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Abstract

We systematically investigate the interplay of disorder and space-
time heterogeneous collisional noise in shaping the transport dynamics
of an anisotropic XXZ spin chain. Using stochastic collision models to
simulate interaction with the environment, we explore the localization-
delocalization transitions across regimes with single and multiple ex-
citations. We find that space homogeneous collisions occurring at low
rates favor the shaping of regions where the localization degree sets
in the form of subsequent plateaus at a rate and duration universally
scaling with the collision rate. We also find that interactions among
the excitations favor this process even for tiniest levels of disorder.

Our findings can be applied to design stroboscopic protocols where
sequences of transport and localization can be tailored. We establish
relevant connections to noise-engineering of quantum devices in noisy
intermediate-scale quantum simulators platforms, and to realistic bi-
ological systems where noise and disorder coexist.
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1 Introduction

Quantum transport governs charge, spin and energy transfer in a wide va-
riety of systems, from solid-state physics and spintronics to quantum tech-
nologies [1, 2, 3, 4]. In fact, by exploring the effects of disorder, noise, and
interactions, we can gain insights into the mechanisms driving localization-
delocalization transitions, thermalization, and the emergence of collective
phenomena in low-dimensional and complex systems. In particular, current
technologies enable the study of quantum transport with the engineering of
reduced-dimensionality systems in solid state and in AMO (atomic, molecu-
lar, and optical) platforms [5, 6].

Paradigmatic many-body Hamiltonians in open quantum networks are
important models as they represent essential functions and can be engineered
in tunable current experiments used as quantum simulators [7]. We are inter-
ested in biology applications [8, 9] and on coarse-grained models within the
so-called quantum-like paradigm [10, 11]. In general, regardless of the pres-
ence of quantum effects in the performance of specific biological processes,
the statistics of quantum mechaniscs and the open quantum system frame-
work [12, 13, 14, 15] provides us with a well-suited mathematical toolbox to
describe complex phenomena, both quantum and classical, into potentially
simpler and representative models [16, 11].

Quantum effects in biological systems present a fascinating yet debated
area of research, challenging conventional views on the role of quantum me-
chanics in the warm and noisy environment of living organisms. These
physics-based models can incorporate quantum effects into the description
of microscopic phenomena allowing us to study how a noisy and out-of-
equilibrium biological environment is influenced by coherent and dissipative
quantum effects [8, 17, 18].

In general, the behavior of transport in a quantum system serves as a
powerful diagnostic tool for understanding thermalization in disordered con-
ditions [19]. In the absence of interactions, disorder can induce Anderson
localization [20], where transport is suppressed due to interference effects,
preventing the system from reaching thermal equilibrium. Interactions or
noise disrupts this localization mechanism, leading to a transition toward
diffusive or even ballistic transport, depending on the system’s parameters
[21, 22]. The transition from localized to delocalized regimes provides insight
into how thermalization emerges in complex systems. Consequently, disor-
der is a mechanism that suppresses transport in isolated systems and, in
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open systems, also a factor that competes with noise to dictate the system’s
relaxation dynamics.

In [16], we explored how dissipation modulates transport in an open quan-
tum system using stochastic collision models accounting for space and time
heterogeneous collisions. In so doing, we could focus on the interplay be-
tween noise, interactions, and coherence under sufficiently general conditions.
By tuning noise parameters, we demonstrated controllable modifications to
transport properties, identifying regimes where increasing the collision rate
enhances transport. Thus, we showed that engineered dissipation can coun-
teract localization effects.

We now focus on the combination of collisional noise and disorder which
provides a model that closely mirrors the dynamics of transport in many com-
plex media including those relevant to biological systems. Collisional models
replicate approximate interactions with noisy warm environment, while dis-
order introduces local spatial inhomogeneities. Together, these elements cap-
ture key features of energy transfer in systems where coherent and dissipative
processes coexist relevant in several fields of physics, like charging and dis-
charging performances in open quantum system batteries [23, 24], transport
in an engineered environment of complex systems [25] along with many body
localization in 1-D systems [26]. Moreover, the tunability of collisional noise
parameters enables the simulation of biologically relevant scenarios, such as
the exploitation of noise-assisted transport [27, 28].

In this paper, we investigate the transport properties and thermaliza-
tion dynamics of a noisy, disordered XXZ spin chain [29, 30, 31, 32], mod-
eled through stochastic collision processes. Among different possibilities, we
adopt this many-body model for its capability of describing in a general
manner tunneling-based transport of excitations in the presence of coherent
anisotropic interactions. We identify localization/delocalization transitions
and thus transport windows for multiple excitations tuning the interplay of
disorder, anisotropy, and noise.

The paper is organized as follows. In Section 2 we present the model
of our disordered spin-chain interacting with the environment via stochastic
collision models and introduce the figures of merit adopted to study transport
properties. In Section 3, we present the results of our study comparing
the cases of one, two and multiple injected excitations also highlighting the
entanglement properties in those regimes. Finally, in Section 4 we present
our conclusions and discuss future perpectives in the light of technological
progress in quantum science and biology.
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2 Model and methods

The conceptual model setting is sketched in Fig. 1 (a). We investigate an
integrable generalization of the Heisenberg spin chain that accounts for uni-
axial anisotropy [33] with the addition of a disorder term:

HXXZ = J
N−1∑
i=1

[
σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1

]
+ h

N∑
i=1

rv(1, i)σ
z
i , (1)

and subjected to dissipation through noise in the form of stochastic collision
models, as depicted in Sec. 2.1, with open boundary conditions (OBC). In

Eq. 1, σ
x/y/z
i are the Pauli operators acting on spin located at site i; J is

the spin exchange rate, that can also be seen as the tunneling amplitude for
excitation quasiparticles throughout the system; ∆ governs the anisotropy
in the form of a spin-spin interaction along the z-axis. In our analysis, we
consider the regime with J = 1(> 0) and then scale every other energy to J .
As a result, the ground state with disorder h = 0 is a ferromagnet for ∆ > 1,
becoming a critical paramagnet for ∆ ≤ 1. The introduction of disorder
in the form of a random local field proportional to σz

i with amplitude h
breaks the integrability of the model. Thus, different ground states would
occour under different disorder realizations. The disorder for every spin is
then randomly generated, according to the random vector rv(max, i) varying
between (0,1) for each site independently, in each individual simulation for
every site in a range [−h, h].

When considering the time evolution of excitations or quench dynamics,
the disorder term will control different transport regimes, ranging from bal-
listic to diffusive, and it can lead to the emergence of Many-Body localization
(MBL) [34]. In fact, disorder can lead to the breakdown of thermalization,
meaning that the system fails to reach thermal equilibrium at long times
resulting in transport suppression. Tuning the disorder through h and ana-
lyzing the resulting transport behavior, it is possible to map the parameter
regimes where localization or delocalization dominates.

2.1 Noise modeling

So far we have discussed how the coherent and disorder-driven terms of our
model are described. Here, we introduce dissipation through a particular
discretization of the environment degrees of freedom (d.o.f.) that lies in the
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Figure 1: Sketch of our model. (a) Open quantum spin chain with energy
levels affected by disorder in the [−h, h] range. Excitations are depicted as
flipped spins (green), their dynamics being affected by the tunneling rate
J (black arrows), interaction strength ∆ (blue ovals) and the addition of a
noisy environment. This is represented by the auxiliary light-brown qubits
colliding with the sites over time. (b)-(c) Histograms displaying the number
of collisions oundergone by the auxiliary qubits (log scale) against our spins
over time tJ for a noise shape parameter of ν = 100 in the time-uniform
regime, and collision rates rc = 1 (b) and (c) rc = 0.1. We use the same
simulation parameter: number of sites in the spin is N = 41 sites, M = 500
trajectories and final time of simulation tJ = 30.
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family of stochastic collision models [9, 35]. This type of environment de-
scription comprises heterogeneous interactions in time and space with a bath
composed of a set of itinerant d.o.f. This modeling represents an effective
approximation to what happens in a biological system [9, 36]. As depicted
in Fig.1, the environment d.o.f are modeled as auxiliary qubits (light brown
circles) that collide over time with the spins in the chain.

In this approach, we can govern the noise regimes via appropriate distri-
butions describing the probability of system-environment interaction events.
This results into a flexible environment description, including non-trivial tem-
poral correlations even remaining within a Markovian-like description. As it
is the case for many dissipative dynamical maps, stochastic collisional models
are compatible with many local quantum channels. In our case, we account
for density-density collisions decorrelating spins from the coherent evolution,
thus effectively producing dephasing in the system degree of freedom.

We choose to describe the collisional rate between spins and auxiliary
d.o.f. by adopting the especially flexible Weibull distribution [37, 9]:

p(t) =
ν

µ

(
t

µ

)ν−1

e−(t/µ)ν , (2)

where indeed the shape parameter ν ≥ 0 controls the time heterogeneity
structure, and the scale parameter µ > 0 governs its overall rate. Specifi-
cally, collisions are heterogeneous over time for ν ≤ 1 and homogeneous for
ν ≫ 1 while the intercollision time becomes constant. In contrast, the scale
parameter is related to the overall collision rate that we define below:

rc =
1

τth
=

1

µ Γ (1 + 1/ν)
, (3)

with τth being the mean collision time and Γ given by
∫ t

0
τp(τ)dτ = Γ(1+1/ν)

from Eq. (2). In Fig. 1.(b)-(c), we present histograms for the number of
collisions as a function of time for homogeneous noise (ν = 100) and two
different collision rates modifying how recurrent is the interaction with the
environment.

When collisions occur according to the probability distribution, a quan-
tum channel is applied [9, 38]. This is given by:

Φ [ρ(ti)] = Tr[Ucoll(ρa ⊗ ρ(ti))U
†
coll] , (4)
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with Ucoll = exp{−i(π/2)σx
a ⊗ σz

i } representing the collision event and ti
being the time before the given collision. For a detailed description, we refer
to our previous work [16].

Consequently, three competing mechanisms act on the spin chain: coher-
ent coupling between spins, local disorder, and noise originating from the
Weibull distribution.

2.2 Characterizing transport

Having described our model, we now introduce the figures of merit that
we use to characterize the system transport and quantify the magnetization
spreading (delocalization behavior of the excitations). For one excitation,
we use the inverse participation ratio (IPR), IPR =

∑N
i=1 ⟨i| ρ(t) |i⟩

2 , where
i represents the site index and |i⟩ represents the single-excitation localized

states
{
|i⟩ : |i⟩ = σ†

i |0⟩⊗N
}

[9]. The IPR is a measure of localization,

bounded between the complete delocalization asymptotic value IPR = 1/N ,
and IPR = 1, corresponding to complete localization, i.e. when the excitation
remains on a particular site of the network [39].The larger the IPR, the more
localized the excitation is over the lattice.

Instead, for a generic number of excitations we use the Inverse Ergodic-
ity Ratio (IER) IER(t) =

∑
j ⟨j| ρ(t) |j⟩ , defined in terms of the multiple-

excitation states |j⟩ that compose our computational basis [16]. IER has the
following asymptotic behaviours: IER = 1/dimH implies that the system
is in a superposition of all the possible states in the reduced magnetization
sector basis, thus the state is ergodic [40]; IER = 1, instead, refers to the
case in which the system is in one out of these specific configurations, that
forms part of our basis. For more details on these two figures of merit in a
similar context, we refer to [16].

Our system is a disordered spin-chain, thus we expect a competition be-
tween disorder (h), coherent tunneling (J), anisotropy (∆), and noise (rc, ν)
that could provide a rich landscape where localization and delocalization
transitions can be explored.

Therefore, to characterize the emergence of parameter regions where the
system (de)localizes, we also consider the behaviour of the entanglement
entropy for selected scenarios. The entanglement entropy constitutes one of
the well-known heralds of MBL [21, 41], as it presents logarithmic growth in
many body localized systems. While not generally accessible in experiments
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with a few important exceptions [42, 43], the study of entanglement entropy
in thermal and non-thermal many-body states [44] has helped understand
and quantify the degree of correlation and information spreading between
system parts, whereas its behaviour can become non-trivial in regions close
to the transition point [45]. The entanglement entropy can be characterized
via the Von Neumann entropy [46] defined as follows: consider a bi-partite
system composed by A and B subsystems, then the entanglement entropy is
SvN = ρA log ρA, with ρA = TrBρ the reduced density matrix of subsystem
A. Since we are interested in regions in which transport can be modulated
to occur only in well-defined time windows, we analyze the behaviour of
entanglement entropy as a complementary figure of merit.

3 Results

3.1 One excitation case

We begin by building our intuition on the interplay between disorder and
noise with the case of one single excitation propagating through the disor-
dered spin chain. In this analysis we highlight the fundamental differences
between Anderson localization [21] and noise-induced transport. Anderson
localization, driven exclusively by disorder, is characterized by the suppres-
sion of transport due to interference effects in the absence of any environmen-
tal interactions. In contrast, transport induced by collisional noise introduces
a competing mechanism, where dephasing disrupts localization and promotes
delocalization over time. By focusing on the one excitation case, we simplify
the system dynamics, isolating the interplay between disorder and noise while
avoiding complications arising from multiple excitation interactions.

We summarize in Fig. 2 the IPR behavior. Fig. 2(a) summarizes the
long-time behavior of the Inverse Participation Ratio (IPR) at time tJ = 30
as a function of the shape parameter ν and the collision rate rc. We see that
for low values of rc, the system exhibits higher localization (larger IPR). This
occurs because the low collision rate allows for transient localization before
delocalization takes place due to noise. More frequent collisions (larger rc)
disrupt these localized states and drive the system toward delocalization,
with the IPR approaching its asymptotic value 1/N . To see the competing
effect of disorder, we show in Fig. 2(b)-(c) the IPR evolution at fixed shape
parameter ν = 100 in the regime of time-homogeneous collisions. The IPR
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time evolution is displayed in Fig. 2(b) for various collision rates rc and fixed
large disorder range h = 10. We then show in Fig. 2(c) the IPR versus
time for different disorder range constants h from 0.1 to 10 at fixed low
collision rate rc = 0.1. We observe that low collision rates (rc < 1) and
high levels of disorder (h ≫ 1) lead to transient localization, as evidenced
by the formation of sharp plateaus in the IPR. These interesting plateau
features reflect moments of temporary stabilization in the system’s dynamics,
after which collisions induce delocalization. Conversely, at higher collision
rates (rc ≥ 1), the increased frequency of noise events prevents significant
localization, driving the system toward a diffusive regime. Here, the IPR
evolves smoothly over time without plateaus formation. The case of ∆ ̸= 0
was not reported here because the inclusion of an anisotropic interaction term
is seen to not qualitatively alter the system’s behavior in the single-excitation
regime. For more details see [16].
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Figure 2: (De)localization behaviour: one excitation case. Inverse Participa-
tion Ratio (IPR) for a spin chain with N = 41 sites. (a) IPR at long time
(tJ = 30), for h = 10 and different shape parameters ν and collision rates rc.
(b) IPR vs time for large disorder range h = 10 for different collision rates rc.
(c) IPR vs time tJ for low rc = 0.1 and different disorder range h. Notice the
emergence of plateaus of temporary stabilization of localized behavior. For
(b) and (c) the shape parameter is ν = 100 in the time-homogeneous collision
regime. The data refer to the case of no anisotropy (∆ = 0 in Eq. 1) since
they are seen to be not significantly altered by finite ∆ ̸= 0. The simulations
were performed with M = 500 trajectories and dt = 0.02.
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All in all, we observe that noise generally leads to delocalization even in
the presence of disorder for any collision rate rc ̸= 0. This behavior occurs
because the noise-induced dephasing leads to progressive heating of the sys-
tem, ultimately driving it toward a high-entropy T = ∞ steady state with the
excitation uniformly distributed across all sites. Disorder slows down the pro-
cess by creating localized regions that act as traps and inhibits transport by
delaying the redistribution of energy. Consequently, while the system even-
tually reaches the T = ∞ state regardless of the disorder strength, the time
required to do so increases with higher levels of disorder. This highlights the
competing roles of noise, which promotes delocalization, and disorder, which
instead favors localization.

In the case of collisions that are homogeneous in time and in space, that is
e.g. with rc = 0.1 and ν = 100 in the figure, noise appears in well defined time
slots. This makes visible the corresponding moments where magnetization
and IPR change, exhibiting formation of plateaus in the IPR. In this case, we
highlight that the higher the value of the disorder, the sharper the plateau.
Also, we stress that the plateaus were not affected by the anisotropy. For rc <
1, the excitation exhibits localization, which persists until noise is introduced
into the system at well-defined times (see Fig. 1(b)). These noise events
induce delocalization, after which the excitation becomes localized again until
a subsequent collision perturbs the system dynamics. This process repeats
iteratively, leading the IPR to eventually approach its asymptotic value 1/N ,
i.e. to the appearence of a fully delocalized state.

In contrast, for rc ≥ 1, the frequency of collision events becomes suffi-
ciently high to prevent any significant re-localization of the system. This
behavior is particularly evident for rc = 1, as shown in Fig. 1(c). For rc ≥ 1,
the system transitions to a regime dominated by frequent collisions, which
suppress the transient localization observed at lower collision rates. In this
regime, the IPR evolves smoothly over time without forming plateaus, in-
dicating sustained delocalization. High collision rates prevent the system
from stabilizing in a localized state, continuously redistributing the excita-
tion across the chain. The comparison between homogeneous (ν ≫ 1) and
heterogeneous (ν ≤ 1) noise regimes reveals distinct transport behaviors. In
fact, for homogeneous noise, collisions occur at regular intervals, leading to
predictable dephasing effects and smoother transitions between localization
and delocalization. In contrast, heterogeneous noise introduces temporal
variability in collisions, resulting in intermittent localization and a more ir-
regular evolution of the IPR. This highlights the role of noise structure in
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modulating transport dynamics.

3.2 Multiple excitations

To shape our understanding of the system’s dynamics, we analyze the case
of multiple excitations. This introduces additional complexity since interac-
tions between the excitations mediated by anisotropy, disorder, and noise,
play a critical role in determining the transport and localization behavior.
We systematically analyze how these interactions evolve over time and their
dependence on the collision rate rc, the disorder range constant h, the shape
parameter ν, and the anisotropy ∆. Before proceeding with this program,
following the outcomes of [16], we first analyze how the anisotropy affects the
delocalization behavior. This will allow us to identify the most interesting
regimes to zoom in. For more than one excitation IPR is no longer suited
and, following [16], we resort to the Inverse Ergodicity Ratio (IER).

3.2.1 Effect of anisotropy for two excitations

To capture these effects, we consider two distinct initial configurations for
just two excitations: adjacent to each other and separated by two spins,
respectively.

We show in Fig. 3(a) the time evolution of the IER for two excitations
initially injected at a distance of two spins apart in a system of N = 20 sites,
subjected to collision rates rc (from 0 to 1) at fixed temporal homogeneity ν =
100, anisotropy ∆ = 2.5, and a high disorder range h = 10. The general trend
indicates that lower collision rates (rc ≪ 1) lead to prolonged localization
with the IER remaining closer to 1: the system’s state is dominated by a
limited number of basis configurations. As rc increases, the IER decreases
more rapidly over time, signaling enhanced delocalization due to frequent
noise-induced perturbations. For intermediate collision rates rc ∼ 0.5, we
observe a gradual reduction of the IER, while for higher rates rc ≥ 1, the
system rapidly approaches ergodic behavior. For completeness, we display in
the inset of Fig. 3(a) the magnetization spread at fixed collision rate rc = 0.1,
the other parameters being unchanged.

Consistently with the single-excitation scenario, the emergence of plateaus
in the IER remains evident in the presence of noise. However, we now see
that the plateaus are stabilized by the anisotropy interaction term even for
lower disorder (small h values) when the excitations are injected next to each
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Figure 3: Effect of anisotropy: the case of two excitations. Inverse Ergodicity
ratio (IER) with associated magnetization, plateau length and delocalization
time τ for a spin chain of N = 20 sites and final time of simulations tJ = 30.
(a) IER vs time tJ for different collision rates rc with anisotropy strength
∆ = 2.5. Inset: magnetization map over sites i and time tJ , showing the
spreading of the two excitations over time. The two neighbouring excitations
are initially separated by two spins with very homogeneous collisions over
time (ν = 100) and high disorder range with h = 10. The IER has the same
trend of the IPR and we focus here on the collision rate regime 0 ≤ rc ≤ 1,
proved to be more interesting due to the formation of plateaus. For lower
collision rates (rc ≪ 1) the systems remains localized (IER closer to 1), while
increasing rc leads to a faster delocalization (IER decaying to its limit). (b)
IER vs tJrc varying the collision rate parameter 0 ≤ rc ≤ 1, at fixed high
time-homogeneity (ν = 100), high disorder strength (h = 10), and in the
presence of anisotropy, considering two excitations initially separated by two
spins.
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We see that all curves collapse in the region where plateaus are present
since they are naturally shifted with respect to each other. (c) 3D plot of
plateau length L in terms of tJ vs disorder range h ∈ [0, 10] and collision rate
rc ∈ [0, 1]. (d) 3D plot of the complete delocalization time τ vs h ∈ [0, 10]
and rc ∈ [0, 10]. The plane rc = h separates high τ regions from the small
τ ones. In (c) and (d) different colors and shapes for the symbols represent
different levels of collision time-homogeneity (colors) and anisotropy (shapes)
as in the legend. Also, we show data from two excitations initially injected
both next to each other and separated by two spins. The simulations were
performed with M = 250 trajectories and dt = 0.02.

other (see also the difference between Fig. 7(a) and Fig. 7(b) in Appendix
B). This suggests that when more excitations are present, anisotropy works
to favor the system localization.

In contrast, an increase in the collision rate promotes transport by break-
ing the pinning of the excitations, an effect facilitated by noise. This can
be seen as a manifestation of stochastic resonance, in fact happening also
without disorder [16]. In addition, in the case of two separated excitations at
the beginning, the presence of anisotropy doesn’t modify the IER behaviour
for small values of h.

Consequently, we come to the conclusion that when the two excitations
start next to each other and the presence of interaction is significant, the
IER behaviour is affected even for weaker disorder. Instead, when they start
separated, the impact of their interaction can be considered a sub-leading
effect, not significantly affecting the IER. We notice from Fig. 7(a) that for
larger collision rates, before the plateaus are well developed, the IER curves at
different rc values tend to collapse, indicating indeed that delocalization gets
progressively insensitive to collision events once these become more frequent.
It is therefore natural to ask whether a similar universal-type behavior can
be identified also in the regime of rare collision events. To this aim, we show
the same data in Fig. 7(b) but now with time rescaled with rc. We indeed
see that all curves collapse in the region where plateaus are present. This
occurs because the plateau length scales as 1/rc and the different curves are
thus naturally shifted with respect to each other.

To have a complete understanding of the plateaus formation, we system-
atically explored how all the governing system parameters (disorder, time
and space homogeneity, and anisotropy) affect the degree of localization.

13



Our findings are summarized in Fig. 3(c)-(d), highlighting an intricate inter-
play in shaping the localization dynamics. Fig. 3(c) depicts in a 3D plot the
plateau width as a function of the collision rate rc and the disorder range
constant h, while varying the shape parameter ν and the anisotropy ∆, as
depicted in the legend.

Overall, our results reveal that delocalization is facilitated by conditions
that minimize the stabilizing effects of disorder and anisotropy. Low disor-
der levels (h ≪ 10) and weak anisotropy allow noise-induced scattering to
overcome any tendency toward localization, especially when combined with
a higher collision rate (1 ≤ rc ≤ 10), which disrupts coherent trapping mech-
anisms. Furthermore, lower values of the shape parameter ν, corresponding
to temporally heterogeneous noise, contribute to more dynamic and irregular
scattering events, also promoting delocalization. In contrast, higher levels of
disorder (h ≥ 10) and anisotropy, coupled with lower collision rates (rc ≪ 1),
result in a pronounced localization. In this regime, disorder-induced traps
dominate the dynamics, leading to extended plateaus where the system re-
mains effectively localized over long timescales. We observe that the length
of these plateaus scales inversely with the collision rate (∼ 1/rc), consis-
tently with the one excitation case: indeed low collision frequencies allow
the system to persist in localized configurations for extended periods before
noise-induced delocalization sets in.

These outcomes can be visualized also in the behavior of the complete
delocalization time τ , displayed in a 3D plot Fig. 3(d) again vs disorder
range h and collision rate rc, and for different values of time-homogeneous
shape parameters ν and anisotropy ∆ as in the legend. We identify four
regimes, labeled with (1)-(4). (1) refers to low disorder range h ≤ 1 with
the highest shape parameter ν = 100 and two values of anisotropy regimes
in the collision-rate range 0.1 ≤ rc ≤ 1. Additionally, this regime extends to
any disorder range when the shape parameter is high, considering the same
anisotropy values in the high collision-rate range 1 ≤ rc ≤ 10. This behavior
closely resembles the case without disorder ([16]) in which the complete delo-
calization of the excitation occurs at finite time (here, tJ << 30). (2) refers
to intermediate disorder range h = 5 and varying collision rate rc, time homo-
geneity ν, and anisotropy ∆. In this case, the complete delocalization time
is τ < 30. (3) refers to intermediate to large disorder bandwidth 1 < h < 10
and the other parameters varying as in the legend. This regime is charac-
terized by complete delocalization occuring at time τ ∼ 30. In particular,
we see that the case with h = 5 and the two excitations initially injected

14



next to each other, correspond to the formation of plateaus even with small
values of disorder, thus a longer τ . Finally, (4) refers to high disorder with
h = 10, high collision time homogeneity ν = 100, two different anisotropies
and collision rates 0.1 ≤ rc ≤ 0.5. Here, we see the longest τ with the forma-
tion of the longest plateaus. We conclude that delocalization is facilitated by
low levels of disorder, anisotropy, and time homogeneity, along with a higher
collision rate (1 ≤ rc ≤ 5). Instead, higher levels of disorder and anisotropy,
coupled with a lower collision rate, lead to more localized behaviour, with
the size of the plateaus scaling as 1/rc. Using the plane rc = h as a reference,
we observe that for rc < h, the complete delocalization time remains high,
while for rc > h, τ is significantly reduced. This behavior resembles the case
without disorder, where the complete delocalization time was indeed limited
to τ ≤ 5.

3.2.2 The full picture

We are now ready to get the full picture, extending our investigation to
explore the more general case of multiple excitations within the disordered
and noisy spin chain.

To this aim, we shrink our spin chain to N = 8 and inject Nexc = 4
into the system, starting all next to each other to take into account the case
where anisotropy plays a role. As we learned from Sec. 3.2.1 indeed, we
restrict the parameter range to the most significant behavior. To sum up,
this is for space-homogeneous (e.g. ν = 100) collisions happening at low rates
(0.1 ≤ rc ≤ 5), high disorder range bandwidth (e.g. h = 10) and anisotropy
as large as ∆ = 2.5.

We display in Fig. 4(a) the time evolution of the Inverse Ergodicity Ratio
(IER) up to enough long time tJ = 1000, to let the system evolve and
potentially reach a delocalized state. We see that for low collision rates
(rc ≪ 1) combined with time-homogeneous collisions, (ν ≫ 1), the system is
localized over a significant portion of the evolution, especially in the presence
of anisotropy and high disorder (h ≥ 10). In such conditions, the interplay of
disorder, anisotropy, and noise stabilizes localized states delaying the onset
of delocalization as it is zoomed in the inset. In this case, the height of
the plateaus is shorter compared to the case of one and two excitations and
complete delocalization is more difficult to reach. Thus, only at very late
times does the IER approach its asymptotic value, indicating that the system
has completely delocalized.
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To gain insight on the underlying spatial behavior, we look in Fig. 4(b)
at the spread of magnetization over time, displayed as a color plot. We see
that for low collision rates and high time-homogeneous collisions, the mag-
netization piles up for extended periods in specific regions of the spin chain,
highlighting the system’s localized nature. Anisotropy and disorder favor the
pinning of excitations to certain sites. As time progresses, however, collisions
eventually disrupt these pinned configurations, leading to gradual spread of
magnetization across the chain. Delocalization is however significantly de-
layed under these conditions, requiring long timescales for the system to be
fully delocalized.
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(b)

Figure 4: Case of multiple excitations. Inverse Ergodicity Ratio (IER) (a)
and color plot of the magnetization (b) for a spin chain of N = 8 sites
and Nexc = 4 excitations starting in the middle sites, time-homogeneous
collisions ν = 100, with high disorder range width h = 10 and anisotropy
strength ∆ = 2.5. (a) IER vs time tJ for different collision rates rc in the
interesting regime as in the legend. (b) Spread of magnetization over time
tJ and sites i in the interesting regime of low collision rates, here e.g. with
rc = 0.1. We can overall see that low collision rates (rc ≪ 1) combined with
time-homogeneous collisions (ν = 100) lead the system to remain localized
for a significant time, prolonged also by the presence of anisotropy and high
disorder. Only at very long times the IER approaches its asymptotic value,
signaling full delocalization. The simulations were performed with M = 250
trajectories and dt = 0.02. Final time is tJ = 1000.

16



3.3 Entanglement Entropy

To complement the studies based on local observables, in this section we an-
alyze the behavior of entanglement as a measure for thermalization dynamics
in our spin chain. We focus on the case of two excitations injected into the
system next to each other, that is the most interesting situation found in
previous sections, where disorder, noise and coupling between spins signifi-
cantly affected the delocalization behavior. We limit to two excitations for
computational ease, having now clear what does change from two to more.
Finally, we again zoom the parameters in the interesting range emerged in
Sec. 3.2.1, that allows the emergence of plateaus and non-continuous tem-
poral profiles of transport: this is low collision rates, e.g. with rc = 0.1,
large disorder range e.g. with h = 10 and important anisotropy e.g. with
∆ = 2.5. Finally, we now want to check the dependence on the noise space-
homogeneity by letting the shape parameter ν vary from absence of noise
(ν = 0), heterogeneous collisions over time (ν ≤ 1) and time-homogeneous
collisions (ν = 100).

We then evaluate the Von Neumann entropy of the corresponding reduced
density and present in Fig. 5 the time evolution of the entanglement entropy
SvN(t) in log scale.

In general, we expect that the low density of excitations limits the number
of degrees of freedom available for generating entanglement: fewer interacting
particles results in less correlations. Furthermore, we have moderate trans-
port of information due to the presence of disorder, anisotropy and noise,
which limits the spread of quantum correlations throughout the system. In
the absence of noise ν = 0, we observe in Fig. 5 a flat line over time, apart
from some fluctuations. In fact, without noise driving perturbations that
can diffuse correlations over the spin chain, the system persists in a coherent
and localized state dominated only by the effects of disorder and anisotropy.
For time-heterogeneous noise (low values of ν) the behavior of the entangle-
ment entropy SvN(t) is logarithmic, with a slow growth consistent with the
breaking of a MBL-like regime with diffusive transport. Even with increas-
ing collision time-homogeneous stroboscopic noise (ν = 100), we observe the
ability to also disrupt localization with the formation of plateaus. While
delocalization is slower, we can tailor its rate by modifying the timescales of
the plateaus as discussed in the previous sections. These plateaus are clearly
visible in the inset picture in Fig. 5, in linear timescale in a reduced time
range.
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Figure 5: Entanglement Entropy and dependence on noise space heterogene-
ity. SvN vs time tJ in a log scale for different levels of collision-time homo-
geneity ν and fixed low collision rate rc = 0.1, large disorder range h = 10
and anisotropy ∆ = 2.5 in the interesting plateaus regime, for a disordered
spin chain of N = 20 sites and two injected excitations starting next to each
other. Inset: same in the main figure, but in linear scale. The plot shows
the mean SvN over 25 of the total M = 250 trajectories.

4 Discussion

In this study, we analyze how coherent and dissipative couplings can manip-
ulate the transport properties and thermalization of a noisy, disordered XXZ
spin chain using stochastic collisional noise to simulate the interactions with
its environment. We identify relevant regimes in the rich landscape deter-
mined by the interplay between disorder, anisotropy, and collisional noise to
shape the localization/delocalization transitions and the specific transport
rates.

From the simplest one excitation case, see Sec. 3.1, we found that disor-
der tends to suppress transport through interference, which competes with
collisional noise while the latter introduces dephasing, thus facilitating de-
localization, instead. One first relevant message emerging from our study is
that among these competing mechanisms, low collision rates (rc ≪ 1) favor
the occurrence of localized regions in the form of Inverse Participation Ratio
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(IPR) plateaus in time windows where collisions are absent. Interestingly, the
length and rate of these plateaus depend directly on noise parameters with
a universal scaling, allowing to systematically tailor sequences of transport
and localization that can be applied for example to stroboscopic protocols
in quantum technologies. At higher collision rates (rc ≥ 1) instead, frequent
collisional events completely disrupt localization, driving the system toward
a diffusive regime characterized by smooth evolution of IPR over time, even
for moderate levels of disorder range.

From the case of several excitations, see Sec. 3.2 and Appendix B, we
learn that additional features emerge due to interactions among excitations.
In particular, more localized regions in the form of plateaus appear even for
the tiniest levels of disorder range.

However, we still find that increasing collision rates (rc > 1) disrupt
localized states, promoting transport. We demonstrate the role of noise in
overcoming pinning effects, down to complete delocalization in a short time τ ,
similar to what we found in the absence of disorder [16], where the complete
delocalization times did not exceed tJ = 5.

In addition, we also find regimes of tunable transport and the presence of
plateaus, in fact even at higher densities. In regimes with low collision rates,
high shape parameter, and high disorder, entanglement entropy exhibits slow
logarithmic growth, suggesting many-body localization behavior. This is
consistent with the presence of localized states that prevent rapid spread
of information. Instead, for collisions heterogeneous in time, entanglement
entropy more rapidly grows. Thus, homogeneous noise leads to smoother
entropy dynamics.

Our analysis is of relevance for quantum technologies applications. For
instance, in quantum circuits, where the efficiency of information flow di-
rectly impacts computational performance, optimizing transport is funda-
mental [47]. In addition, energy devices like quantum batteries and quan-
tum heat engines could benefit from noise-engineering in order to enhance
their performance in terms of efficiency and stability [23, 24]. Also, the
precise manipulation of spin transport in systems such as NV centers in di-
amond has already enabled ultra-sensitive magnetic field measurements for
quantum sensors and processors [48, 49]. Furthermore, understanding how
localization-delocalization transitions arise in the presence of noise could help
designing novel materials with tailored transport properties [50].

Noise-disorder engineering could be used to optimize energy transport in
artificial photosynthetic complexes which could use controlled noise to en-
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hance excitonic energy transfer, mimicking the noise-assisted transport ob-
served in natural photosynthesis. In addition, in biological systems, where
energy transfer is influenced by disorder and environmental fluctuations, tai-
loring noise properties at microscopic level could help to balance localization
and delocalization effects, aiming at maximizing efficiency. This offers means
to control energy flow in quantum networks, by tuning the connectivity and
interaction strength between nodes. Along these lines, the development of
programmable quantum devices could be facilitated where energy or quan-
tum information is routed dynamically.
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Appendix A. Imbalance

In addition to IPR and IER, in the presence of disorder, the imbalance I(t)
provides a descriptive figure of merit of the system’s relaxation dynamics.
Indeed, we can write this figure of merit as:

I = ne − ño, (5)

where ño = no/N − 1, N is the number of sites and ne(no) is the density of
even (odd) particles.

This definition incorporates the requirement that at time t = 0 the ex-
citations are only present on site(s) ne and imbalance I = 1. After letting
the system evolve, the excitation will spread through the system to a certain
degree depending on the system parameters. In a delocalized regime we have
ne = 1/M and no ∼ 1/M , leading to I = 0.

In Fig. 6, we analyze the time evolution of the imbalance I(t) for a
disordered spin chain with N = 41 sites, one excitation starting in the middle
of the chain and shape parameter ν = 100. In particular, Fig. 6(a) shows
how the Imbalance behavior varies over time for different collision rates while
Fig. 6(b) shows how it varies for different disorder range constants at fixed
rc = 1. The imbalance I(t) quantifies the difference in population between
the initially occupied and unoccupied regions of the chain, providing insight
into the dynamics of the localization and delocalization of the system. For
low collision rates (rc ≪ 1), the imbalance decays very slowly over time,
reflecting strong localization induced by the combined effects of disorder and
anisotropy.

As the collision rate increases (rc ∼ 1), noise events become more fre-
quent, leading to a faster decay of I(t). This behavior is indicative of an
improved delocalization, where excitation spreads more uniformly across the
chain, erasing the initial population imbalance. The results highlight the
critical role of collision rates in modulating transport properties: low rates
stabilize localized states, while higher rates facilitate noise-assisted transport.
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Figure 6: Imbalance for the One excitation case. (a) Imbalance for a spin
chain of N = 41 sites and Nexc = 1 excitations starting in the middle of
the chain, shape parameter ν = 100, disorder range constant h = 10 and
interaction strength ∆ = 0 for different collision rates. Final time is tJ = 30.
(b) Imbalance versus time for a spin chain of N = 41 sites, one excitation,
different disorder range constants at fixed collision rate rc = 0.1, shape pa-
rameter ν = 100 and anisotropy ∆ = 0. The simulations were performed
with M = 500 trajectories and dt = 0.02.

Appendix B. Two excitations next to each other

Here, we show additional results for the case of two excitations injected into
the disordered spin chain. In particular, we present here what happens when
anisotropy plays a more fundamental role in the dynamics of the system, by
analyzing the Inverse Ergodicity Ratio (IER) under varying disorder regimes
and excitation configurations. For excitations starting next to each other
(Fig. 7(b)), anisotropy amplifies the formation of plateaus in the IER, even
for low disorder levels. In contrast, when the excitations are initially sep-
arated (Fig. 7(a)), the effects of anisotropy are subdominant, with the dy-
namics primarily governed by disorder and noise. These results reinforce the
particular interplay between noise, disorder, and anisotropy in modulating
transport properties, offering further insights into the mechanisms driving
localization and delocalization transitions. The plots are for a spin chain of
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N = 20 sites, at fixed rc = 0.1, ν = 100, ∆ = 2.5, varying the disorder range
constants between 0.1 (low disorder) and 10 (high disorder).

Figure 7: Two excitations case. Inverse Ergodicity ratio (IER) for a spin
chain of N = 20 sites and final time of simulations tJ = 30. (a) IER vs
time tJ for different disorder range constants at fixed rc = 0.1, ν = 100,
∆ = 2.5 for two excitations starting initially separated by two spins and (b)
two excitations starting next to each other. The simulations were performed
with M = 250 trajectories and dt = 0.02.
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