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Abstract: The study of noise assisted-transport in quantum systems is essential in a wide range
of applications, from near-term NISQ devices to models for quantum biology. Here, we study
a generalized XXZ model in the presence of stochastic collision noise, which allows describing
environments beyond the standard Markovian formulation. Our analysis through the study of
the local magnetization, the inverse participation ratio (IPR) or its generalization, and the inverse
ergodicity ratio (IER) showed clear regimes, where the transport rate and coherence time could be
controlled by the dissipation in a consistent manner. In addition, when considering various excitations,
we characterized the interplay between collisions and system interactions, identifying regimes in
which transport was counterintuitively enhanced when increasing the collision rate, even in the case
of initially separated excitations. These results constitute an example of an essential building block
for the understanding of quantum transport in structured noisy and warm-disordered environments.

Keywords: open quantum systems; stochastic collision models; quantum transport in noisy media;
quantum biology; quantum spin models

1. Introduction

Novel technological developments in quantum mechanical systems have allowed
including the effects of dissipative coupling to the environment, providing not only a more
realistic characterization of the hardware [1–3], but also, with the current level of control
and tunability, giving access to novel non-equilibrium physical phenomena not appearing
in closed systems: from the engineering of new states of matter [4,5] or the observation
and description of dissipative phase transitions [6,7] to the control of dynamical rates [8,9],
with examples in discrete [10–12] and continuous systems [13,14], among many other
applications. In addition, the study of transport in noisy media has become essential for its
potential applications in the description of biological systems. Following the discovery of
long-coherence times at room temperature in complexes involved in photosynthesis [15],
only possible with the development of femtosecond two-dimensional spectroscopy meth-
ods [16–19], a large community has formed to question whether nature exploits the presence
of coherent and dissipative couplings to further enhance efficiency [20,21].

In this context, we are interested in the phenomenological description of transport
phenomena, with the use of the toolbox provided by open quantum systems. In particular,
we focus on bath descriptions that allow for flexible couplings and architectures that and are
compatible with noisy intermediate-scale quantum (NISQ) technology applications. As a
result, we focus on the use of quantum collision models and repeated interaction schemes [22–32].
This discrete bath description consists of itinerant degrees of freedom (d.o.f.) that interact
instantaneously and one at a time with the system or a part of it. As a result, this it suitable
for describing discrete lattice system or quantum computing (QC) devices. Importantly, it
also bears strong similarities with biological systems, where the collisions with ancillary
systems can provide a good approximation of the noise present in those warm media.
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Thus, these models represent an efficient approach to building effective models for the
description of such biological systems [33,34] that are also compatible with current NISQ
devices for simulation.

Moreover, some of these applications have more recently been equipped with a toolbox
of complex networks [35], creating a platform to study both the underlying microscopic
transport phenomena, together with the emergence of macroscopic properties, and leading
to the development of a generalized theory composed of both quantum and classical
tools [36]. The study of these networks and their transport properties, in their classical
and quantum version, is referred to as quantum walks [37]. Dissipative versions of these
problems, more recently developed, are being exploited to also tackle problems relevant to
biology [38,39].

Inspired by these lines of research, in this work, we consider a specific sub-branch
of collision models, the stochastic collision models (SCM) [33,40–43]. In this formulation,
the collisions are governed by a stochastic process and the unraveling of the evolution
of the system can be described in terms of individual random realizations, which are
tightly bound with individual runs on a given QC hardware. As our aim is to consider
the most general noise distribution, we take inspiration from [33] and resort to the use
of Weibull renewal processes [44] as our stochastic distribution for a general and tunable
noise description. In fact, this distribution allows exploring a variety of bath-induced
noise regimes, by tailoring both the rate of collisions over time and their space and time
homogeneity. This model allows exploring non-trivial structured baths via stochastic
sampling [33,40,45] with a simple theoretical description comparable to other stochastic
unravelings in standard Markovian dynamics [4].

Furthermore, quantum spin models have been used as buildings blocks for the study
of these natural networks [21] with architectures often based on the specific biological
complex involved [33]. In our case, we instead consider an anisotropic linear chain, with
the idea of reducing the impact of the network topology and isolating the role of the
dissipative coupling in the transport. In particular, in this work, we investigate a paradig-
matic quantum spin chain given by the Heisenberg XXZ model [46–48], motivated by
both its applicability to describing phenomenology in other biological systems, such as
neuroscience of perception [49], and also, given its integrability, its historical use in the
study of transport [50,51]. Thus, in this work we combine this quantum spin model with
the SCM to investigate the quantum transport of spin excitations and to also access the
interplay between coherent and dissipative dynamics in the presence of anisotropy, leading
to spin–spin interaction.

This paper is structured in the following manner: In Section 2, we present the spin
model and the details of the noise implementation, together with the state of the art in the
understanding of transport slowdown via dissipation. In Section 3, we present the transport
analysis, while varying the noise parameters: we build an understanding for the case of one
single excitation, before extending to several interacting excitations. From our analysis, we
show that noise can be engineered to control the system transport properties. While normal
structure-less noise leads to transport slowdown [13], we find specific regimes where we
can minimize this effect, tailor the amount of coherent oscillations of the dynamics, or
even enhance transport in the case where the excitations are pinned together due to the
spin–spin interaction. Finally, in section 4 we discuss our findings and potential future
directions linked to disordered systems and complex networks.

2. Model and Numerical Method

Here, we consider an integrable generalization of the Heisenberg spin chain that
accounts for uni-axial anisotropy in the spin interaction, generally on the z-axis, and
described by the Hamiltonian [48]:

HXXZ = J
N−1

∑
i=1

[
σx

i σx
i+1 + σ

y
i σ

y
i+1 + ∆σz

i σz
i+1

]
+ h

N

∑
i=1

σz
i , (1)
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with open boundary conditions (OBC). Here, N represents the number of spins, J is the
exchange constant, anisotropy is represented by the parameter ∆, with h representing a
generic transversal field. This is schematically shown in Figure 1. In the limit of moderate
interaction ∆, the sign of the coupling J determines the ground state properties of the
system, which develops a ferromagnetic (J > 0) or anti-ferromagnetic (J < 0) order. Instead,
when considering time-evolution or quench dynamics, we can see J as the tunneling rate of
an excitation or spin flip.

Figure 1. Concept of the model. (a) Diagram of an anisotropic spin chain with exchange rate J
and interaction strength ∆ subject to stochastic collisional noise. Over time, individual ancillas
(green circles) collide with individual spins in the chain with characteristic times τi; (b) The noise
distribution governing the collisions in Equation (3) can be tuned to be strongly space and time
heterogeneous. In particular, on the left-hand side we observe temporal and spatial homogeneity
due to the high values of ν, while on the right-hand side, for small values of ν, we have strongly
temporal heterogeneity; (c) Time evolution of the local magnetization ⟨σz

i (t)⟩, depicting the spreading
of the initial excitation (spin defect at the central site) as we increase the collision rate rc = 0.5, 10, 100
(top to bottom) with a fixed shape parameter ν = 100 (time homogeneous noise) for a system with
N = 41 spins. We observe that, similarly to the case of Markovian dephasing, the spreading velocity
decreases with the increasing dissipative rate. (d) Phenomenology of transport slowdown due to
dephasing between the ballistic regime (rc ≪ 1), where the system presents linear spreading (∝ t)
and a diffusive regime (rc ≥ 1), leading to slower propagation (∝ t1/2), both appearing at long
times/distances in Markovian dynamics.

Unless stated otherwise, we work at fixed J = 1 as our frequency unit and choose
h = 0, focusing on the case with ∆ > 0 and making use of the following system’s symmetry:

[HXXZ, Sz] = 0, (2)

meaning that the global magnetization along the z-axis, Sz = ∑i σz
i /2, is preserved.

In order to incorporate the effects of noise, we introduce the environment via a
discretization, using the so-called quantum collision models [52–55], see Figure 1a. In
particular, we focus on one of their sub-branches: stochastic collision models [33,40,56,57].
In these models, the collisions are governed by a stochastic process, and the unraveling of
the system’s evolution can be described in terms of single individual realizations. In this
type of framework, it is possible to introduce any probability distribution to describe the
collisional rate. Since we are interested in understanding the role of the noise parameters in
transport and the time evolution of the system, we consider, as in [33], a flexible distribution
given by a Weibull distribution [44]:

p(t) =
ν

µ

(
t
µ

)ν−1
e−(t/µ)ν

, (3)

where ν ≥ 0, the shape parameter, and µ > 0, the scale parameter, are the collision
parameters of the distribution. The shape parameter controls the temporal heterogeneity
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of the noise, (see Figure 1b), describing heterogeneous collisions over time for ν ≤ 1 and
temporal homogeneity for ν ≫ 1, as the intercollision time becomes constant. In contrast,
the scale parameter is related to the overall collision rate, which we define below:

rc =
1

τth
=

1
µ Γ (1 + 1/ν)

, (4)

with τth describing the mean collision time and Γ describing the Γ function obtained by
evaluating

∫ t
0 τp(τ)dτ = Γ(1 + 1/ν) from Equation (3). As these rates can be tuned locally,

changing the shape νi and scale µi parameters for each individual chain element can create
not only temporal but also spatial heterogeneity in the system.

Now focusing on the evolution of the system, it is important to note that it is not
possible to derive a GSKL-like master equation, as in the case of the Poisson distribu-
tion [40], for a Weibull distribution given by Equation (3). Despite this difficulty, it is still
possible to describe the evolution in terms of quantum channels, see [33,40], and relying on
stochastic unraveling.

To do so, we initialize a list S̄ containing the first collision time of each site, randomly
sampled from our distribution, and extract from it Si = min(Sj | ∀ j ∈ [1, N] ), the shortest
waiting time before a collision. We then evolve the density matrix by computing its
evolution until the time of the first collision, i.e., ρ(Si) = e−iH(Si−t) ρ(t) eiH(Si−t). At this
time, we apply the quantum channel

Φ[ρ(Si)] = Tr[Ucoll(ρa ⊗ ρ(Si))U†
coll] , (5)

with Ucoll = exp
{
−i(π/2)σx

a ⊗ σz
i
}

representing the collision event and Si being the short-
est waiting time before a collision. Note that here we have chosen the collisional event to
produce dephasing in the system—as this is proportional to σz

i in the system. Thus, we are
modeling a type of collision in which the interaction with the ancilla uncorrelates the system
from other local d.o.f., while the same formalism can be adapted to other phenomena, e.g.,
collisions leading to the loss of the excitation (∝ σ−

i ).
After the computation of the first collision event, we can continue the process and

redraw from the distribution in Equation (3) the next collision time for the i-th site, which
will be Si = Si + τ, with τ a random time sampled from the distribution; note that this
would in general differ from its average, given by the mean collision time τth. We then
update S̄ and extract the next collision time S′

i , and distinguish two situations: if t + dt,
with dt our numerical timestep, is larger than the new S′

i , we repeat the corresponding
application of the new quantum channel; otherwise, we proceed with the time evolution by
simply computing ρ(S′

i) = e−iH (S′
i−t)ρ(S′

i)e
iH (S′

i−t) and then apply the quantum channel.
By iteratively repeating this process, we can compute the time evolution of the system up
to the desired time T.

3. Results

In this section, we present the results of our numerical analysis of the transport
behavior and relevant observables quantifying it. Since we consider OBC, we will refer
to the final time of the simulations t f as the last time step at which the spreading of the
magnetization is computed, given by the time at which the magnetization probability differs
from its initial value in the boundary sites to minimize the finite size effects. After our
numerical convergence analysis (see Appendix A), we concluded that choosing dt = 0.02
and the number of stochastic realizations M = 500 provided us with reasonable results in
every noise situation.

We start from an initial configuration with one (more) excitation(s), given by a flipped
spin in a completely polarized state in the central site(s). Then, we analyze the rate of
spreading of the magnetization as a function of the system and noise parameters. We expect
to observe that the transport is generally slowed down when increasing the number of
collisional events, as shown in Figure 1c, so that we consider the limits of ballistic (rc ≪ 1)
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and diffusive (rc ≥ 1) transport regimes, see Figure 1d. While these have been observed in
open systems and are well-characterized for structureless noises [13] and for other related
systems [58,59], here, we want to generalize the study to more complex noise scenarios for
the integrable XXZ chain.

3.1. One Excitation

We now study how varying both our collision parameters, ν and rc, affects transport,
as shown in Figure 2. In general, as would be the case in a standard Markovian regime, we
see that increasing rc towards the diffusive regime decreases the transport speed. As the
collisions are more frequent, the transport rate is reduced by the projective nature of the
collisions, leading to a transport slowdown, which asymptotically leads to the quantum
Zeno [11,13] regime and the freezing of dynamics. By analyzing the magnetization on the
central site, see Figure 2a, we can observe that for time-heterogeneous noise (low ν) the loss
of coherence is significant and occurs already at tJ ∼ 2. For noise uniformly distributed
in time (high ν), instead, the oscillatory behavior highlights that some level of coherence
is preserved, especially in the low-noise limit (low rc) for the studied times. Thus, we can
conclude that the homogeneous regime, closer to the Markovian limit, preserves stronger
levels of coherence in the system (for equal rc), due to the fact that collisions occur on
average in orderly time intervals.

<latexit sha1_base64="pY2BocvbjlMmkrgWflOGF/OIhjc=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmoTk8rw2rNbthzkWVwCqhBodaw+jkYRSwJURomqNZ9x46Nm1JlOBM4qwwSjTFlEzrGfoaShqjddL7rjJz4kSImQDJ//86mNNR6GnpZJqQm0ItePvzP6yfGv3ZTLuPEoGRZJPP8RBATkbwyGXGFzIhpBpQpnm1JWEAVZSY7TF7fWSy7DJ2zhnPZuLg/rzVvikOU4QiOoQ4OXEET7qAFbWAQwDO8wbs1tp6sF+v1J1qyij+H8EfWxze0A4r9</latexit>
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(c)

Figure 2. Transport of a single excitation. Magnetization and inverse participation ratio (IPR)
evolution in a system with 41 spins and ∆ = 0. (a) Magnetization on the central site

〈
sz

21
〉
=

〈
σz

21/2
〉
,

where the excitation starts, versus time with varying collision parameters, rc and ν. Notice that in
general, increasing rc values correspond to decreasing transport speeds. (b) IPR versus time with
varied collision parameters, rc and ν. We observe a change in the transport rates with increasing rc

and also reduced coherence times with smaller ν. (c) IPR at time tJ = 4.5 versus ν and rc. Increasing
rc leads to larger IPR (slower transport), apart from the limit at low ν, and we find that the greater
effect occurs for shape parameters ν ∼ 5. Note that errorbars are included in the plot but their size is
comparable to the marker size. The simulation was performed with dt = 0.02 and M = 500 samples.

In addition to analyzing the local magnetization profiles, we quantify the delocaliza-
tion behavior and transport rate making use of the inverse participation ratio (IPR) [38].
The IPR is

IPR =
N

∑
i=1

⟨i|ρ(t)|i⟩2, (6)

where i represents the site index and |i⟩ represents the single-excitation localized states{
|i⟩ : |i⟩ = σ†

i |0⟩
⊗N

}
[33]. Thus, IPR is bounded between the complete delocalization

asymptotic value IPR = 1/N, and IPR = 1, corresponding to complete localization, i.e.,
when the excitation remains on a particular site of the network [38]. Therefore, the larger
the IPR, the more localized the excitation is over the lattice. We generally expect that, in the
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absence of dissipation, long-lasting Bloch oscillations will set in, while in the long-time limit
in the presence of dephasing, the excitation will spread over the lattice and coherence will
disappear, tending toward a configuration where the excitation is completely delocalized
over the chain. Thus, the rate at which we approach this state—and consequently the
evolution of the IPR—strongly depends on the noise parameters.

In Figure 2b, we provide an analysis of the IPR behavior with varied noise parameters,
and we identify different regimes. For fixed temporal heterogeneity with ν = 0.5, we
observe that, in general, increasing rc implies a slowdown in the transport, as this is the
case of structureless noise and a quick damping of the oscillatory behavior. Note that the
IPR is less sensitive to coherence than the local magnetization, due to the fact that it is a
lattice-averaged measure. From the analysis of both magnetization and IPR, we can see that
in the large rc = 100 and low ν regime, we have groups or bunches of ancillas interacting
with the system in short intervals of time. In these cases, the effect of subsequent ancillas
is small, given that the first has already projected and locally disentangled the system
and time is required for the system to rebuild entanglement. Thus, this regime presents a
lower effective rc and smaller noise sensitivity. In fact, this can be confirmed if comparing
datasets with the same rc but different ν. The case of noise uniformly distributed in time
(ν = 100), with collisions occurring on average at the same rate in each location, even
within individual realizations, has a notably smaller impact on the system coherence. Note
how these oscillatory behaviors have a frequency dependence on the value of rc, as we will
discuss in detail in Figure 3.

<latexit sha1_base64="pY2BocvbjlMmkrgWflOGF/OIhjc=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmoTk8rw2rNbthzkWVwCqhBodaw+jkYRSwJURomqNZ9x46Nm1JlOBM4qwwSjTFlEzrGfoaShqjddL7rjJz4kSImQDJ//86mNNR6GnpZJqQm0ItePvzP6yfGv3ZTLuPEoGRZJPP8RBATkbwyGXGFzIhpBpQpnm1JWEAVZSY7TF7fWSy7DJ2zhnPZuLg/rzVvikOU4QiOoQ4OXEET7qAFbWAQwDO8wbs1tp6sF+v1J1qyij+H8EfWxze0A4r9</latexit>

(a)
<latexit sha1_base64="V4tM1zRf5KEvpMesTkI8rN/5aL4=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmo7p1WhtWa3bDnIsvgFFCDQq1h9XMwilgSojRMUK37jh0bN6XKcCZwVhkkGmPKJnSM/QwlDVG76XzXGTnxI0VMgGT+/p1Naaj1NPSyTEhNoBe9fPif10+Mf+2mXMaJQcmySOb5iSAmInllMuIKmRHTDChTPNuSsIAqykx2mLy+s1h2GTpnDeeycXF/XmveFIcowxEcQx0cuIIm3EEL2sAggGd4g3drbD1ZL9brT7RkFX8O4Y+sj2+1g4r+</latexit>

(b)

Figure 3. Fast Fourier transform analysis for the single excitation case. Both of the time signals analyzed
were obtained by subtracting the curves corresponding to ν = 100 and ν = 1 at equal rc, and we have
removed the zero frequency component. The results correspond to a system with 41 sites, 1 excitation
and ∆ = 0. (a) FFT of the central magnetization signal (top panel) and the signal itself (bottom panel).
We observe that the main peak corresponds with the respective rc values, apart from some spurious
effects at low frequency. (b) FFT of the IPR signal (top panel) and the signal itself (bottom panel). We
confirm the presence of the largest peak at rc. The insets correspond to both spectra at low frequencies
to facilitate visualization.

If we analyze the results from fixed collision rates rc, for low collision rates (rc ∼ 0.5, 1)
we observe a moderate transport slowdown, less evident for smaller shape parameters, as
discussed before. With the presence of high-noise, we study up to rc ∼ 100, the transport
instead suffers a heavy slowdown.This effect is a manifestation of the quantum Zeno
effect [11], leading to the freezing of the transport.

We provide a summary of this behavior report in Figure 2c, where we display the
IPR at a given intermediate time (tJ = 4.5) versus ν and rc. There, we observe how (i) the
increase in the collisional rate rc leads to a general transport slowdown; (ii) while the
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shape parameters have a small impact on the transport rate, we observe clearly the change
in trend due to the effects at ν ≪ 1, where the effective rc is smaller (leading to smaller
values of IPR). We also find that for ν ∼ 5, with the specific value being a function of rc,
corresponds to the noise with a larger impact on transport, with a slow decrease towards
ν ≫ 1. This shows how, by tuning both ν and rc, there is a high degree of control of the
transport, with more tunability if we consider local-site-independent changes. We leave
this possibility to future studies.

In order to understand the coherent behavior observed in the time signals, in Figure 3,
we analyze the spectrum via the fast Fourier transform (FFT) of both the local magnetization
time evolution (Figure 3a) and the IPR time evolution (Figure 3b), to characterize the
oscillatory effects. In particular, in our analysis, we subtract the time-heterogeneous (ν = 1)
from the time-homogeneous (ν = 100) signal for the same collisional rate rc and search for
the main frequencies of the system, removing the DC component. From this procedure, we
can observe coherence-driven oscillatory behaviors in the system, with frequencies that
vary with rc and seemingly independent of ν. As we increase rc, oscillations are washed out
by the lack of coherence, and the strong damping of the dynamics making the main peak,
always at frequency ∼ rc, becomes smaller. However, this peak still corresponds to the main
frequency, apart from the DC component and some spurious effects at low frequencies.

3.2. Multiple Excitations

So far we have analyzed the role of noise in the transport but not yet considered
its interplay with other competing physical effects. Thus, we now add the effect of the
anisotropy ∆ to our study and consider how this nearest-neighbor interaction between
spins, which governs the interference effects between several traveling excitations, can
affect the transport in the system.

Given the exponential growth of the Hilbert space H, even within restricted magneti-
zation sectors, and our need to average over trajectories, which involve the evolution of
the operator ρ—whose dimension is (dimH)2—we reduced the size of the system when
studying more than one excitation. The smaller chain also exhibited faster convergence,
allowing reducing the required trajectories. Furthermore, given that we do not expect new
phenomena to appear for large rc where the Zeno regime dominates, we also restricted the
study to moderate collisional rates rc ≤ 5. Thus, we study the magnetization, its spreading,
and related observables for different noise structures after varying the anisotropy.

It is important to note that the IPR is defined in the case of a single excitation. Thus,
here, we need to generalize IPR to the case of a generic number of excitations. Several
extensions to the IPR have been discussed in the literature; e.g., through the introduction of
the generalized inverse participation ratio [60]. However, this quantity is computationally
costly and does not take advantage of the structure of our simulation.

Instead, we chose to introduce a new quantity, which we denote inverse ergodicity
ratio (IER):

IER(t) = ∑
j
⟨j|ρ(t)|j⟩, (7)

defined in terms of the multiple-excitation states |j⟩ that compose our computational basis.
In fact, this can be seen as a Fock basis for the occupation number:{
|j⟩ : |j⟩ = σ+

i1
σ+

i2
. . . σ+

iq−1
σ+

iq |0⟩
⊗N

}
, where the subscripts il indicate the sites in which we

have the q excitations, and the state index j runs from 1 to d = dimH.
The IER bounds, now, describe the following limiting behaviors: IER = 1/dimH

implies that the system is in a superposition of all the possible states in our reduced
magnetization sector basis, thus the state is ergodic [61]; IER = 1 instead refers to the case in
which the system is one out of these specific configurations, which forms part of our basis.
So, in analogy with the IPR, the states that are more delocalized (low IPR) are also the more
ergodic states (low IER).

Focusing on the study of the model with anisotropy ∆, we analyzed all the regimes of
noise structures and ∆. We here report on those that manifested interesting properties, as
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illustrated in Figure 4, for the simpler case of two neighboring excitations. In particular,
we show the spreading of magnetization, the evolution of the magnetization, and the
IER versus time when varying the two collision parameters rc and ν for two excitations
located in the middle of the chain (Figure 4a,b). In contrast with the case of a single
excitation, where no regimes of enhanced transport could be found, here in the presence
of large anisotropy ∆, increasing collision rates lead to sustained transport, with the noise
breaking the pinning of the excitations together, this can be seen as a manifestation of
stochastic resonance, which we refer to in the Discussion section. This important result
is also supported by the analysis of the case of weaker ∆ = 2.5, shown in Appendix B,
where the effect is still present, though less evident. We also observe some periodic effects
appearing at high ν (see the ν = 100 case in Figure 4b) with the main frequency component
at rc.

<latexit sha1_base64="pY2BocvbjlMmkrgWflOGF/OIhjc=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmoTk8rw2rNbthzkWVwCqhBodaw+jkYRSwJURomqNZ9x46Nm1JlOBM4qwwSjTFlEzrGfoaShqjddL7rjJz4kSImQDJ//86mNNR6GnpZJqQm0ItePvzP6yfGv3ZTLuPEoGRZJPP8RBATkbwyGXGFzIhpBpQpnm1JWEAVZSY7TF7fWSy7DJ2zhnPZuLg/rzVvikOU4QiOoQ4OXEET7qAFbWAQwDO8wbs1tp6sF+v1J1qyij+H8EfWxze0A4r9</latexit>
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(d)

Figure 4. Multiple excitations case. (a) Spreading of neighboring excitations with fixed ν = 100.
Here, we consider an initial state in which the excitations are located in the middle sites, with the
magnetization spreading over the chain with different rates, depending on rc. (b) Evolution of the
magnetization (top panel) and of the inverse ergodicity ratio (IER) (bottom panel) versus time for
different noise collisional rates rc and shape parameters ν as in the legend for two neighboring
excitations. We observe that noise prevents the pinning of the excitations. For the case of homoge-
neous noise, frequency-dependent modulations appear. (c,d) are the same as (a,b), with the two
excitations initially separated by three spins. From the transport side, we observe small changes with
rc. However, we find that noise can prevent coherent destructive interference, enhancing transport
in localized regions of the chain. This simulation was performed in a 20-site lattice, with ∆ = 5,
and varying the collision rate rc = 0.5, 1, 5. The numerical parameters correspond to dt = 0.02 and
M = 250 samples.

Since spatial separation of the excitations would drastically reduce their likelihood of
interfering, we consider the generality and robustness of these results by initially placing
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them at a fixed distance (see Figure 4c,d). In Figure 4c, we observe that noise can prevent
the certain destructive interference that appears due to coherence in the absence of noise
(or small rc). In this case, noise enhances the spreading in the central part of the system.
This could be useful in engineering irregular architectures beyond linear chains, to prevent
interference effects. By analyzing the magnetization and IER in Figure 4d, no important
differences are observed by increasing rc, apart from a small slowdown of the spreading,
in fact regaining a similar behavior of the single excitation case but with a smaller impact
from noise. We note that, unlike the case with two neighboring excitations, where the
transport was mostly prevented due to the anisotropy, here we observe differences with rc.
In particular, an increase in the collision rate rc quite rapidly breaks the coherence-driven
oscillations, mostly independently of the noise time-homogeneity.

4. Discussion

In this work, we have presented a simple framework for the study of transport
modulation via dissipation, with relevant applications not only in quantum technologies
but also in phenomenological studies for biology. We have explored how systematic tuning
over the noise parameters acting on our physical system can modify, in a controllable
manner, its transport properties. This was possible by exploiting a recently developed
method to describe open quantum systems, based on stochastic collision models (SCMs). This
description allowed us to tailor the noise, by tuning both the number of collisions occurring
over time and their time homogeneity. In so doing, we could access a large variety of
bath-induced noise regimes within a sustainable numerical approach. In particular, our
analysis of the noisy XXZ chain concluded that, even if structureless noise leads to the
unavoidable slowdown of dynamics [13], here it was possible to find regimes where the
transport and coherence time can be controlled by the dissipation in a consistent way.

More importantly, when considering several excitations, we found an interesting
interplay between collisions and excitation interactions due to anisotropy. From this
outcome, we identified regimes in which transport was enhanced when increasing the
collision rate. We could also highlight differences in the transport rate within certain parts
of the system, when the particles were not initially next to each other. This is a result of the
controlled destruction of coherence, which induces destructive interference that hampers
the transport in part of the system. All these results contrast with the single excitation or
low-anisotropy cases, in which, in general, the higher the presence of noise, the slower the
transport rate. In addition, since we observed that noise allows for a quicker spreading
in the central part of the system, this mechanism could prove useful when considering
more complex lattice topologies. These results, which may appear counterintuitive, can be
understood in the context of the long-standing interdisciplinary phenomenon of stochastic
resonance [62]. This phenomenon occurs when an increase in random noise causes an
improvement in signal transmission or detection performance instead of the expected
decrease. This effect is based on system nonlinearities and relies on the appearance of an
optimal level of noise that screens interference phenomena but does not strongly perturb the
system. Stochastic resonance has been observed in microscopic solid-state systems [63–67]
and biological systems, such as neuronal systems [68,69], as well as in classical signal
processing [70] and in plant media [71].

All in all, our results suggest that it is possible to find so-far unexplored scenarios
where noise can assist the system transport. This can be especially useful in the presence of
other competing mechanisms that prevent transport or have more complex connectivities.
Thus, our results can be relevant in the investigation of disordered systems [72], so far
also studied from the one-particle perspective through IPR [73] and in the context of open
quantum systems [74], as well as in randomly connected networks [33] relevant to biology
problems, where we could enhance and control transport using the engineering of collision
models. We believe our study constitutes one of first steps in building this understanding
and fostering this exploration.
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Appendix A. Convergence Analysis

In this section we summarize the numerical details of our simulations. We also provide
some examples of the relevant numerical analysis that preceded our study to ensure that
our results were computationally sound and method-independent.

First, it is important to note the choice for the final time of t f , for which the spreading of
the magnetization is computed in our simulations—for the given noise structure analyzed
or for one with faster spreading, if we were considering a comparison. We choose this time
t f taking into account that our chain is finite and we require that the excitation has not
already reached the boundary sites, to prevent the introduction of boundary effects. Then,
unless otherwise specified, the evolution was performed until the time step at which the
magnetization over the two boundary sites remained completely polarized down, as set
at t = 0.

Regarding the choice of dt, the presence of noise caused our observables to depend on
the particular trajectory, so our numerical parameter analysis was undertaken in terms of
the comparison of averages over samples with the desired parameters to be tested. To verify
the regime of convergence for both the timestep dt and the number of samples M with
varied noise structures, we chose the same system size of N = 41 sites as in the main text.
While this system size is not limiting given the fixed magnetization of our model, in longer
chains, the effects of the collisions would be more difficult to observe given the diluteness,
with a single excitation for most observables. Here, we analyzed the magnetization on the
central site because it is more subject to numerical parameters changes than lattice-averaged
quantities such as IPR.

In Figure A1a, we compare the magnetization on the central site
〈
sz

21
〉
, at given M

values and for different time steps dt, in one of the limiting cases of the noise parameters
with ν = 0.5, rc = 0.5 and ∆ = 0. In Figure A1b, we then report the opposite limit for the
cases of different noise structures: ν = 100, rc = 100, ∆ = 0. Please note that only these two
example convergence plots are reported for the sake of conciseness, but the procedure was
repeated for each noise regime.

As we can observe, the averaged observables obtained converged within M = 500 (we
provide 1000 for comparison) as they overlap within errorbars for every dt and for both the
noise structures analyzed. Thus, validating the choice of M = 500. Finally, we observed
good convergence for all the dt included and we chose an intermediate value dt = 0.02 for
numerical optimization.
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Figure A1. Benchmarking the code. (a) Evolution of the magnetization at the central site for a 41-site
chain and one single excitation in the middle, with ν = 0.5, rc = 0.5, ∆ = 0. Each plot refers to a
fixed M = 10, 200, 500, 1000, and different time steps dt = 0.02, 0.01, 0.005, 0.001, as in the legends.
(b) Evolution of the magnetization sz

21 on central site for the case of 41 sites, a single excitation in the
middle and ν = 100, rc = 100, ∆ = 0. Plot obtained by changing the sample size dt = 0.02, 0.01, 0.005,
0.001 at fixed M = 10, 200, 500, 1000.

Appendix B. Case ∆ = 2.5

In Figure A2, we include the results for the case of ∆ = 2.5 varying ν and rc for the
same parameters included in Figure 4 discussed in the Result section. This a complementary
analysis to the results for the case of ∆ = 5. We observed that the results for moderate ∆
support our findings, in which we can identify regimes for enhanced transport when we
increase the amount of collisions, even if the effects are now smaller.



Entropy 2024, 26, 20 12 of 14

<latexit sha1_base64="pY2BocvbjlMmkrgWflOGF/OIhjc=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmoTk8rw2rNbthzkWVwCqhBodaw+jkYRSwJURomqNZ9x46Nm1JlOBM4qwwSjTFlEzrGfoaShqjddL7rjJz4kSImQDJ//86mNNR6GnpZJqQm0ItePvzP6yfGv3ZTLuPEoGRZJPP8RBATkbwyGXGFzIhpBpQpnm1JWEAVZSY7TF7fWSy7DJ2zhnPZuLg/rzVvikOU4QiOoQ4OXEET7qAFbWAQwDO8wbs1tp6sF+v1J1qyij+H8EfWxze0A4r9</latexit>

(a)
<latexit sha1_base64="V4tM1zRf5KEvpMesTkI8rN/5aL4=">AAAB5XicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JxNuy6MZlBXuBNpTJ9KQZOpmEmYlQQh9BV6LufCFfwLcxqVlo67/65vz/wPmPFwuujW1/WaWV1bX1jfJmZWt7Z3evun/Q0VGiGLZZJCLV86hGwSW2DTcCe7FCGnoCu97kNve7j6g0j+SDmcbohnQsuc8ZNfmo7p1WhtWa3bDnIsvgFFCDQq1h9XMwilgSojRMUK37jh0bN6XKcCZwVhkkGmPKJnSM/QwlDVG76XzXGTnxI0VMgGT+/p1Naaj1NPSyTEhNoBe9fPif10+Mf+2mXMaJQcmySOb5iSAmInllMuIKmRHTDChTPNuSsIAqykx2mLy+s1h2GTpnDeeycXF/XmveFIcowxEcQx0cuIIm3EEL2sAggGd4g3drbD1ZL9brT7RkFX8O4Y+sj2+1g4r+</latexit>

(b)

Figure A2. Case of two excitations and ∆ = 2.5. (a) Spreading of the excitation when varying the
collision rate rc = 0.5, 1, 5 with a fixed interaction strength ∆ = 2.5 and different shape parameters
ν = 1, 100. Here, we consider an initial state in which the excitations are initially in the middle
sites, the magnetization spreads over the chain with different speeds depending on rc. Note how
the coherent effects are visible only for the case of ν = 100; however, the trends, apart from the
oscillations, were very similar between ν = 1 and ν = 100. These effects were more visible in the
case of ∆ = 5 reported in Figure 4. (b) Evolution of the magnetization and IER for the case of
20 sites, 2 excitations, ∆ = 2.5, and fixed ν = 100. In general, increasing rc produced a slowdown in
transport. Unlike the case of a single excitation, here with large values of anisotropy ∆ increasing the
collision rate supported the transport as the noise and helped break the pinning of the excitations
together. In addition, we can observe that, again, for noise evenly distributed over time, some
frequency-dependent modulations appeared. The simulation was performed with dt = 0.02 and
250 samples.

References
1. Wiseman, H.; Milburn, G. Quantum Measurement and Control, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010;

pp. 148–215.
2. Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems, 2nd ed.; Oxford University Press: Oxford, UK, 2002; pp. 390–498.
3. Gardiner, C.; Zoller, P. Quantum Noise, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 212–243.
4. Daley, A. Quantum trajectories and open many-body quantum systems. Adv. Phys. 2014, 63, 77–149. [CrossRef]
5. Harrington, P.M.; Mueller, E.J.; Murch, K.W. Engineered dissipation for quantum information science. Nat. Rev. Phys. 2022,

4, 660–671. [CrossRef]
6. Diehl, S.; Tomadin, A.; Micheli, A.; Fazio, R.; Zoller, P. Dynamical Phase Transitions and Instabilities in Open Atomic Many-Body

Systems. Phys. Rev. Lett. 2010, 105, 015702. [CrossRef] [PubMed]
7. Kessler, E.M.; Giedke, G.; Imamoglu, A.; Yelin, S.F.; Lukin, M.D.; Cirac, J.I. Dissipative phase transition in a central spin system.

Phys. Rev. A 2012, 86, 012116. [CrossRef]
8. Vicentini, F.; Minganti, F.; Rota, R.; Orso, G.; Ciuti, C. Critical slowing down in driven-dissipative Bose-Hubbard lattices. Phys.

Rev. A 2018, 97, 013853. [CrossRef]
9. Li, Y.; Chen, X.; Fisher, M.P.A. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B 2018,

98, 205136. [CrossRef]
10. Skinner, B.; Ruhman, J.; Nahum, A. Measurement-Induced Phase Transitions in the Dynamics of Entanglement. Phys. Rev. X

2019, 9, 031009. [CrossRef]
11. Li, Y.; Chen, X.; Fisher, M.P.A. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B 2019,

100, 134306. [CrossRef]
12. Bao, Y.; Choi, S.; Altman, E. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B 2020,

101, 104301. [CrossRef]
13. Cao, X.; Tilloy, A.; Luca, A.D. Entanglement in a Free Fermion Chain under Continuous Monitoring. ScyPost Phys. 2019,

7, 024. [CrossRef]
14. Müller, T.; Diehl, S.; Buchhold, M. Measurement-Induced Dark State Phase Transitions in Long-Ranged Fermion Systems. Phys.

Rev. Lett. 2022, 128, 010605. [CrossRef] [PubMed]
15. Panitchayangkoon, G.; Hayes, D.; Fransted, K.A.; Caram, J.R.; Harel, E.; Wen, J.; Blankenship, R.E.; Engel, G.S. Long-lived

quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 2010, 107, 12766–12770.
[CrossRef] [PubMed]

http://doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1038/s42254-022-00494-8
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://www.ncbi.nlm.nih.gov/pubmed/20867464
http://dx.doi.org/10.1103/PhysRevA.86.012116
http://dx.doi.org/10.1103/PhysRevA.97.013853
http://dx.doi.org/10.1103/PhysRevB.98.205136
http://dx.doi.org/10.1103/PhysRevX.9.031009
http://dx.doi.org/10.1103/PhysRevB.100.134306
http://dx.doi.org/10.1103/PhysRevB.101.104301
http://dx.doi.org/10.21468/SciPostPhys.7.2.024
http://dx.doi.org/10.1103/PhysRevLett.128.010605
http://www.ncbi.nlm.nih.gov/pubmed/35061500
http://dx.doi.org/10.1073/pnas.1005484107
http://www.ncbi.nlm.nih.gov/pubmed/20615985


Entropy 2024, 26, 20 13 of 14

16. Fleming, G.R.; Scholes, G.D.; Cheng, Y.C. Quantum effects in biology. Procedia Chem. 2011, 3, 38–57. [CrossRef]
17. Cao, J.; Cogdell, R.J.; Coker, D.F.; Duan, H.G.; Hauer, J.; Kleinekathöfer, U.; Jansen, T.L.C.; Mančal, T.; Miller, R.J.D.;
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