
the increase in impatient rate is shown. When the
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Figure 1: Mean queue length versus vacation-service rate with 𝜌 =
0.5, 𝜉 = 0.1, 𝜃 = 0.1, and 𝑐 = 1.
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Figure 2: Mean queue length versus vacation-service rate with 𝜌 =
0.5, 𝜉 = 0.1, 𝜃 = 0.1, and 𝑐 = 3.

impatient rate is small, the mean queue length for
Erlang model becomes minimum. As the impatient
rate increases, it shows the reverse behavior.The point
of inflection depends upon the service rate 𝜇V. But the
impatient rate does not have much effect on queue
lengths when the arrival process is Erlang, whereas
for hyperexponential model, the mean queue length
decreases significantly with the increase in impatient
rate.

Therefore, systems with hyperexponential arrivals have the
longest queues compared to corresponding Erlang or expo-
nential arrivals. For light loaded systems (𝜌 = 0.1) and
highly impatient customers (1/𝜉 < 10), hyperexponential
arrivals give theminimumqueue lengths.When the customer
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Figure 3: Mean queue length versus vacation-service rate with 𝜌 =
0.5, 𝜉 = 0.1, 𝜃 = 0.1, and 𝑐 = 6.
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Figure 4: Mean queue length versus vacation-service rate with 𝜌 =
0.9, 𝜉 = 1, 𝜃 = 1, and 𝑐 = 1.

impatient rates are small, the system behavior depends on the
vacation-service rates.

5.3. Effect on Blocking Probability. From the tables and the
graphs plotted for blocking probability, we have seen the
following properties for the models under study:

(1) Figure 13 gives that for a single-server system the
blocking probability of a hyperexponential model is
minimum and that for Erlang is maximum while
𝜃 = 1, 𝜉 = 1, and 𝜌 = 0.9. This behavior is
also observed in multiserver models when 𝜃 is too
small. For higher values of 𝜃, multiserver models
follow the reverse nature; that is, Erlang model gives
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Figure 5: Mean queue length versus vacation-service rate with 𝜌 =
0.9, 𝜉 = 1, 𝜃 = 1, and 𝑐 = 3.
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Figure 6: Mean queue length versus vacation-service rate with 𝜌 =
0.9, 𝜉 = 1, 𝜃 = 1, and 𝑐 = 6.

theminimumqueue length and the hyperexponential
one gives themaximumof those three different arrival
models. That is, the chance of blocking a customer
with Poisson arrival in a single-server as well as in
a multiserver queue is always sandwiched between
those with Erlang and hyperexponential arrivals.

(2) When we have a single-server Erlang model, the
blocking probabilities seem to reduce up to 6% with
an increased rate of service during vacation. Because
of a single-server queue, the server rarely goes to
vacation (as the systems are rarely empty) and the
customers are served at a higher rate most of the
times. And even when the system goes to vacation,
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Figure 7: Mean queue length versus vacation-service rate with 𝜌 =
0.1, 𝜉 = 10, 𝜃 = 0.1, and 𝑐 = 1.
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Figure 8: Mean queue length versus vacation-service rate with 𝜌 =
0.1, 𝜉 = 10, 𝜃 = 0.1, and 𝑐 = 3.

because of the single-server queue, the queue started
to form rapidly making the customers impatient
and leave the system more often than a multiserver
model. These contribute significantly to dropping the
blocking probability in a single-server queue as seen
in the plot.

(3) Figures 14 and 15 show that the hyperexponential
model is not much affected by the vacation-service
rate, whereas the Erlang model can reduce the block-
ing probability by up to 4% for increased vacation-
service rates.
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Figure 9: Mean queue length versus vacation-service rate with 𝜌 =
0.1, 𝜉 = 10, 𝜃 = 0.1, and 𝑐 = 6.
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Figure 10: Mean queue length versus impatient rate with 𝜌 = 0.1,
𝜇V = 0.5, and 𝑐 = 1.

A model with 𝑐 = 1 and Erlang-2 arrival process has the
maximum chance to make a customer wait in queue com-
pared to exponential and hyperexponential arrivals, but as
the number of servers is increased, hyperexponential arrival
model has the highest blocking probability. The exponential
arrival model always remains in between these two.

5.4. Average Number of Servers Busy in Nonvacation. The
mean number of servers that are in working status during
nonvacation period is shown in subsequent figures:

(1) Figure 16 is a plot of blocking probabilities with
changing 𝜃. Here, for an increase in vacation duration,
the number of servers that remain busy is high,
because the servers serve at a low rate but for longer
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Figure 11: Mean queue length versus impatient rate with 𝜌 = 0.1,
𝜇V = 0.2, and 𝑐 = 3.
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Figure 12: Mean queue length versus impatient rate with 𝜌 = 0.1,
𝜇V = 0.2, and 𝑐 = 6.

time, and a new arrival will be served by an idle server
if any. Consequently, it increases the number of busy
servers in the system.

(2) Figure 17 shows that if the service rate is fast, cus-
tomers are served at a faster rate which results
in a lower number of busy servers in nonvacation
period. This is true for all the three types of arrival
models.

(3) The impatience makes a customer leave the system
unserved and for high impatient rates more servers
remain idle (Figure 18). But if the impatient rate is
increased beyond a certain value (𝜉 > 6), the mean
number of busy servers remains unaffected.
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Figure 13: Blocking probability versus vacation-service rate with
𝜌 = 0.9, 𝜃 = 1, 𝜉 = 1, and 𝑐 = 1.
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Figure 14: Blocking probability versus vacation-service rate with
𝜌 = 0.9, 𝜃 = 1, 𝜉 = 1, and 𝑐 = 3.

5.5. Average Customer Loss. We plot the mean number of
customers who abandon the queue without getting served in
Figures 19 and 20. The values of 𝜃 for these plots are 𝜃 = 0.1
and 𝜃 = 1, respectively, keeping the other parameters fixed
for both cases.

When 𝜃 = 0.1, that is, the system has longer vacations, the
number of lost customers is less compared to the correspond-
ing model for 𝜃 = 1. In both cases, the hyperexponential
models have themaximum customer loss, which is up to 60%
more than the Erlang model. Also, the effect of impatient
rates on customer loss is negligible for a system having small
vacation duration.

For Figure 19, when vacation duration rate 𝜃 = 0.1, we
can see local maxima for Erlang and exponential models
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Figure 15: Blocking probability versus vacation-service rate with
𝜌 = 0.9, 𝜃 = 1, 𝜉 = 1, and 𝑐 = 6.
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Figure 16: Mean number of busy servers versus vacation duration
rate with 𝑐 = 1, 𝜌 = 0.5, 𝜉 = 0.1, 𝜇

𝑏
= 10, and 𝜇V = 0.4.

but minima for hyperexponential one at the point where
impatient rate is equal to one. From Figure 18, we can
see that when 𝑐 = 3, the number of busy servers in
nonvacation drops sharply until impatient rate becomes one
and then it is almost consistent thereafter. This drop is more
significant for hyperexponential model. This suggests that
as impatient rates increase from zero to one, the number
of busy servers in nonvacation period becomes less, which
increases the probability of losing more customers for Erlang
and exponential models. As the impatient rate increases
beyond one, the number of busy servers in nonvacation
remains consistent and the loss of customer is influenced
mainly by the increased rate of impatience. But for the
hyperexponential model, this behaviour alters because of the
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Figure 17: Mean number of busy servers versus service rate with
𝑐 = 1, 𝜌 = 0.5, 𝜉 = 0.1, and 𝜇V = 0.4.
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Figure 18: Mean number of busy servers versus impatient rate with
𝑐 = 3, 𝜌 = 0.5, 𝜇V = 0.4, and 𝜃 = 0.1.

change in mean queue lengths with the change of impatient
rates (Section 5.2(4)). Its influence can be seen more towards
the point of inflection where the blocking probability of
the hyperexponential model becomes the same as that of
the exponential one. But as the impatient rate increases,
the customers leave the system, increasing the customer
loss.

Thus, we have seen the role of various parameters on
system performances and we are now in a position to handle
them to enhance the system efficiency.

6. Conclusion

In this paper, we have analyzed the nonhomogeneous QBD
model of a PH/M/c queue with impatient customers and
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Figure 19: Mean customer loss versus impatient rate with 𝑐 = 3,
𝜌 = 0.5, 𝜇V = 0.4, and 𝜃 = 0.1.
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Figure 20: Mean customer loss versus impatient rate with 𝑐 = 3,
𝜌 = 0.5, 𝜇V = 0.4, and 𝜃 = 1.

multiple working vacations. We have used the finite trun-
cation method to determine the stationary distribution. The
effects of system parameters on the performance measures
of the model are illustrated with the help of some numerical
examples. Comparisons are made for different interarrival
time distributions and the effects of the parameters on those
distributions are also presented.
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