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Abstract

Signalling by the steroid hormone testosterone involves the androgen receptor (AR), a structurally dynamic protein. The
amino-terminal domain of the AR makes up more than half of the protein and has been found to be intrinsically
disordered. This structural plasticity mediates receptor-dependent transcription, intradomain interactions and allosteric
regulation. AR activity is a primary drug target in advanced and metastatic prostate cancer, a leading cause of
cancer-related death in men. Recent research has focused on the amino-terminal domain as a novel drug target. In this
review, we discuss the structural properties of the receptor and highlight some promising preclinical and clinical studies
that aim to develop a drug discovery pipeline of small-molecule inhibitors targeting the amino-terminal domain.
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Introduction
The androgenic steroid hormone testosterone is
produced by the Leydig cells of the testis and the theca
cells of the ovary from cholesterol. Testosterone can be
converted to the more potent androgen
dihydrotestosterone (DHT) or the oestrogen oestradiol
(E2) by the enzymes SRD5A and CPY19A1, respectively
(McEwan & Brinkmann 2021). Androgens are important
for male development, reproductive health and anabolic
actions in non-reproductive tissues. The actions of
testosterone and DHT are mediated primarily through
the androgen receptor (AR), a member of the nuclear
receptor superfamily (McEwan & Brinkmann 2021).
The AR gene is located on the X chromosome and codes
for a protein of 110 kDa and notably in tissues such as
prostate and breast, the receptor mRNA is downregulated
by androgens due to transcriptional repression (McEwan
& Brinkmann 2021). In contrast, the binding of
testosterone or DHT can lead to stabilisation of the
receptor protein.

The AR protein has the typical domain organisation of
the nuclear receptor superfamily, which includes

a ligand-binding domain (LBD) linked to a DNA-binding
domain (DBD) by a short, flexible region at the C-terminal
half of the protein (Fig. 1A). The remainder of the protein
is made up of the amino-terminal domain (NTD)
containing sequences critical for transcriptional
regulation (McEwan & Brinkmann 2021). The AR-LBD
and DBD have stable globular conformations rich in
α-helices (He et al. 2004, Shaffer et al. 2004, Nadal et al.
2017) (Fig. 1B). In addition, the binding of testosterone
causes helix 12 of the LBD to reposition, creating a surface
pocket for protein–protein interactions, termed AF-2 (He
et al. 2004) (Fig. 1B). In contrast to other steroid receptors,
the AR-AF2 pocket has a strong preference for bulky
hydrophobic residues and interacts with the FxxLF
motif in the AR-NTD (Dubbink et al. 2004, He et al.
2004, Estébanez-Perpiñá et al. 2007). This interaction of
the N- and C-termini influences hormone binding and
target gene expression.

Disruption of androgen biosynthesis and/or mutations in
the receptor have been correlated with disorders of sex
development, hormone-dependent cancers,
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polycystic ovarian syndrome disorder and Kennedy’s
disease, a neuromuscular disorder (McEwan &
Brinkmann 2021). Therefore, it is unsurprising that
investigating androgen signalling is a topic of interest
for fundamental and clinical researchers as well as the
pharmaceutical industry. In this review, we discuss some
of the recent advances in our understanding of AR
structure and its conformational dynamics, as well as
the emergence of novel non-competitive inhibitors of
AR function by targeting the AR-NTD.

AR-NTD
Early studies identified sequences within the AR-NTD that
are essential for transactivation (TAU1 and TAU5),
referred to as AF1 (Fig. 1A) (Simental et al. 1991,
Jenster et al. 1995, Christiaens et al. 2002). Subsequent
analyses identified binding sites for the transcription
factor TFIIF (McEwan & Gustafsson 1997, De Mol et al.
2018), p160 coactivators (SRC1, 2 and 3) (Bevan et al. 1999,
Reid et al. 2002b), co-chaperone proteins (Cato et al. 2017)
and components of histone-modifying complexes (Zhu
et al. 2006, Asangani et al. 2014). Thus, deletion of

the AR-NTD leads to a transcriptionally impaired
protein, while loss of the AR-LBD produces a
constitutively active transcription factor (see also below).

Structure

In contrast to the LBD and DBD, the AR-NTD has been
shown to be structurally plastic and characterised by an
intrinsically disordered structure (IDS). This was first
demonstrated more than 20 years ago, and subsequent
structural predictions, molecular dynamic modelling and
experimental evidence have confirmed the intrinsically
disordered nature of this domain (Reid et al. 2002a,
Lavery & McEwan 2008, De Mol et al. 2016,
Sheikhhassani et al. 2022). Secondary structure
predictions, together with biochemical analysis and
recent nuclear magnetic resonance (NMR) studies, have
identified regions of α-helical propensity in the
intrinsically disordered AR-NTD (Fig. 1A). Based on the
primary amino acid sequence, a number of algorithms,
for example, Pondr (Dunker et al. 2001), Metapredict
(Emenecker et al. 2021) and MolPhase (Liang et al.
2024), have predicted IDS in the AR-NTD and
hinge region linking the DBD and LBD (Fig. 1A).

Figure 1

Structural properties of the androgen receptor. (A) MolPhase prediction of intrinsically disordered and structural regions of the human AR, based on the
primary amino acid sequence. Receptor domains are indicated above the prediction plots: the amino-terminal transactivation functions (TAU1 and TAU5)
and the DBD, hinge (H) and LBD. Regions of α-helix structure (cylinders and the FqnLF and WhtLF motifs ) in the amino-terminal domain are
highlighted. (B) Structural prediction for the AR by α-fold. This shows the globular structural regions of the DBD and LBD and the intrinsically disordered
nature of the NTD. The 3D-structures of the isolated DBD and LBD are shown for comparison: AF2, activation function 2 and the positioning of helix 12 are
highlighted. (C) Schematic representation of the cryo-EM structure for the AR dimer bound to a DNA response element at ∼13 Å (Yu et al. 2020).
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Interestingly, these prediction plots also highlight some
potential structured regions within the amino terminus
that correspond, or are closely associated with, regions
having the probability to form α-helix secondary
structure (Fig. 1A). The results of NMR studies using a
sub-region of AF1 (AF1*), which lacks the poly-glycine
repeat and C-terminal amino acids, confirmed the IDS and
identified the location of the predicted helical regions in
TAU1 and TAU5 (Fig. 1A) (DeMol et al. 2016). NMRhas also
been used to characterise the regions of the NTD adjacent
to the DBD, amino acids 518–555, identifying two
segments of α-helical secondary structure (Fig. 1A)
(Meyer et al. 2016). This region has been implicated in
allosteric regulation of DNA binding (Liu et al. 2003).

A poly-glutamine repeat located near the C-terminus of
the AR-NTD was found to cause Kennedy’s disease, or
spinal bulbar muscular atrophy, when the repeat
expands above 38 residues, whereas the normal range
is 5–36 residue repeats (Spada et al. 1991). This region has
been found to be α-helical by circular dichroism (Davies
et al. 2008) and NMR (Eftekharzadeh et al. 2016)
spectroscopy, with the latter study also highlighting the
importance of a leucine-rich sequence preceding
the repeat for the helical conformation. Increasing the
repeat length to 55 residues, found in an individual with
Kennedy’s disease, increased the propensity of the
AR-NTD to form helical structure (Davies et al. 2008).

The conformational dynamics of the full-length AR-NTD
has recently been investigated using molecular dynamic
simulations and circuit topology (Sheikhhassani et al.
2022). This approach identified two distinct structural
regions: an N-terminal region (NR), between amino
acids 1 and 224, and a C-terminal region (CR), amino
acids 225–538. The CR region was found to have more
intramolecular contacts that were stable, and the cleft
between the NR and CR could be modelled binding to the
LBD (Sheikhhassani et al. 2022). Collectively, the above
studies highlight the structural flexibility of the AR-NTD,
the propensity to adopt α-helical secondary structure and
suggest a model for allosteric regulation. However, a
limitation of these studies is reliance on fragments of
the AR-NTD in the absence of the DBD and LBD.
Interestingly, α-fold (Varadi et al. 2024) fails to predict
stable tertiary structure in the AR-NTD but does suggest
regions of α-helix (Fig. 1B).

The first multidomain cryo-electron microscopy (EM)
structure of the full-length AR complex has recently
been reported by O’Malley and co-workers (Yu et al.
2020). This provides, for the first time, a three-
dimensional model of the full-length receptor bound to
DNA in a transcriptionally competent state and
complexed with the key coregulatory binding partners
SRC-3 and p300 (Yu et al. 2020) (Fig. 1C). The structure
obtained revealed that the AR-NTD of each monomer
creates a loop hugging the LBD domains, confirming
the N/C interaction and dimerisation interfaces and
highlighting key interacting surfaces with SRC-3 and

p300/CBP. The structure also suggested a stoichiometry
of one molecule of SRC-3 and p300 per receptor dimer:
SRC-3 interacted with the NTD of one monomer, while
p300 bound to each of the NTDs in the dimer (Yu et al.
2020). Interestingly, the overall conformational
arrangement of receptor domains and co-regulatory
proteins revealed key distinctions from the oestrogen
receptor (ER) and progesterone receptor (PR)
complexes solved by the same research team (Yi et al.
2017, Yu et al. 2022). In the case of the ERα dimer, the
NTDs flank the LBD and cooperate with this domain in the
recruitment of two molecules of SRC-3 and the
subsequent binding of p300 to SRC-3 (Yi et al. 2017). A
similar orientation of the NTD flanking the LBD and DBD
was observed for the PR dimer, creating surfaces for the
binding of one molecule of SRC-2 with one receptor
monomer and multiple contacts of p300 with the LBD
and NTD of the second monomer (Yu et al. 2022). The
structuralmodel of the AR, togetherwith biochemical and
biophysical studies and recent dynamic modelling of the
full-length NTD, presents a compelling picture for the role
of the IDS in underpinning folding and allosteric
dynamics and the generation of surfaces for co-
regulatory protein interactions and assembly of a
transcriptionally competent complex on DNA. As
described above, the cryo-EM structure illustrated a
binding stoichiometry of one molecule each of SRC-3
and p300 to the AR dimer bound to DNA (Yu et al.
2020), while NMR studies revealed the interaction
between the WhtLF motif (TAU5) and the large subunit
of TFIIF (RAP74-CTD) (De Mol et al. 2018). These studies
are consistent with a model whereby induced folding of
the AR-NTD creates a platform for the assembly of a
transcriptionally competent complex.

Collectively, the findings from structural predictions,
biophysical analysis, computational modelling and
cryo-EM highlight the dynamic conformation of the
AR-NTD, the presence of limited secondary structure
and the propensity to form helical structure in the
presence of chemical chaperone molecules and
protein–protein interactions.

In addition to facilitating multiple protein–protein
interactions, the IDS of the AR-NTD has also been
shown to support allosteric regulation and, more
recently, the formation of liquid–liquid phase
separation (LLPS) condensates. Condensates, sometimes
described as membrane-less organelles, can be
comprised of proteins and nucleic acids and underpin
numerous cellular processes, including transcriptional
regulation (Hnisz et al. 2017). The formation of puncta
in target cells by the AR has been known for some time
(see van Royen et al. (2007)). However, there has been
renewed interest in LLPS as a mechanism for assembling
transcriptionally active complexes and, intriguingly,
mediating resistance to antiandrogen drugs in prostate
cancer (Xie et al. 2022). There is robust evidence for the
importance of the IDS in condensate formation; however,
it does not appear to be sufficient on its own, as
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the isolated AR-NTD polypeptide fails to form LLPS
(Ahmed et al. 2021, Xie et al. 2022, Zhang et al. 2023b);
although, others have characterised the formation of
droplets by the AR-NTD or splice variants lacking the
LBD (Bouchard et al. 2018, Bielskutė et al. 2021,
Roggero et al. 2022, Basu et al. 2023). In contrast, the
structured AR-DBD appears to form condensates with
RNA (Ahmed et al. 2021). The observed differences may
reflect the experimental approaches used, for example,
in vitro studies with purified receptor polypeptides
compared with in-cell experiments using full-length AR
or splice variants. Furthermore, the potential
involvement of post-translational modifications and the
concentration of receptor proteins may also influence the
nature of the condensates formed and the role of different
AR domains in LLPS. This is an area of increasing
research focus and is likely to reveal new insights into
the function of the AR-NTD.

Prostate cancer and the AR
Prostate cancer is the second most common cancer in
men globally, and with ageing as a primary risk factor,
together with environmental and genetic considerations,
the incidence is expected to double over the next
15–20 years (Bray et al. 2018). Depending on the
disease stage at diagnosis, treatment options include
surgery (prostatectomy), radiotherapy or
brachytherapy. For over 80 years, following the initial
work by Huggins and Hodges in 1941, the standard
treatment approach for advanced and metastatic
disease is inhibiting the AR axis. This can involve
reducing circulating testosterone levels (androgen
ablation therapy) with or without the use of
antiandrogens such as enzalutamide or more recent
drugs, apalutamide and darolutamide (Fig. 2A)
(reviewed in Estébanez-Perpiñá et al. (2021)). However,
although initially highly effective at reducing prostate
specific antigen (PSA) levels and tumour burden, the
emergence of therapy resistance after 18–24 months
blunts the efficacy of these androgen-targeted
therapies. Further treatment can include switching to a
different antiandrogen and/or combination with the
CYP17A1 inhibitor abiraterone. However, therapy
resistance leading to castrate-resistant prostate cancer
(CRPC) occurs in up to 20% of patients. Resistance can
arise through point mutations in the receptor ligand-
binding pocket, the appearance of splice variants
completely lacking the LBD and overexpression of the
receptor protein (Fig. 2B) (Dehm et al. 2008, Hay &
McEwan 2012, Tan et al. 2015). Mutation of residues
involved in hydrogen bonding with the ligand (e.g.
T878A) or forming the ligand-binding pocket (e.g.
F876L) switches the antagonists bicalutamide and
enzalutamide to agonists (reviewed in Tan et al.
(2015)). The absence of the LBD through alternative
splicing results in constitutively active forms of the AR
(Dehm et al. 2008) (Fig. 2B). In addition to genetic changes,

overexpression of the AR protein is also known to impact
antiandrogen effectiveness and lead to resistance
(reviewed in Tan et al. (2015)). Crucially, the AR
remains functionally important for tumorigenesis and
metastasis (Chen et al. 2004). The lack of receptor-
targeted therapies for resistant disease is therefore a
clear unmet clinical need and an area of increasing
research interest.

AR-NTD as a novel drug target

Covalent inhibitors of the AR-NTD
The intrinsically disordered nature of the AR-NTD makes
it a challenging drug target. However, in a paradigm-
shifting study, Sadar and co-workers identified a small
molecule, EPI-001, which bound to the AR-NTD covalently
and selectively disrupted protein–protein interactions,
transcriptional regulation and, importantly, reduced
tumour burden in xenograft models of prostate cancer
(Andersen et al. 2010, Myung et al. 2013).

EPI-001 (Table 1) was originally isolated from a marine
sponge and, together with the stereoisomer EPI-002 (2R,
20S) (Fig. 3A), demonstrated potency against both full-
length AR and the AR-NTD fused to the GAL4 DNA-binding
domain (Andersen et al. 2010, Myung et al. 2013). EPI-001
represents a bisphenol A diglycidyl ether (BADGE), and
the presence of a chlorine was found to be essential for
antiandrogen activity (Fig. 3), with binding to the AR-AF1
region demonstrated by steady-state fluorescence
quenching (Andersen et al. 2010). Furthermore, EPI-001

Figure 2

Anti-androgen drugs and receptor mutations. (A) Chemical structures of
non-steroidal antiandrogens approved for hormone-sensitive or
insensitive metastatic prostate cancer. (B) Schematic showing the domain
structure of the AR and the location of point mutations in the LBD that lead
to resistance to bicalutamide and enzalutamide. The lower diagram
shows examples of splice variants (AR-v7 and AR-v12/ARv567es) lacking the
LBD, which are functionally blind to current antiandrogen drugs.
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selectively inhibited protein–protein interactions,
including TFIIF and CBP/p300, with the AR
transactivation domain (Andersen et al. 2010, Myung
et al. 2013). The WthLF motif, present in TAU5 (Fig. 1A),
is critical for ligand-independent activity of the AR, and
binding of EPI-001/2 has been mapped to sequences in
TAU5 experimentally by NMR (De Mol et al. 2016) and,
more recently, by molecular dynamic modelling of the
full-length AR-NTD (Sheikhhassani et al. 2022).
Subsequent analysis by Zhu et al. (2022) has calculated
binding affinities for EPI-002 and the next-generation
analogue EPI-7170 (Fig. 3A) in the μM range (KD = 5.4
and 1.9 μM, respectively) with a TAU5 fragment,
representing the previously identified helical regions
(amino acids 391–446). In addition, the binding of
EPI-002 and EPI-7170, increased the propensity for
α-helical secondary structure in molecular dynamic
simulations, suggesting a more folded, compact
conformation for this TAU5 polypeptide (Zhu et al. 2022).

EPI-001, the stereoisomer EPI-002, the pro-drug EPI-506,
and the next-generation analogue EPI-7170 (Fig. 3A) have
all demonstrated efficacy in in vivomodels using prostate
cancer cell xenografts (LNCaP, LNCaP95 and VCaP). EPI
compounds reduced tumour burden and markers of cell
proliferation and increased markers of apoptosis
(Andersen et al. 2010, Myung et al. 2013, Banuelos et al.
2020, Hirayama et al. 2020) (Table 1). There have also
been promising results in preclinical studies for
combination therapies with enzalutamide (Hirayama
et al. 2020), chemotherapy (docetaxel) (Martin et al.
2014) and radiotherapy (Banuelos et al. 2020). EPI-506,
Ralaniten (Fig. 3A), was the first-in-man clinical trial
(NCT02606123) for an AR-NTD inhibitor, and although
the study was terminated, the compound was well
tolerated. Ongoing clinical trials evaluating the latest
iteration of this series, EPI-7386 (Masofaniten, Fig. 3A),
as a monotherapy for metastatic CRPC (NCT04421222)
and in combination with enzalutamide alone

Table 1 Properties of a selection of AR-NTD inhibitors.

Compound

IC50

Selected pharmacokinetic properties ReferencesTransactivation Cell viability

Enzalutamide 0.34 µM - - Henry et al. (2023)
EPI-001 12.63 µM ca 10 µM T½ = 3.3 h (iv) F% = 86‡ Myung et al. (2013)
EPI-7170 2.31 µM 2.7 µM - Hirayama et al. (2020)
ET516 0.2–0.7 µM - - Xie et al. (2022)
1ae 1.54/4.1 μM* 1 µM - Basu et al. (2023)
UT-143 0.15 µM - T½ > 12 h (iv) Orally bioavailable Thiyagarajan et al. (2023)
Compound 16 0.12 µM - T½ = 0.29 h (iv) F% = 16 Henry et al. (2023)
SC428 0.42/1.31 μM† 1.0–1.4 µM - Yi et al. (2023)
UT-34 0.2 µM <2 µM T½ = 1.3 h (in vitro MLM§) Orally bioavailable Ponnusamy et al. (2019), He et al. (2021)
Compound 26f 0.38 µM - T½ = 4.42 h (in vitro MLM§) Orally bioavailable He et al. (2021)
Z15 0.22 µM 1.37–3.63 µM - Wu et al. (2023)
Compound 27c - 0.9 µM T½ = 1.4 h (iv) F% = 18 Xiao et al. (2024)
BWA-522 - 1.07–5.59 µM T½ = 3.12 h (in vitro MLM§) Orally bioavailable Zhang et al. (2023a)

*AR-v7. †ARv7/ARv567es. ‡F% = oral bioavailability. §MLM = mouse liver microsomes.

Figure 3

Examples of non-competitive covalent AR-NTD
inhibitors. (A) Examples derived from EPI-001.
(B, C, D) Examples that are chemically related
(ET516) or distinct from EPI-001 (compound 1ae,
UT-143). See text for details.
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(NTC05075577) or together with androgen deprivation
treatment (NCT06312670) for metastatic hormone-
sensitive prostate cancer. Preliminary results for
NTC05075577 phase I trial report no safety concerns,
but a reduction in EPI-7386 levels due to enzalutamide
induction of CYP3A4 was observed, which was
compensated by a twice-daily dose of the drug (Laccetti
et al. 2023). However, this trial has recently been stopped
as primary outcomes were unlikely to be met.

Recently, using a novel LLPS phenotypic screen of a
bespoke library of compounds based on the EPI-001
scaffold, Xie et al. (2022) identified ET516 (Fig. 3B,
Table 1), sharing a number of the pharmacological
features associated with this class of compound. ET516
effectively inhibited expression of an AR-target gene
signature (e.g. KLK3/PSA, TMPRSS2, NKX3-1 and
FKBP5), decreased cell viability in AR-positive cells and
blocked growth in vivo of an LNCaP xenograft.
Significantly, and in contrast to EPI-001, ET516
efficiently blocked the formation of nuclear puncta by
hormone-activated AR in a concentration-dependent
manner (Xie et al. 2022). Furthermore, puncta formed
by AR-v7 were found to be resistant to enzalutamide
treatment but sensitive to ET516, leading the authors to
suggest that therapy resistance to conventional
LBD-targeted antiandrogens could involve phase
separation of the AR protein. Salvatella and co-workers,
in a wide-ranging study, also investigated the properties
of LLPS of the AR-FL and -v7 splice variant. This
demonstrated the involvement of tyrosine residues and
helical segments in condensate formation, and EPI-001
was found to partition with the AR-NTD in droplets (Basu
et al. 2023). Using a rational chemical synthesis approach
aimed at optimising the spacer connecting the aromatic
rings found in EPI-001, as well as the associated
substitution patterns, these authors identified a series
of small molecules with increased potency and binding
to the TAU5 region, for example, small molecules 1aa and
1ae (Fig. 3C, Table 1) (Basu et al. 2023).

Recently, UT-143 (Fig. 3D, Table 1) was identified from a
library based on selective AR degraders (i.e. selective
androgen receptor degrader (SARD) UT-34,
Thiyagarajan et al. 2023) and represents another class
of covalent inhibitors of the AR-NTD. UT-143was selective
for the AR and inhibited wild-type and mutant receptors
associated with antiandrogen resistance (i.e. W741L,
F876L and T878A) and the AR-v7 splice variant. Binding
to AR-AF1 was demonstrated, and the cysteines at
positions 327 and 406 were identified as targets for
covalent binding using an embedded Michael acceptor
as a reactive group. Similar to ET516, UT-143 disrupted
condensate formation and inhibited both hormone-
dependent and -independent growth in vitro as well as
reducing tumour burden in vivo (Thiyagarajan et al.
2023). Taken together, the studies with ET516 and
UT-143 highlight a novel mechanism of AR inhibition
involving the disruption of LLPS condensates that can

overcome resistance to antiandrogens such as
enzalutamide.

Non-competitive, reversible inhibitors
of the AR-NTD
Examples of other chemotypes, structurally unique
chemical templates, that have shown promise in
targeting the AR-NTD, are compound 16 and SC428
(Fig. 4, Table 1). SC428 is a urea derivative and is
therefore a different chemotype to compound 16,
which is a biaryl system. Accordingly, these have
distinct structural features that differentiate them from
each other. SC428 demonstrated good potency against
transcriptional activation by AR splice variants v7 and
v567es, with IC50 values of 0.42 and 1.31 μM, respectively,
and an apparent dissociation constant for binding the AR-
NTD, KD = 75 μM (Yi et al. 2023). SC428 also inhibited
hormone-dependent nuclear translocation of the AR and
cell proliferation of LNCaP (AR-FL and T878A mutation)
and VCaP (AR-FL, AR-v7 and v567es) cells comparable to
enzalutamide but was significantly more potent in the
22Rv1 (AR-FL, AR-v1, 3, 7 and 12) CRPC cell model both
in vitro and in vivo in intact mice (Yi et al. 2023).

In our laboratories, we have explored a novel series of
biaryl compounds following hit identification after a
high-throughput screen using a pan-AR-v construct and
a luciferase reporter gene cell line (Monaghan et al. 2022,
Henry et al. 2023). Compound 16 (Fig. 4, Table 1)
demonstrated excellent potency against AR-FL
hormone-dependent transcriptional activity or an AR-v
in the absence of hormone when tested in VCaP cells.
Table 1 shows the associated potency of the compound
alongside its pharmacokinetic profile, which, although it
has measurable oral exposure, the associated half-life
would require improvement before any related small
molecule inhibitors from this series of compounds
could be used for in vivo xenograft models.

AR degraders targeting the AR-NTD
An alternative approach to switching off AR signalling in
prostate cancer involves compounds that target the

Figure 4

Examples of non-competitive AR-NTD inhibitors.
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receptor for degradation by the proteasomal apparatus,
including proteolysis-targeting chimeras or PROTACs (for
recent review see Chen et al. (2024)). Several AR
degraders have shown promise in preclinical studies
and have advanced into clinical trials, most notably
UT-34 analogue (ONCT-345/GTx-534) (NCT05917470) and
niclosamide (NCT02532114, NCT03123978 and
NCT02807805) (see Fig. 5, Table 1). However, recently
the trial evaluating ONCT-534 was stopped as
significant clinical improvements were not
observed (https://investor.oncternal.com/news-releases/
news-release-details/oncternal-therapeutics-announces-
termination-its-clinical, September 2024).

The UT series (UT-155, UT-34 and compound 26f, Fig. 5A) of
SARDs were originally based on ligands with agonist
(enobosarm) or antagonist (bicalutamide) activity.
Intriguingly, however, UT-155 was found to bind to both
the AR-LBD and -NTD anddemonstrated target engagement
with AR-vs, exhibiting an IC50 = 0.078 μM for inhibition of
transcriptional activity and degradation of the protein
(Ponnusamy et al. 2019). Further chemical synthesis and
modification led toUT-34with improved in vivo activity and
compound 26f with an improved pharmacokinetic profile
(Table 1) (He et al. 2021, Narayanan 2021).

Niclosamide (Fig. 5B) is an FDA-approved anthelmintic
drug that has been repurposed and tested in several
clinical trials (Parikh et al. 2021). It has been found to

cause degradation of the full-length and AR-v7 splice
variant and was effective in cell model and xenograft
studies (Liu et al. 2014, 2016). However, evidence for
direct binding to the AR-NTD is more limited, raising
questions about the precise mechanism of action. More
recently, two novel SARDs have been identified: Z15
(Fig. 5C, Table 1) and compound 27c (Fig. 5D, Table 1)
(Wu et al. 2023, Xiao et al. 2024). These compounds
demonstrated good potency in inhibiting receptor-
dependent transactivation and/or in prostate cell
proliferation (Table 1). Z15 was found to be a dual
inhibitor, interacting with both the LBD and NTD
(Wu et al. 2023). The starting scaffold for compound 27c
was the aryl-hydantoinmoiety found in enzalutamide and
an ‘N-heterocycle degron’, which, after systematic
structure-function studies, resulted in a panel of
monovalent degraders (Xiao et al. 2024). Compound 27c
demonstrated inhibition of AR target genes, binding to
AR-NTD (determined by surface plasmon resonance) and
loss of cell viability (Xiao et al. 2024).

BWA-522 is a promising PROTAC targeting the AR-NTD,
which links the EPI-001 skeleton to an E3-ligase ligand
cereblon (CRBN) (Fig. 5E; Zhang et al. 2023a). BWA-522
caused degradation of the full-length AR and AR-v7 and
loss of cell viability in a range of prostate cancer cell
models. Furthermore, BW-522 showed promising
pharmacokinetic properties (Table 1) and inhibited
tumour growth in vivo (Zhang et al. 2023a).

Figure 5

Examples of receptor degraders targeting the
AR-NTD. (A) Compounds related to the UT SARDs.
(B, C, D, E) Other SARDs include the
anthelminthic niclosamide, Z15, compound 27c
and BW-522.
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In this section, we have given a brief overview of AR-NTD
inhibitors, focusing on those in clinical trial, that have
demonstrated binding to the NTD and/or compounds
altering the structural properties of this domain. For a
recent authoritative review of non-competitive inhibitors
of the AR, see Riley et al. (2023).

Conclusions and future perspectives
Since the isolation of the first AR cDNA over 30 years ago,
there have been significant advances in our
understanding of AR protein structure and function
and the mechanisms regulating expression in different
tissues. Central to this has been the insight gained from
understanding the properties of the intrinsically
disordered NTD. The structural plasticity of this domain
underpins receptor-protein interactions and allosteric
regulation. Coupling folding with function facilitates
specific interactions in the absence of high-affinity
binding and creates large surface areas for
protein–protein interactions. In recent years, the AR-
NTD has also become a major focus for drug screening
programmes as novel targets for switching off receptor
activity are explored to treat therapy-resistant prostate
cancer.

However, several key research questions remain,
including the role of the AR-NTD and/or other receptor
domains in LLPS condensate formation. Recent findings
link the formation of condensates with mutant receptors
and resistance to traditional AR inhibitors. Defining the
composition and nature of these condensates will be
important to our understanding of receptor signalling
in both normal and disease conditions.

Evidence from in vitro and computational studies clearly
supports the IDS in the AR and the propensity of regions of
the NTD to adopt an α-helical structure. However, in the
context of the cellular environment, what constraints are
there on this structural flexibility and is this linked to
intracellular location and/or binding partners? Does
receptor dimerization and DNA binding favour the
‘hugging’ model seen in the cryo-EM structures, or is
this one of many likely conformations adopted by the
NTD? Exciting developments in methods such as in-cell
NMR spectroscopy (Kang 2019) may shed some light on
this question.

Importantly, can the promising preclinical developments
in identifying small molecule inhibitors of the AR-NTD be
translated into new drugs for the treatment of men with
advanced prostate cancer?With the incidence of prostate
cancer predicted to double in the next 20 years and the
continued emergence of resistance to conventional AR-
LBD inhibitors, the goal is to develop new therapies. It is to
be hoped, indeed expected, that increased understanding
of the molecular and structural properties of the AR will
realise this goal in the next 5–10 years.
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optimization of a transcription factor activation domain inhibitor. Nat Struct
Mol Biol 30 1958–1969. (https://doi.org/10.1038/s41594-023-01159-5)

Bevan CL, Hoare S, Claessens F, et al. 1999 The AF1 and AF2 domains of the
androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19
8383–8392. (https://doi.org/10.1128/mcb.19.12.8383)
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