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ABSTRACT
The research question we consider is whether incremental complexity in option pricing models is justified by incremental

model performance. We apply the model confidence set as a formal model comparison approach in appraising stochastic

volatility jump‐diffusion option pricing models, spanning affine and nonaffine specifications. Jumps in price with stochastic

(constant) arrival intensity produce superior (inferior) outcomes. A parsimonious negative exponential price jump distribution

outperforms the popular normal distribution. Jumps in volatility (synchronized or not) worsen model performance. A parsi-

monious nonlinear hyperbolic drift extension of the Heston model performs particularly well. Nonlinear CEV models generally

do not produce appreciable model performance.

JEL Classification: C12, C52, C58, G13

1 | Introduction

[a] perfectly specified option pricing model is bound to be too
complex for applications.

Bakshi et al. (1997, p. 2004)

Development work on option pricing models has seen, over
recent decades, ever more complex model specifications being
proposed to, purportedly, better capture observed market
dynamics. We reflect on this pursuit of model complexity. The
contribution of our study is to take stock of the extant academic
literature on option pricing models and assess the observed
trend of ever‐increasing model complexity, across the affine and
nonaffine classes of models. Our research question is set as
follows: Is incremental model complexity justified by incre-
mental model performance? In answering this question, we
provide insights into what forms of model complexity provide
superior performance. To proceed, we (i) provide a workable
definition of model complexity, (ii) consider a large suite of
option pricing models of various classes proposed in the liter-
ature, (iii) identify a range of measures of model performance
that span practical requirements pertaining to pricing, hedging

and volatility modeling, and (iv), in an important departure
from the existing literature, propose a formal statistical device
that allows us to identify the set of superior models from a suite
of competing option pricing models and to rank these superior
models therein. An important distinction from current work is
the integrated approach to model selection and model ranking.
The approach also explicitly tackles the issue of multiple com-
parisons bias (Romano et al. 2010) that results from testing
multiple competing models simultaneously. We uniquely adopt
the model confidence set (MCS) approach of Hansen et al.
(2011) that allows for a statistically robust means to select
equivalently performing superior option pricing models.

Our study is motivated by the work of Ignatieva et al. (2015),
who conduct a comprehensive model specification analysis on
time‐series equity index data. Ignatieva et al. (2015) extend the
analysis of Eraker et al. (2003) and, in contrast to previous
studies, contribute through the analysis of a large model set,
comprising a range of affine and nonaffine model specifications
that incorporate stochastic volatility and jump components. The
model comparison exercise that the authors conduct is limited
to the use of the deviance information criteria (DIC) to obtain a
model ranking, while Bayes factors are employed for pairwise
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comparisons of several model specifications. Similar samples
and techniques, leading to similar conclusions, are employed in
Kaeck et al. (2017), whereby models are ranked by DIC.
Ignatieva et al. (2015) provide some important insights, con-
cluding that pure stochastic volatility models are inferior in
performance to their jump‐augmented counterparts, while the
authors also provide evidence that nonaffine specifications
outperform affine models, even after including jumps.

We differ in this study through an analysis of a large suite of
affine and nonaffine stochastic volatility jump‐diffusion models
on a cross‐section of option pricing data. In theory, consistency
between the physical and risk‐neutral distributions is only
achieved in the case of perfect model specification, such that
differences in cross‐section option implied and time‐series es-
timated parameters are an indication of model misspecification
(Bakshi et al. 1997). While Broadie et al. (2007) make the case
that a good option pricing model must be able to fit both cross‐
sectional and time‐series properties, Bates (2003) points out that
such consistency is necessary for estimating risk premia (not a
focus of our paper) and is valid under a hypothesis of correct
model specification plus measurement error. Our study is pre-
mised on an assumption of model misspecification. Bates (2003)
further makes a couple of arguments against mixing data
sources. First, the approach mixes statistical approaches and, in
effect, imposes a two‐stage procedure of implied calibration
followed by historical estimation of the respective
parameters. Second, attempting to capture implied and histor-
ical market dynamics jointly in a single (misspecified) model
makes the process of model selection and explaining model
rejection more difficult. Indeed, Bates (2003) advocates struc-
turing tests in the form of cross‐sectional derivatives price
patterns versus time‐series properties. In this sense, our study
complements the time‐series equity index work of Ignatieva
et al. (2015) with our cross‐sectional equity options analysis.

We review the option pricing literature, focusing on both affine
and nonaffine model specifications, and on the methods used
for estimation, testing, and model comparison. While some
prominent reviews and commentaries on option pricing models
exist (Bates 1996b, 2003; Broadie and Detemple 2004), none
perform an extensive model comparison exercise as we do here.
Seminal writings in the study of option pricing model per-
formance are the works of Bates (1996a) and Bakshi et al.
(1997), which both set standards in model specification analysis
by examining (i) measures of in‐sample and out‐of‐sample
mispricing, (ii) the distributional characteristics of the option
implied stochastic process and their consistency with the un-
derlying returns time‐series distribution, and (iii) single‐
instrument and delta‐neutral hedging analysis. Following these
influential studies on the behavior of stochastic volatility option
pricing models, the literature has particularly focused on the
affine jump‐diffusion model framework, as a consequence of
the stylized approach originated in Heston (1993), Duffie and
Kan (1996), and Duffie et al. (2000), and the dimensional flex-
ibility and computational efficiency that integral transform
methods offer in terms of option pricing and hedge measure
calculation. Nonetheless, there have been a number of studies
dealing with pricing models employing alternative volatility
specifications. For instance, Benzoni (2002) provides an em-
pirical analysis of affine and log‐normal volatility models, while

Christoffersen et al. (2010) consider alternative volatility char-
acterizations to the square root variance process, including fixed
constant elasticity of variance (CEV) parameters, such as the
“three‐halves” and the continuous‐time autoregressive condi-
tional heteroskedasticity (ARCH) model. Other nonlinear
models originate from the interest rate literature, for example,
Chan et al. (1992), whereas Chernov et al. (2003) and
Christoffersen et al. (2009) deal with multifactor extensions of
the affine, CEV, and log‐normal models. CEV‐based equity
price models appear in Beckers (1980) and Macbeth and
Merville (1980), with alternative CEV stochastic volatility
models proposed by Jones (2003) and Aït‐Sahalia and Kimmel
(2007). Further alternatives are represented by the infinite‐
activity time‐change Lévy model class of Carr and Wu (2004).

Our work adds to the discourse on option pricing model spec-
ification by means of drawing on the above‐referenced and
related literature and comparing the largest set of option pricing
models considered to date in a single study. This contrasts with
the majority of studies in this field to date that provide limited
benchmarking of model performance when such studies pro-
pose new models. The model set we examine is obtained as
augmented and extended versions of the baseline affine sto-
chastic volatility diffusion model of Heston (1993), on which we
incrementally and selectively combine model components to
increase model complexity. This gives us our working definition
of model complexity, which we define as model constructs
derived from introducing jumps in the returns and/or volatility
processes, imposing state dependency on jump intensity,
imposing distributional forms on the jump processes, increasing
the dimension of the parameter vector,1 and increasing the
dimension of the system state. Further elements of model
complexity are assumed to derive from introducing nonlinearity
in the drift and/or diffusion components.

The option pricing model literature generally lacks a formal
statistical testing approach. We, in contrast, exploit the rigor of
the MCS (Hansen et al. 2011) in our model selection exercise.
The MCS is a general model comparison test that, starting with
an initial model set, permits the automatic selection of the
subset of best‐performing models based on statistical equiva-
lence and generates a model ranking across the model set by
means of a p value function. Building on the Reality Check
(RC) of White (2000) and the Superior Predictive Ability (SPA)
of Hansen (2005), the MCS explicitly accounts for the multiple
comparisons bias typical of multiple hypothesis test settings
(White 2000; Romano and Wolf 2005b), such as the model
selection exercise we pursue. Multiple comparison bias implies
that, when comparing a family of competing models simulta-
neously, the superiority of one model over another model may,
in fact, be a random artifact. This source of bias is an issue that
is overlooked in the option pricing model literature but is par-
ticularly important in our setting, given the large suite of option
pricing models we consider.

We design several model comparison tests targeting different
performance measures and several meaningful sample clusters,
an approach that provides a multifaceted and comprehensive
view of model behavior. We investigate measures of model
performance concerning (i) option model mispricing, (ii) robust
delta‐hedging, and (iii) implied volatility (IV) consistency. Our
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analysis delivers some important messages. We conclude that
stochastic intensity jumps in price, preferably with a negative
exponential distribution, are a necessary extension to the affine
diffusion model of Heston (1993), whereas we generally find no
evidence to justify the flexible CEV model class. Constant
intensity jumps are found to be detrimental to model per-
formance, while jumps in volatility, whether synchronized or
not with jumps in price, are redundant. Normal or infinite
variance jumps, while showing equivalent performance for
some performance measures, are perhaps unnecessary compli-
cations. Two‐factor volatility models sometimes produce supe-
rior performance, but not consistently across all performance
measures. While we do find the simple stochastic volatility
model of Heston (1993) performs well from a hedging per-
spective, its nonlinear “quasi‐affine” augmentation with
hyperbolic drift provides an excellent alternative to the affine
paradigm.

The remainder of the paper is organized as follows. In Section 2
we introduce the technical specifications of the option pricing
model set we examine. In Section 3 we introduce our testing
framework, where we define our implementation of the MCS
methodology of Hansen et al. (2011). Section 4 sets out the
experimental design, including the alternative model perform-
ance measures we use. Section 5 provides a detailed discussion
of the empirical results. Section 6 sets out concluding remarks.

2 | The Option Pricing Model Set

2.1 | Option Pricing Model Literature

The cornerstone of the initial model set we consider is the
seminal stochastic volatility diffusion model of Heston (1993)
(hereafter, the Heston model), which first formally embedded a
stochastic volatility specification in an option pricing setting.
The success of this model and its widespread use in academia
and industry is mainly due to the quasianalytic pricing formula
that it offers and the efficiency of the computational methods
required for implementation. The power of the Heston model
lies in its tractable representation of a mean‐reverting volatility
process and its ability to capture the well‐established leverage
effect in equity markets through the correlation between asset
returns and stochastic volatility. Nonetheless, several studies
have highlighted the inadequacy of this model to explain sev-
eral features of market prices, see, for example, Bakshi et al.
(1997), Eraker (2004), and Broadie et al. (2007). While the
Heston model allows for a skewed leptokurtic distribution of
asset returns, this higher‐order moment information is fully
loaded onto just two parameters: the correlation parameter and
the volatility of variance parameter. This leads to restricted
levels of skewness and kurtosis compared with implied market
levels, see, for instance, Das and Sundaram (1999).

Many extensions to the Heston model have been proposed, the
most popular of which fall into the general affine jump‐
diffusion framework of Duffie et al. (2000). Such extensions
include several forms of jump augmentation. Bates (1996a) and
Bakshi et al. (1997) allow the price process to jump with
deterministic intensity. Duffie et al. (2000) propose a model

specification that allows for jumps in volatility, along with joint
and correlated jumps in returns and volatility. Eraker et al.
(2003) similarly allows for both coupled and decoupled jumps
in return and volatility. Bates (2000) considers price jumps with
stochastic intensity, which allow for clustered discontinuities
that correspond to periods of high volatility, while Eraker
(2004) considers several similar jump combinations. In our
study, we consider these model specifications, which are all
based on a single‐factor volatility process.

Affine multifactor volatility extensions have also been proposed
in the option pricing literature. Duffie et al. (2000) and Bates
(2000) both consider a stochastic mean volatility process,
allowing for a time‐varying long‐run factor to which the vola-
tility process reverts. Other multifactor extensions include sto-
chastic interest rates, such as Scott (1997) and Bakshi et al.
(1997), which have also been combined with stochastic divi-
dends, such as in Jones (2003). These specifications are moti-
vated by the remarks of Christoffersen et al. (2009) that the level
and the slope of the volatility smile fluctuate independently,
requiring the use of two factors to adequately capture this
dynamic. We include stochastic mean volatility model specifi-
cations in the initial model set, but we exclude other multifactor
extensions (such as stochastic interest rates and stochastic
dividends) on the basis that such model specifications are more
appealing from a financial economics perspective.

With respect to jump size characteristics, the jump in volatility
has usually been modeled as a positive exponential, whereas the
jump in returns has taken the form of a normal distribution. We
include both in our model specifications. In respect of the price
jump size, we also consider several alternative specifications. In
particular, we build on the jump specification of Kou (2002) and
allow for negative exponential jumps, as this specification
provides wider skewness and kurtosis. Moreover, we expand the
initial model set with price jump specifications characterized by
a negative tail with extreme value distribution (EVD), com-
monly referred to as the Lomax distribution,2 which has similar
behavior to the finite moment log stable class, see Carr and Wu
(2003). This jump specification allows us to explore model
behavior without leaving the affine framework and trespassing
into the time‐change infinitely active Lévy model class of Carr
and Wu (2004).3 The fat‐tail distribution is constrained to pro-
duce infinite variance jumps. The interest in this jump setup
lies in the argument that long maturity IV should exhibit flat
behavior, as a consequence of the central limit theorem (CLT)
acting upon the conditional distribution of returns (Carr and
Wu 2003), whereas a fat‐tailed random variable contradicts the
CLT, allowing for persistent asymmetric long‐term volatility
curves.

With this rich affine jump‐diffusion model set, we provide
evidence that contributes to the debate about what features and
combinations of features are associated with a significant
increase in performance over the Heston model. Despite the
flexibility of these jump‐augmentations, such models still ex-
hibit signs of misspecification, see, for example, Bates (2000).
Towards addressing this misspecification, more elaborate model
constructs have been proposed in the literature. Such extensions
have, for example, introduced nonlinearity into the drift and/or
the diffusion component. The most popular of the nonlinear
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diffusion models is the CEV model, employed in econometric
studies, such as Jones (2003), Chernov et al. (2003), and Aït‐
Sahalia and Kimmel (2007). The CEV model relaxes the square
root diffusion assumption, allowing for a general exponent
power function for the variance process. Special cases of the
CEV model are the exponential ARCH diffusion (Nelson 1990)
and the so‐called “three‐halves” model (Lewis 2000), which
have been employed in empirical studies of option pricing, such
as Christoffersen et al. (2010). We also consider some price
jump extensions of the CEV model class to investigate whether
nonlinearity in the diffusion component combined with jumps
is able to produce significant improvements over affine model
performance. We limit the jump specifications to stochastic
intensity price jumps because, as we will show later, other jump
components do not appear to contribute appreciably.

An interesting extension of the CEV model that involves the
drift specification has been suggested in short‐term interest rate
studies, such as Chan et al. (1992), Conley et al. (1997), and Aït‐
Sahalia (1999), with analysis of equity returns and IV found in
Bakshi et al. (2006), Chourdakis and Dotsis (2011), Ignatieva
et al. (2015), and Kaeck et al. (2017). The model includes a
Laurent polynomial in the drift whose exponents span from −1
to +2, allowing for a richer dynamic to the mean‐reversion
component. We include this model in our initial model set. We
also consider a two‐factor CEV model, for comparability pur-
poses with the two‐factor extension of the Heston model.
Finally, the initial model set is completed with a further non-
linear model, represented by the mean‐reverting log‐normal
volatility model introduced by Scott (1987) and, concurrently,
by Hull and White (1987) and Wiggins (1987). This model is
appealing because, as noted in Christoffersen et al. (2010), the
logarithm of the realized variance tends to produce absolute
changes that are uncorrelated from the log‐volatility level,
whereas the plain data exhibit at least linear dependency
between changes and levels. As shown in the cited article, the
quantile–quantile plot of the logarithmic realized variance ap-
pears to flatten. Thus, this model is expected to provide an
improved representation of the market volatility. Nonetheless,
the performance of this particular model in the context of
option pricing has not been thoroughly explored, to date,
although applications of this model can be found in Benzoni
(2002) and Chernov et al. (2003). We, therefore, provide incre-
mental insights in this respect.

2.2 | Model Specifications

We converge on a set of 28 alternative model specifications in
total. We formalize the model specifications through the fol-
lowing overarching model:

ds s rdt v dW dN= [˜ + + (e − 1) ],z
0 00 (1a)

dv μ v dt σ v dW ζ z dN= ( ) + ( ) + ( ) .1 1 1 (1b)

The process s represents the underlying log‐price, which is a
geometric motion with risk‐neutral drift r̃ .4 The Brownian

drivers are in general correlated, that is, d W W ρdt, =0 1







 , with

ρ 0≤ constant. The jump in returns has a random size

determined by the variable z0, which can have a normal, a
negative exponential5 or a negative Lomax EVD distribution.
The parameter η0 is introduced to indicate the expected size for
the normal and the negative exponential as well as the location
parameter in the EVD distribution, whereas the parameter ν0
indicates the standard deviation and the scale parameter,
respectively, in the case of the normal and the Lomax EVD
distribution.

We define ζ z( )1 to be the volatility jump function corresponding
to the volatility jump size variable z1. Whenever the volatility
jump is present, its size distribution is exponential, with
parameter η1, representing the expected jump displacement.
The Poisson jumps N0 and N1 are driven by the jump intensity
processes

d λ vdtΛ = ˜ ,0 0 (2a)

d λ dtΛ =1 1 (2b)

with either ṽ = 1 or v, depending on whether the model has
constant or stochastic intensity associated with the jump in the
returns process. In the latter instance, the jump intensity of the
returns process is proportional to the volatility factor v. In
respect of the jump intensity embedded in the stochastic vola-
tility process, we assume this to be constant, with the exception
of synchronized jumps (N N=0 1), whereby (2b) is discarded.6

Finally, to complete the initial model set, we define the auxil-
iary long‐run stochastic mean factor, a, that defines the multi-
factor volatility models with appropriate adjustment of the
volatility process drift:

da α βa dt δ adW= ( − ) + ,2 (3)

where W2 is assumed to be independent from the other sto-
chastic driversW0 andW1. We do not consider multifactor log‐
normal volatility models.

Table 1 summarizes the main models that we use, mapping
these to the relevant literature. In Section 2.3, we introduce a
labeling scheme to identify the various model specifications that
will ease the reader's navigation of the empirical testing
discussion.

2.3 | Naming Convention

To assist the readability of the experimental results, we intro-
duce a labeling convention to identify the suite of models pre-
sented in Section 2.2. This labeling convention departs from the
typical notation used in the affine option pricing model litera-
ture but is introduced as this is the first study to consider such a
range of affine and nonaffine model specifications in a unified
study. Each model is identified by a symbolic alphanumeric
code of three elements. The model codification is designed to
provide an easy mnemonic to identify each model. The first
element is either the letter A C, , or L, respectively, indicating an
affine, a CEV or a log‐normal diffusion type model. A super-
script to this letter indicates auxiliary features of the model.
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Specifically, in the CEV (C) case, a g or h indicates, respectively,
a CEV parameter fixed at one or three‐halves. Moreover, an a

signals the presence of a hyperbolic drift component adjoined to
the linear drift, while a b is associated with a similar drift
specification extended with a parabolic component, completing
the full Laurent polynomial drift. A subscript to the first letter
signals the dimension of the volatility process, which can have
either one (1) or two (2) volatility factors.

The next couple of letters of the alphanumeric code then
describe the jump specification. In this jump coding, the first
letter indicates the volatility jump information, while
the second describes the underlying price jump information. If
an empty sign is present, then there is no jump in the corre-
sponding model element. Therefore, ∅∅ indicates no jumps in
either volatility or the underlying. Otherwise, if a jump is
present, then either a C or an S is used to indicate a jump with,
respectively, a constant or stochastic intensity. A bar above the
two‐letter combination indicates a correlated synchronized
jump in volatility and returns. The type of jump size distribu-
tion is indicated by a subscript that can either be e, n or p,
corresponding, respectively, to a one‐sided exponential, a nor-
mal or a negative‐sided Lomax distribution. The jump in vola-
tility can only be positive exponential, whereas, in the case of
the underlying index, an exponential jump is negative.

To bring this naming convention to life, we provide a few ex-
amples. The Heston model, as our baseline model, is an affine
(A) stochastic volatility diffusion only (∅∅) model with a single
volatility process (subscript 1). The labeling for the Heston
model is therefore A ‐1 ∅∅. In the affine (A) extension by Bates
(1996b), the Heston model is augmented with a jump compo-
nent in the asset price process only that has a constant jump
intensity and a normal distribution ( Cn∅ ). With the model of

Bates (1996b) retaining a single volatility process (subscript 1),
we therefore label this model as A C‐1 n∅ . The variant of this
stochastic volatility jump‐diffusion model that replaces the
constant jump intensity assumption with that of stochastic
jump intensity (S) is labeled A S‐1 n∅ . The double‐jump model of
Duffie et al. (2000), augments the affine (A) Heston model with
(i) a constant jump intensity asset price jump component with
normal distribution (Cn) and (ii) a constant jump intensity
volatility jump component with exponential distribution (Ce),
where it is further assumed that jumps are correlated and occur
synchronously. In this case, the notation is A C C‐ ¯

1 e n , where the
overbar notation denotes the synchronicity of the jumps. The
asynchronous jumps version of this double‐jump drops the
overbar and is therefore A C C‐1 e n. Where considered, CEV and
log‐normal counterparts drop the A labeling and replace it with
C and L, respectively. Finally, the modification of the Heston
model that includes a hyperbolic drift component adjoined to
the linear drift is labeled A ‐1

a ∅∅, while the Heston variant
associated with a similar drift specification extended with a
parabolic component is labeled A ‐1

b ∅∅. With these examples
provided, the naming convention referenced in the remained of
the paper should be more accessible.

3 | Model Selection in Option Pricing Models

Option pricing model selection necessarily involves a choice
among misspecified models and, hence, requires procedures to
achieve prudent conclusions with regard to the lowest amount
of misspecification across the models. Appendix A (Supporting
Information) reviews how the literature has dealt with this
model selection challenge, which provides the context for our
positioning of the MCS framework that we propose in
Section 3.1.

TABLE 1 | Model specification literature mapping.

Model μ ( )⋅ σ ( )⋅ ζ ( )⋅ Jumps characteristics

Heston (1993) 0 (a)

Bates (1996a) σ v (a), (b)

Affine model (Duffie et al. 2000; Eraker et al. 2003) z1 (a), (b), (c), (d)

Eraker (2004) a bv− (a), (b), (d), (f)

Extended‐Kou (Kou 2002) (jump structure only) σ (g)

GARCH‐SV (Christoffersen et al. 2010) σv 0 (a)

3/2 model (Lewis 2000; Christoffersen et al. 2010) σv3 2∕ (a)

CEV model (Jones 2003; Aït‐Sahalia and
Kimmel 2007)

σvγ (a)

Polynomial drift and CEV (Bakshi et al. 2006) a v a a v a v+ + +−1
−1

0 1 2
2 (a)

Log‐normal model (Scott 1987) v a b v( − log ) σv (a)

Note: This table summarizes the characteristics of a selection of models nested within the overarching model specification in Equations (1a, 1b) with a mapping to the
relevant literature. Note that not all of the models are included in our initial model set 0 . Jump characteristics are labeled as follows:
(a) no jumps,
(b) norm jumps in rets with const intensity,
(c) async norm jumps in rets and exp jumps in vol with const intensity,
(d) correlated sync norm jumps in rets and exp jumps in vol with const intensity,
(e) async norm jumps in rets and exp jumps in vol with stoch intensity,
(f) correlated sync norm jumps in rets and exp jumps in vol with stoch intensity,
(g) double‐tail negative Lomax and positive exp jumps in rets with stoch intensity.
Abbreviations: CEV, constant elasticity of variance; GARCH, generalized autoregressive conditional heteroskedasticity; SV, stochastic volatility.

459 of 493

 10969934, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22575 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [08/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.1 | The Model Confidence Set

We present the formal MCS framework we use, introduced in
the seminal work of Hansen et al. (2011), which offers ad-
vantages over previous testing approaches. The statistical
testing procedure involves a sequence of multivariate tests,
which terminates with (i) the identification of the superior
model set based on a defined performance criterion and (ii) a
ranking of the superior models therein. The joint nature of the
model comparison test is an important feature given the
simultaneous comparison of multiple models. When per-
forming multidimensional statistical testing, the concept of
confidence level, that is, the probability of committing a false
rejection, becomes inadequate. When many dimensions are
involved, controlling for a confidence region that covers
multiple chances of false rejections is a necessity. This is
demonstrated by Romano and Wolf (2010). It is possible,
however, to construct joint tests that allow one to control the
overall probability of committing at least one false rejection,
namely, the familywise error rate (FWER) (Romano and
Wolf 2010). The MCS test is capable by design of assessing
model comparisons jointly, controlling for the overall FWER.
It provides a distinct partitioning of the initial model set into a
set of superior models, that is, the MCS by definition, and a set
of inferior models. The MCS includes all models deemed to be
statistically equivalent, according to the assumed measure of
performance, with different levels of confidence allowing for a
model ranking to be determined within the MCS. The MCS
thus allows for model selection and model ranking to be per-
formed in a single implementation step.

We define the initial model set as M M M{ , , …, }m0 0 1 ≡ ,
where theMj are stochastic models describing market behavior;
in our case, price and volatility. The initial model set, 0 , is
indexed as the testing procedure iteratively extracts model
subsets using an elimination rule until the MCS, ⋆, of
equivalently superior models is found. The model comparison
requires a measure of model performance through which to
establish the MCS. We assume that the performance of model
Mi 0∈ is measured by a defined loss function Li, whereby
the lower this figure, the better the model performance. In the
notation to follow, we omit the dependence on the data sample
X t T, = 1, …,t , and possibly on the model parameter vector θ.
In general, however, the model performance is a, possibly
parametric, function of the data or functional of the data dis-
tribution. The metric of model comparison we use is the relative
performance measure d L L−ij i j≔ , where the ordering mat-
ters. The testing procedure presented targets the quantity
μ d[ ]ij ij≔ , such that M Mi j≻ (Mi is preferred to Mj), if
μ < 0ij , or M M~i j (Mi is equivalent to Mj), if μ = 0ij .

With the model comparison metric established, the MCS is thus
defined as the subgroup of the initial model set such that each
of its elements is either superior or equivalent to anyMj, that is,

μM M{ : 0, }.i ij j0 0  ≤≡ ∈ ∀ ∈⋆ (4)

Note that (4) defines the collection of models from the initial
model set that are deemed to be preferred to all other competing
models. With (4) established, we present our test of model

comparison along the lines of Hansen et al. (2011), which we
coin the max‐MCS test.

3.1.1 | The max‐MCS Test

The implementation of the max‐MCS test deviates from the
well‐established RC test of White (2000) and the SPA test of
Hansen (2005). These tests are designed to examine the null
hypothesis of superior performance of a nominated benchmark
model against a collection of alternative competitor models.
With the max‐MCS test, the null is inverted in that it examines
the hypothesis of equivalence of the constituent members of the
initial model set. A further innovation in the max‐MCS test
design lies in how it arranges the model comparison. In par-
ticular, the max‐MCS test circumvents the need to nominate a
benchmark model, referring in effect to each model as a ‘target’
model.

The design of the max‐MCS test relies on a strategy already
employed in the RC and the SPA, whereby the multiple com-
parison is reduced to a multiplicity of scalar tests, exploiting the
max function. The test sequence produces a stack of rejected
models, whose size is unknown at the start of the procedure. In
practice, the max‐MCS test is given by the sequence of simul-
taneous equivalence tests defined by the following null
hypothesis:

H μ μ μ

i i k

M

M

: = = = = 0,

, , < , = 0, 1, …,

i i i i i i i

i k u v

0, k m k m k u

v

1 2 1 3 − −1 −



 ⋯

∈
(5)

where k is the test sequence index and i⋅ are the model indices at
each iteration. If at step k the null, H0, k , is rejected then the
elimination rule is enforced and the model with the worst target
statistic is expelled from the model set k . The test sequence,
therefore, generates the inclusion chain k0 1  ⊃ ⊃ ⋯ ⊃ ,
which terminates the first time that the null hypothesis is
accepted. The algorithm continues until either the equivalence
hypothesis is accepted or the model set becomes a singleton. For
the implementation of each equivalence test, Hansen et al.
(2011) exploit a mapping of the many hypotheses in (5) to some
function, reducing the simultaneous tests to a scalar test.
Among several transformations, the authors propose to use the
fact that if μmax = 0i j,  , then each μi j, will be equal to zero.
Therefore, the max‐MCS test we adopt in the empirical appli-
cation of this work is defined by the statistic7

T t= max ,R ij
M M

,
,

k
i j k


∈

  (6)

which involves calculating the sample statistics d d¯ =ij T t ij t
1

, —
where we introduce the time index t , such
that d L L−ij t i t j t, , ,≔ —and their standardized values
t d d= ¯ varˆ ( ¯ )ij ij ij∕ . The basis of the test is the CLT

result T Z Z N( ¯ − ¯ ) (0, Ω)
d ⟶ , as T → ∞, with

Z d M M¯ = ¯ , ,s
k

ij i j k
( ) ∈ and i j≠ , and with the index for the

model pairings s = 1, …,
m k m k( − )( − − 1)

2
. This results from

appropriate regularity conditions concerning the time series of
the loss function Li (Hansen et al. 2011).
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As the distribution of the max of an n‐dimensional normal
random variable is not known in closed form, we need to
simulate the equivalence hypothesis among the test compari-
sons as the max of a multivariate normal ξ k( ) and hence gen-
erate the asymptotic distribution for TR, k , which corresponds
to the distribution of the ξmaxs s

k( ) . The variance–covariance
matrixΩξ is preemptively estimated with a bootstrap technique.
To define a p value for this MCS, we denote by p̂

k
the p value

of the max test at step k, allowing us to then define the
sequence (up to a given step k′) p pˆ max ˆk k k′ ′ k≤≡ . At the last
step k⋆, when the equivalence hypothesis is accepted and the
MCS is identified, we denote by p̂i, for k i m≤ ≤⋆ , the p values
associated with the best models determined from the max dis-

tribution of ̂
⋆
. With this sequence, we are able to associate a

corresponding p value to each model, which measures the
probability of that model belonging to the final MCS. These p
values provide an index capable of identifying and ranking
clusters of equivalent models. See Hansen et al. (2011) for fur-
ther discussion and illustration of the MCS p value concept.

For the purposes of computing the test, we notice that, when we
consider the initial model set at k = 0, the multiple hypothesis
condition (5) requires only the combinations and not the per-
mutations of paired model comparisons. That is, we avoid the
need to include symmetrical hypotheses, as the rejection of one
hypothesis would imply the rejection of its corresponding re-
ordered8 hypothesis. Dismissing the complementary hypothesis
in this way is necessary because, as the absolute value function
comes into play, the position of the statistics with respect to the
zero is irrelevant for acceptance or rejection of the null. That is,
L L−i j  or L L−j i  are identical and provide the same statistics.
Testing with such redundant hypotheses included would have the
effect of artificially inflating the dimension of the problem, leading
to a distortion of the correlation structure of the asymptotic test.
This represents an important difference between our max‐MCS test
and the procedure of Hansen et al. (2011).

When considering model performance comparison, the max‐
MCS test offers an appealing approach that allows one to
automatically select the subset of best‐performing models as a
result of the elimination sequence, while at the same time
providing a model ranking based on the associated p values.
This capability comes with an important property, which can be
summarized as follows. Considering the asymptotic limit of the
sample statistic, M 0∀ ∈ , if the probability of rejecting the
equivalence hypothesis when it is true is less than or equal to α,
that is, a given significance level, and if the probability of
rejecting the equivalence when it is false is one, and if the
probability of rejecting a model that is in ⋆ is zero then,

indicating with ^
α1−

⋆
the estimate of the MCS at the confidence

level ( α1 − ), we have that the P α^ 1 −α1−  ≥⊂⋆
⋆


 


 and

the probability that an inferior model belongs to the MCS es-
timate is zero. This is the main property that characterizes the
MCS. In fact, the claim that for any model subset, the proba-
bility of committing at least one false rejection of the equiva-
lence hypothesis is set to α, corresponds to requiring that the
max‐MCS provide strong control of the FWER. A sufficient
condition is the critical values sequence to be monotonic, see
Romano and Wolf (2005a).

4 | Experiment Design

Building on the testing framework introduced in Section 3, we
are now in a position to design our model comparison exercise
for the collection of option pricing models described in Sec-
tion 2. The model comparison contest is organized as joint tests
targeting several alternative loss functions, defining alternative
model performance measures. The output of each model com-
parison contest is the MCS with respect to a given model per-
formance measure, allowing us to draw conclusions about the
set of preferred models and the complexity required to execute
effective option pricing. To begin, we discuss the option pricing
procedure used, followed by details of the parameter estimation
procedure. We then present the model performance measures
constructed and the techniques used to evaluate these
measures.

4.1 | Option Pricing Engine

Towards choosing an option pricing engine to use in our study,
we appraise the existing literature. For the pricing of derivatives
under the affine model framework, integral transform tech-
niques are commonly used, offering a flexible and computa-
tionally efficient approach. Fourier inversion was first
introduced by Heston (1993) and then refined for computa-
tional efficiency by Carr and Madan (1999) with the use of the
fast Fourier transform. A multidimensional Fourier inversion
technique is presented in Shephard (1991a, 1991b). With respect
to the log‐normal model, a quasianalytic solution exploiting the
Laplace transform is found in Perelló et al. (2008), whereas
alternative models for derivative pricing can in general be
treated with simulation, see, for instance, Platen and Bruti‐
Liberati (2010) who construct a multidimensional jump‐
diffusion simulation with a predetermined order of conver-
gence. Another technique traditionally used for pricing alter-
native models is the recombining tree method, introduced in
finance by Cox and Ross (1976). Further numerical applications
for system dynamics, such as those of the nonlinear drift
models, are represented, for instance, by the quasianalytic
approximation of the price density constructed in Aït‐Sahalia
(1999, 2008).

In our study, we decide on an option pricing method that can be
consistently applied across the entire suite of affine and non-
affine models. We employ partial integro‐differential equation
(PIDE) solution techniques for the generality and flexibility
they bring to the derivative pricing problem. A finite difference
method combined with numerical integration is used to con-
struct the solution of the pricing equation for the reference
model set. See, for example, Tavella and Randall (2000) and
Duffy (2006) for reviews of the method and some applications.

To obtain a pricing function, we construct a numerical solution
of the backward equation defining the price of a European call/
put option price written on an underlying St, with maturity T
and strike price K :

S K[( − ) ]eT t
r T t± − ( − )  (7)
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with the interest rate r assumed nonstochastic and t a filtra-
tion.9 We employ the martingale approach to achieve the option
price and construct the risk‐neutral dynamics accordingly In
the literature, it is acknowledged that when the market is not
complete, that is, when some risk factors are not traded, the
pricing equation obtained via the hedging argument is not
unique, see, for instance, Scott (1987). This is the case for the
models we study. Thus, the market equilibrium argument is
invoked and a market risk premium is introduced. The intro-
duction of the risk premium usually has the effect of altering
the parameters of some risk factors, without changing the
overall structure of the main stochastic differential
equation (SDE), see Bates (2000). Nonetheless, the analysis of
the effect of market risk premia on the main equation is beyond
the scope of this article. For an interesting analysis pertaining to
jump‐diffusion models, see, for instance, Pan (2002). For all
practical purposes, we assume that the risk‐premia are absorbed
into the appropriate model parameters.

A simplification introduced in the analysis that reduces con-
siderably the cost of computation, is as follows. The strike price
K in (7) is extracted from the pay‐off function, and the
(terminal) underlying price is redefined as s S K=T T∕ . Hence,
the new factor s evolves with the same dynamics as in (1a) and
(1b) with initial condition st . The choice of standardizing by the
strike gives st the interpretation of a dimensionless measure of
“moneyness.” As a result, the solution domain is centered over
an appropriately chosen range and is initiated by a unique
terminal condition. The computational cost is therefore reduced
because, normalizing the underlying price to an option mon-
eyness range and making the strike price identical for all the
options, allow us to produce one single set of solutions for all
the available data. This option price standardization contrasts
with the use of dollar prices, as in Bakshi et al. (1997), which
induces dependence on the index level and, therefore, the time
of the price record, and to the alternative option‐to‐underlying
price standardization proposed in Bates (1996a, 2000).

Therefore, for the jth option in the sample array on day t , we
define Ot j, to be the theoretical price, which corresponds to the
present value of the strike times, a stochastic factor depending
on st j, and the model parameters as follows10:

O k K T s v s K( , , , ; Θ, ) = [( − 1) ] e ,t j t j t j t j t T j t t j
r T t

, , , , ,
±

,
− ( − )t j, 

(8)

where the strike price is always unitary and the binomial var-
iable k indicates the type of options contract. Hence, we con-
duct the analysis in terms of the relative theoretical option
prices ω O K=t j t j t j, , ,∕ compared with the relative market option
prices π P K=t j t j t j, , ,∕ , where Pt j, is the market price for the jth
option on date t . In the following, unless otherwise explicitly
stated, when we write about option prices we will be referring
to relative option prices.

4.2 | Parameter Estimation

Before the parameter optimization exercise, the model param-
eters are assumed to be uniformly distributed across the

parametric region. The allowed stationary volatility is between
5% and 70%, and the expected jump size can vary between 0.5
and 3 times the stationary volatility. The total volatility variance
explained by the jump component is at most 50% of its
asymptotic value. The correlation parameter can change across
the negative domain, while, if a CEV factor is present, it ranges
between 0.5 and 1.5. Finally, a jump in the level of prices can
have an intensity factor between 0.01 and 5, an expected jump
size in price between 0% and −30%, with a standard deviation
between 1% and 50%, which means that rare jumps are allowed
with a wide range of variation. The target function is assumed
to be the log‐likelihood of the pricing residuals. Despite evi-
dence that calls for the adoption of an autocorrelated model of
pricing residuals, see, for instance, Bates (1996a, 2000) or
Lindström et al. (2008), we use an independent Gaussian
hypothesis for the residuals, as it reduces the computational
burden.11 The likelihood is characterized by assuming that the
pricing error is null and the daily variance is estimated by the
cross‐section mean squared error (MSE). The full sample ex-
periment determines the posterior of the model parameters.

The estimation of the parameter posterior is conducted using a
Bayesian procedure. The parametric likelihood ascertained
from the experimental results H1 but before the evaluation of
the hypothesis concerning a zero‐sum pricing error A is

H A H A Y H AP P P(Θ , ) (Θ , ) ( , , Θ),1 0 0∝   (9)

where H0 represents the prior hypothesis about the parameter
distribution and Y is the sample option pricing residuals. As a
consequence, the experimental results H Y H= { , }1 0 are the
events represented by the mispricing values obtained traversing
the parametric space. The residual likelihood is obtained
through the program

Y H A Y H A VP P( , , Θ) max ( , , Θ, ),
V

0 0≡  (10)

where V v= { }k k
T
=1 is the IV time series. We remark that,

although the volatility probability structure defines the option
pricing function, for the construction of the likelihood in (10),
no filtering technique has been applied, for example, Bates
(2000), which implies that no coherency between the cross‐
section of the option prices and the time‐series dimension of the
latent factor has been imposed. Therefore, each daily volatility
observation is the result of an independent optimization pro-
cedure. The rationale for this methodological choice is twofold.
First, we achieve a simplification of the optimization problem,
leading to computational efficiency that is important, given the
large option data panel that we use in our study. Second, we
obtain volatility paths that are completely price implied and v is
free to adapt to the shape of the market price surface, according
to the model specification. In this regard, the solutions obtained
represent an optimum for the sake of pricing, whereas imposing
IV path coherency might achieve the same mispricing results
only in the best possible scenario, all else being equal. Although
the estimated volatility might not necessarily match its transi-
tional probabilities, to a certain extent, the parametric structure
of the pricing function does influence the volatility path, as its
variations are required to optimally match the t + 1 prices. This
procedure disregards the evaluation of the transitional
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probability density of the implied factor, instead the IV repre-
sents a parametric array and the problem assumes the nature of
a multistage optimization. In the following, however, we will
introduce a model performance measure that allows us to ex-
plicitly test the coherency between the implied probability
structure and the volatility trajectory produced by each model
via (10).

The density in (9) is then combined with the mispricing pos-
terior to obtain

A H H A A HP P P(Θ, ) = (Θ , ) ( ).1 1 1   (11)

The model parameters and the estimation errors are finally
obtained as expectations under the posterior distribution in
(11). For an application of parameter learning, see West (1993),
and for a more general introduction, see Carvalho et al. (2010).

4.3 | Model Performance Measures

With the model set appropriately parametrized, our investigation of
model complexity can begin. According to the model set testing
procedure established in Section 3.1, we need to define a model
performance measure. For our purposes, we construct several
model performance measures commonly used in the literature,12 to
establish the MCS under different criteria. This allows for a com-
prehensive picture as to what models are deemed superior to others
and as to whether model complexity, as we have defined it, is
strictly necessary to achieve effective option pricing.

We employ three categories of model performance measures.
For the first category, we focus on mispricing and define two
related measures. We first construct a measure of likelihood to
test the goodness‐of‐fit to market prices that are produced by
the model set. We use the actual estimation log‐likelihood:

( )L N
ε

ε

ε

N

m

s
s

(Σ )

Σ
+ log

Σ
+ + log ,t i t

j t ij

j t ij

j t ij

t

i

i
i,

(1) ,
2

,
2

,
2 2

2
2≔







 (12)

where i refers to a given model and j refers to the jth option
observed on day t . The variable Nt indicates the number of
securities on the observation day. The variables εt ij, represent
the individual pricing errors and are given by

ε ω π− ,t ij t ij t j, , ,≔

that is, the difference between the model theoretical option
price and the observed market price. The overall sample mis-
pricing for model i is thus

m
ε

N
=

Σ
i

t j
N

t ij

t t

=1 ,
t 

and si
2 corresponds to its variance. This likelihood L(1) also

corresponds to the objective function of the parameter estima-
tion. We proceed with a discrete‐time model across a discrete
parametric space, optimizing the volatility trajectory for each

time unit at each parameter point on a fairly large parametric
grid, which consists of the intersection of parameter intervals.
Conditioning on the parameter vector value, the option pricing
function is monotonic with respect to the volatility value at each
time point, thus a grid search is performed at each cross‐section.
Formally, the procedure is described as follows:

L θ vmin {min ( , )},
θ v

(1)

where θ is the parameter vector value and

v v v= { , …, }T1

is the volatility sequence. The result can be improved by pro-
gressively updating the parameter prior distribution.

As a second measure, we seek to capture the variability of the
mispricing. For this, we consider the root mean squared error
(RMSE), which has been used in previous research both for
parameterization and model performance measurement, see, for
example, Bakshi et al. (1997) and Duffie et al. (2000) for an appli-
cation of the MSE. Formally, we define the RMSE as follows:

L
ε

N

Σ
.t i

j t ij

t
,
(2) ,

2

≔ (13)

Given the full likelihood specification in (12), we expect similar
behavior between these two measures, as the full likelihood and
the MSE exhibit high sample correlation.13 Estimation under
L(2) follows similarly to that described for L(1) .

The second category of model performance measure we adopt
seeks to appraise model hedging performance. We follow
Bakshi et al. (1997) in designing the hedging strategy to support
the construction of our measure of model hedging performance.
As the presence of nontraded risk factors dictates, we construct
a measure of min‐variance hedging performance. The intuition
is to measure the sample variance of the discrepancies between
the variations of the replicating portfolio, determined by the
delta exposure times of the underlying variations, compared
with the actual variations of the corresponding option prices.
We start by determining the individual option per unit time
underlying exposure as the min‐variance delta Xt ij, , that is,

X
d s ω

d s s
=

[ , ]

[ , ]
,t ij

t j t ij

t j t j
,

, ,

, ,

where d u w,t t







 represents the instantaneous cross‐variation

between the stochastic processes ut and wt . Hence, we construct
the loss function as the variance of the hedging errors, that is,
the difference between the replicating portfolio and the corre-
sponding option variations. The error is defined as follows14:

ε X s s π π j U= ( − ) − ( − ), ,t ij t ij t j t j t j t j t, −Δ, , −Δ, , −Δ, −Δ∈

whereUt−Δ contains the intersection of the t − Δ and t day price
array. Besides the fact that the hedging error represents another
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measure of model ability to correctly reproduce market prices,
the replicating portfolio discrepancy is also an out‐of‐sample
measure, that is, it measures the ability of the model to project
forward market prices. We depart somewhat from the measure
constructed in Bakshi et al. (1997), where instead of tracking an
individual replicating portfolio performance, we measure the
hedging error across the entire sample. We track all of the
possible replicating portfolios and our main target is the daily
hedging error variability. Therefore, the loss function is repre-
sented by

L
ε

N

ε

N

Σ
−

Σ
,t i

j t ij

t

j t ij

t
,
(3) ,

2
,

2

≔






 (14)

which is the hedging error variance. This measure allows for
model comparison of economic relevance in an option pricing
context, also giving insights into model forecasting ability.

Finally, the third loss function category we employ is devised
to target the internal consistency of each option pricing
model in respect of the IV trajectories that maximize (10) at
the termination of the calibration procedure. With this loss
function, we wish to measure the coherency of the model
implied probability structure and the output behavior of the
volatility trajectory. Although methodologically different,
similar test procedures have been employed in, for instance,
Eraker et al. (2003). We follow this study in constructing the
standardized residuals:

ε
v v μ v λ z

σ v
N=

( − ) − [ ( ) − ¯ ]Δ

( ) Δ
~ (0, 1),t i

t i t i t i

t i
,

, −Δ, −Δ, 1 1

−Δ,

which corresponds to the standardization of the Euler scheme
rendered variable v. Therefore, it is straightforward to define
the model performance measure in terms of the Cramer–
Smirnov type statistic, see Darling (1957). That is,
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(15)

where Φ a b( , ) is assumed to indicate the probability mass of the
standard normal distribution within the referenced interval,
M K= 10∕ , where K is an integer of choice,15 N is the number
of observed points and I{ }⋅ is the indicator function. The func-
tion in (15) measures the distance between the empirical dis-
tribution of the volatility standardized residuals and the
standard normal and provides a measure of how coherent
model i has been in modeling IV.

With the model performance measures now established,
the experimental design is complete and ready for imple-
mentation in the forthcoming section. In particular, we are
in a position to run the MCS‐based model comparison
exercise.

5 | Empirical Testing

In this section, we run several MCS tests constructed on the
mispricing, hedging, and IV coherency measures of model
performance (Section 4.3). We seek to answer our research
question of whether incremental model complexity is justified
by incremental model performance. The objective is to isolate
from the initial model set (Section 2.2), the subset of superior‐
performing models deemed to be statistically equivalent based
on a given performance measure. The procedure we employ
allows us to identify the MCS, comprising the best‐performing
models, and to produce a model ranking defined by p value
measures that give the individual probability of each model
belonging to the estimated MCS (Section 3.1). Appendix B
(Supporting Information) provides an overview of the S&P500
index options data set that we use (U.S. Options Price Reporting
Authority 2015),16 along with the model parameter estimates
obtained from the estimation procedure, with comparisons
made to the past literature. A discussion of the absolute model
performance of the candidate models is also provided in the
Supporting Information Appendix as context for the relative
model performance presented in this section.

5.1 | Absolute Model Performance

We first provide insights into the absolute performance of each
model. In Table 2, we observe the sample average of several key
measures of absolute model performance based on the out‐of‐
the‐money (OTM) sample. Despite the large number of options
traded daily, good model performance is widespread across the
model set, with the exception of one model class. From the
likelihood measure, we get an informal model ranking from
which we note that models with constant jump intensity in the
underlying tend to have considerably inferior performance,
being unable to beat the Heston A ‐1 ∅∅ model, while models
with jumps in volatility generally worsen the performance of
the corresponding model specifications without jumps. These
models also achieve relatively high RMSEs. In general, the
mispricing among the top‐performing models ranges between 0
and 5 basis points, with an RMSE between 40 and 50 bps. If we
limit our screening to models with a minimal sample RMSE
between 40 and 45 bps, we find (i) all of the affine models with
stochastic intensity jumps in the underlying process, including
the double‐jump model specifications augmented with jumps in
volatility (except for the double‐jump model with correlated
jumps), (ii) all of the CEV and ARCH diffusion models with
stochastic intensity jumps, (iii) the hyperbolic drift augmented
A ‐1
a ∅∅ model, (iv) the log‐normal volatility L ‐1 ∅∅ model, and

(v) the two‐factor volatility models, A ‐2 ∅∅ and C ‐2 ∅∅.

Building on the above mispricing evidence, the rightmost col-
umns of Table 2 show the sample average of the min‐variance
hedging and the (square root) IV coherency measures. In the
former case, we notice relatively homogeneous behavior for
the top‐performing models, with the worst scores evidenced for
the two‐factor volatility models. The IV coherency measure
provides the distance between the empirical distribution of
the standardized residuals and that of a normal variable,
therefore indicating the probability gap between the
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hypothetical and the realized model behavior. This absolute
measure highlights the optimal performance of the L ‐1 ∅∅

model, followed closely by A C‐ , ‐1
a

1
a∅∅ ∅∅ and then A S‐1 e∅ .

The model performance under the IV coherency measure is
varied.

As motivated earlier, while the measures discussed thus far
provide an indication of the model ranking, the analysis is
informal and the measures tell us nothing about how significant
are the differences between models and, hence, to what extent
one model should be preferred to another. Furthermore, mak-
ing formal statements through distributional hypotheses of the
pricing residuals is complicated by the levels of skewness,
kurtosis, and autocorrelation evidenced in the mispricings
(Table 2). The RMSE also exhibits significant autocorrelation,
signaling the presence of heteroskedasticity in the residuals.
These are indicators that the option pricing models, although
performing well along several dimensions, fail to completely
explain the observed market evolution.

5.2 | Relative Model Performance: MCS Testing

We move now to our relative analysis based on the MCS
approach. Section 3.1.1 sets out the details of the max‐MCS test
we use. We consider an 85% confidence level for the MCS es-
timate; hence, we set the significance level α = 15%. In Table 3
we present the results of the max‐MCS test outcomes, per-
formed on the OTM sample defined in Appendix D.1
(Supporting Information), while Figures 1–4 provide an acces-
sible visualization of the MCS's reported in Table 3. Note that
the MCS is defined by the models listed above the MCS cut‐off
line in the table. For comparative purposes, we list the nearest
three models that failed to enter the MCS, which appear below
the MCS cut‐off line. Note that the models are ordered by the p
value concept defined in Section 3.1.1.

We note that the affine jump‐diffusion models with constant
intensity jumps in price are systematically rejected under all
metrics. In contrast, several models with stochastic intensity
jumps in price appear across the MCSs we report, which aligns
with the evidence of Bates (2000) and Pan (2002). In previous
findings, however, Eraker et al. (2003) provide evidence for the
importance of jumps in price, assuming model specifications
with constant jump intensity, while, in contrast, Eraker (2004)
concludes that jumps, irrespective of specification (including
stochastic jump intensity), add little explanatory power to
option pricing models. Subsequent analysis, see Yun (2011),
shows that the results of Eraker et al. (2003) and Eraker (2004)
are related to the low‐volatility sample employed. Similar to the
regression analysis of Bakshi et al. (1997), Yun (2011) shows
that time‐varying jump premia are correlated to volatility,
providing indirect empirical support for the superiority of sto-
chastic intensity jump model specifications. With our use of the
statistically robust MCS testing procedure, we provide corrob-
orating evidence that models with a lack of memory in the
timing of price jumps produce inferior performance, while
those with memory produce superior performance. In Sec-
tion 5.3, we consider both low‐ and high‐volatility regimes to
check the robustness of this contention.T
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TABLE 3 | max‐MCS test: Out‐of‐the‐money (OTM) sample.

L(1) L(2) L(3) L(4)

Likelihood A RMSE Min‐var hedging IV coherency

L ‐1 ∅∅ 1 L ‐1 ∅∅ 1 A S‐1 n∅ 1 L ‐1 ∅∅ 1

C S‐1 e∅ 0.998 C ‐2 ∅∅ 1 L ‐1 ∅∅ 1 A ‐1
a ∅∅ 0.665

A S‐1 e∅ 0.752 C S‐1 e∅ 0.999 A ‐1
a ∅∅ 0.893 A S‐1 n∅ 0.331

A ‐1
a ∅∅ 0.565 A ‐1

a ∅∅ 0.998 A C S‐1 e n 0.783 A S‐1 e∅ 0.289

A ‐2 ∅∅ 0.562 A ‐2 ∅∅ 0.943 A C‐1 e∅ 0.665 C ‐1
a ∅∅ 0.182

C ‐2 ∅∅ 0.475 A S‐1 e∅ 0.867 A ‐1 ∅∅ 0.614 A S‐1 p∅ 0.173

C S‐1
g

e∅ 0.124 C S‐1
g

e∅ 0.557 A S‐1 p∅ 0.550 A ‐1 ∅∅ 0.140

C S‐1
g

n∅ 0 A C‐1 p∅ 0.080 A C S‐1 e e 0.449 A ‐2 ∅∅ 0.078

C S‐1 n∅ 0 C S‐1
g

n∅ 0.006 A S‐1 e∅ 0.357 A C S‐1 e n 0.036

C S‐1 n∅ 0.001 C S‐1
g

n∅ 0.300

C S‐1 n∅ 0.292

A ‐1
b ∅∅ 0.121

A ‐2 ∅∅ 0.121

C S‐1 e∅ 0.103

C S‐1
g

e∅ 0.085

Note: This table shows the max‐MCS test results for the OTM sample as defined in Supporting Information Appendix B.1 and for each model performance measure L i( ) as
defined in Section 4.3. The MCS is defined by the models listed above the MCS cut‐off line. For comparative purposes, we list the nearest three models that failed to enter
the MCS, which appear below the MCS cut‐off line. The models are ordered by p value. The confidence level for the MCS test is set to 15%. All the models are sorted by
their MCS p value. The max‐MCS test is described in Section 3.1.1. The model specifications are described in Section 2.2, with the model labels described in Section 2.3.
Abbreviations: IV, implied volatility; MCS, model confidence set; RMSE, root mean squared error.

FIGURE 1 | max‐MCS test visualization (likelihood A): Out‐of‐the‐
money (OTM) sample. Note: This figure visualizes the max‐MCS test

results for the OTM sample as defined in Supporting Information

Appendix B.1 and for the likelihood A performance measure as defined

in Section 4.3. This is a visualization of the first column in Table 3. The

MCS is defined by the models listed to the left of the MCS cut‐off line
(dashed line). For comparative purposes, we list the nearest three

models that failed to enter the MCS, which appear to the right of the

MCS cut‐off line. MCS, model confidence set.

FIGURE 2 | max‐MCS test visualization (RMSE): Out‐of‐the‐money

(OTM) sample. Note: This figure visualizes the max‐MCS test results for

the OTM sample as defined in Supporting Information Appendix B.1

and for the RMSE performance measure as defined in Section 4.3. This

is a visualization of the second column in Table 3. The MCS is defined

by the models listed to the left of the MCS cut‐off line (dashed line). For

comparative purposes, we list the nearest three models that failed to

enter the MCS, which appear to the right of the MCS cut‐off line. MCS,

model confidence set; RMSE, root mean squared error.
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With respect to the form of the price jump size distribution,
negative exponential jumps appear to produce higher per-
formance across the greatest number of performance measures,
although other jump specifications do appear in several MCSs,
including the normal distribution. This is notable given that
much of the existing literature advocates a normal distribution
for price jumps, while the negative exponential distribution is
defined by a single parameter rather than the two parameters of
the normal distribution.

We also find little evidence that jumps in volatility are of rele-
vance. Moreover, double‐jump models with either synchronous
or asynchronous jumps in volatility, whenever present in the
MCS, are generally outperformed by the model counterpart
without jumps in volatility, signaling that jumps in volatility
generally hurt model performance. This is reflected, for
instance, in the higher rankings for the A S‐1 e∅ and A S‐1 n∅

models within the reported MCSs for all performance measures.

Another constituent model of note within the reported MCSs is
the CEV C S‐1 e∅ , with stochastic intensity jumps in price of
negative exponential distribution—the analog of the affine
A S‐1 e∅ model. The increased complexity of the elasticity of
variance extension above its affine counterpart leads to superior
performance across the mispricing‐based likelihood L(1) and
RMSE L(2) measures. This broadly aligns, for instance, with
Jones (2003), who concludes that CEV models produce superior
performance than the Heston model. However, we show that
the plain CEV model, C ‐1 ∅∅, does not feature in the MCS.
Therefore, it is necessary to augment the CEV model with a
parsimonious jump in returns with stochastic intensity to
achieve superior pricing performance. However, while this is
true from a pricing perspective, the same model produces
inferior performance relative to the A S‐1 e∅ model when
assessed on the basis of the hedging L(3) and the IV coherency
L(4) tests.

Other significant models of note are the quasiaffine A ‐1
a ∅∅ and

the log‐normal L ‐1 ∅∅ models, which show superiority across
all performance measures, while the two‐factor CEV C ‐2 ∅∅

model is consistently a member of the mispricing‐derived
MCSs. The latter model, however, does not produce superior
hedging or IV coherency. The quasiaffine and log‐normal
models are among the most successful model specifications.
Both the L ‐1 ∅∅ model and A ‐1

a ∅∅ models are highly coherent
in terms of IV, but the former is more highly ranked. This
evidence pertaining to the L ‐1 ∅∅ model contrasts with Benzoni
(2002), who concludes that the Heston and log‐normal models
have similar performance.

If considered just in terms of parsimony of parameters, it is
striking that the quasiaffine A ‐1

a ∅∅ model manages to provide
top‐range performance, throughout the OTM sample, at the cost
of just one auxiliary component in the volatility drift relative to
the Heston A ‐1 ∅∅ model. As has been suggested by studies,
such as G. Li and Zhang (2013), the affine drift of the state
variable contributes to model misspecification. By inserting the
hyperbolic term in the affine drift, we are able to achieve high
performance for this augmented model. We conjecture that
there is a technical explanation for this behavior. We notice that
the asymptotic variance of the Heston model can be written as

FIGURE 3 | max‐MCS test visualization (Min‐var Hedging): Out‐of‐
the‐money (OTM) sample. Note: This figure visualizes the max‐MCS

test results for the OTM sample as defined in Supporting Information

Appendix B.1 and for the Min‐var Hedging performance measure as

defined in Section 4.3. This is a visualization of the third column in

Table 3. The MCS is defined by the models listed to the left of the MCS

cut‐off line (dashed line). For comparative purposes, we list the nearest

three models that failed to enter the MCS, which appear to the right of

the MCS cut‐off line. MCS, model confidence set.

FIGURE 4 | max‐MCS test visualization (IV coherency): Out‐of‐
the‐money (OTM) sample. Note: This figure visualizes the max‐MCS

test results for the OTM sample as defined in Supporting Informa-

tion Appendix B.1 and for the IV coherency performance measure

as defined in Section 4.3. This is a visualization of the fourth col-

umn in Table 3. The MCS is defined by the models listed to the left

of the MCS cut‐off line (dashed line). For comparative purposes, we

list the nearest three models that failed to enter the MCS, which

appear to the right of the MCS cut‐off line. IV, implied volatility;

MCS, model confidence set.
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the product of the model constraint σ
a2

2
times the squared long‐

run mean.17 This implies that a plain affine model cannot
generate a volatility variance that is larger than its own squared
mean, which strongly constrains the peaks achievable by the
model trajectories and, therefore, the kurtosis of the underlying
returns. On the contrary, a model such as A ‐1

a ∅∅, which pre-
vents the volatility from hitting the zero boundary, allows the
volatility of volatility to grow without limitation, giving the
model more flexibility to reproduce actual IV behavior.

While the quasiaffine A ‐1
a ∅∅, as a drift‐based augmentation of

the Heston A ‐1 ∅∅ model, performs particularly well, it is
notable that the Heston model produces superior, though
midrange, hedging variance performance. We further notice
that the Heston model sits marginally outside the MCS when
assessed on IV coherency. This consideration suggests that if
one is able to accept some loss of performance with respect to
pricing, the least complex model presented in our model suite
can be exploited for hedging and volatility modeling purposes.

In respect of our research question pertaining to model com-
plexity, it is worth summarizing our findings thus far. We
provide evidence that moving from a constant price jump
intensity to a more complex stochastic jump intensity specifi-
cation is justified. We find no real evidence, though, to support
increased complexity through the integration of jumps in vol-
atility, whether individually or jointly with price jumps. We see
that a more parsimonious negative exponential price jump
distribution performs relatively better than other distributions,
although the normal and Lomax distributions are generally
acceptable. We further find that the more parsimonious qua-
siaffine A ‐1

a ∅∅ and log‐normal L ‐1 ∅∅ models perform partic-
ularly well relative to more complex jump specifications. In
respect of the models we reject, we get further insights into our
research question. We see no evidence to support the increased
model complexity induced by assuming CEV specifications,
with the exceptions being the price jump‐augmented version of
the single‐factor CEV model and the two‐factor CEV model. We
also find no evidence for parabolic nonlinearity in the drift.

5.3 | Segmented Analysis

Building on the results to date, we extend our study with a
segmented analysis. Specifically, we perform the model selec-
tion exercise across several alternative options samples to assess
whether there are specific moneyness and maturity effects,
while we also consider model performance across alternative
volatility regimes. To check the robustness of our findings, we
perform the model selection exercise across several alternative
options samples to assess whether there are specific moneyness
and maturity effects, while we also consider model performance
across alternative volatility regimes. Specifically, we consider
the following samples: a deep‐out‐the‐money sample, that is,
call options with log‐moneyness lower than −7.5% and put
options with log‐moneyness greater than 7.5%; a quasi‐at‐the‐
money (QATM) sample, that is, call options with log‐
moneyness between −2.5% and 0 and put options with log‐
moneyness between 0 and 2.5%; a long‐term‐to‐maturity
(LTTM) sample, that is, OTM options with tenors between 6

and 12months; a short‐term‐to‐maturity (STTM) sample, that
is, OTM options with tenors between 1 and 3months; a low‐
volatility environment sample, that is, OTM options selected
with a measure of IV below the sample median; and a high‐
volatility environment (HVOTM) sample, that is, OTM options
selected with a measure of IV above the sample median.

To conserve space, we defer the full discussion of the maturity
and volatility regime analysis to Supporting Information
Appendix C (Supporting Information). In summary, we find
that results broadly align with the full OTM sample, but with
some variations, particularly in the QATM and LTTM sample.
The RMSE measure is notably lower for the STTM sample,
while higher in the HVOTM sample. Stochastic price jump
intensity models outperform, with jumps in volatility playing a
minimal role, which supports our main findings. Additionally,
EVD models show promise for long maturities, especially in the
LTTM case. The volatility‐segmented analysis shows that model
performance differs significantly in high‐volatility conditions,
with hedging models performing similarly across regimes, yet
showing some unexpected behavior in the HVOTM sample.

6 | Conclusion

In this study, we tackle a research question of relevance to
academics and practitioners. We investigate if increasing com-
plexity in option pricing modeling is justified by commensurate
improvements in model performance. We consider an index
option market context and propose an overarching modeling
framework that captures many of the affine and nonaffine
jump‐diffusion model specifications deployed to date in the
literature to jointly describe the underlying equity index and the
associated stochastic volatility dynamics. We define model
complexity as departures from the seminal stochastic volatility
diffusion model of Heston (1993). We consider several specifi-
cations of jumps in price and volatility, across the affine and
CEV model classes, while we consider nonlinearity in the drift
and diffusion, in addition to two‐factor volatility model speci-
fications. We construct an option pricing model comparison
exercise involving a large data set of traded index options. The
performance of the model set is measured and tested for model
superiority using a range of common model comparison in-
dicators, providing information regarding mispricing behavior,
hedging performance, and internal coherency with respect to
modeling the volatility path. Differing from the existing litera-
ture, we use a statistically rigorous model selection approach
that is premised on the MCS methodology of Hansen et al.
(2011). We provide insights into the trade‐off between model
complexity and model performance.

Our empirical evidence suggests that there is a payoff to some
forms of model complexity. In particular, jumps in the price
component are a necessary extension to produce superior out-
comes. Moreover, we find that the type of jump is important. In
fact, constant intensity jumps in price drastically reduce per-
formance, whereas stochastic intensity jumps seem to be the
preferable choice. We find that a negative exponential appears
to be the best choice for the price jump distribution form,
although normal and EVD price jumps generally produce
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equivalent performance. Jumps in volatility, either synchro-
nized or not, worsen model performance, suggesting it is not
worth the augmented size of the parametric vector. Further-
more, we provide evidence that extending to a two‐factor model
incorporating a stochastic mean volatility factor improves
model performance without the need for a jump. We also gather
evidence that the affine drift is a significant source of mis-
specification, as a simple extension of the Heston model with a
hyperbolic factor drastically improves performance. Most
notably, from the models rejected, we find, for the most part,
that the CEV model class, which is the most popular nonlinear
extension to the affine model class, does not seem to produce
appreciable improvements in performance.

It is important to note that the testing framework we adopt—
namely, the max‐MCS—supports multiple comparisons across
complex models, providing a general methodology that can
potentially target any type of model performance measure.
Nonetheless, care should be taken during the testing design
stage as excessive simplification of the underlying hypotheses
might weaken the testing results. However, the flexibility of the
MCS approach facilitates the construction of extensive suits of
tests that can provide different points of observation for the
overall model performance significance. The intersection of the
battery of tests can provide insightful information with respect
to model superiority and area where model refinement is
required.

We believe our work will encourage the use of the MCS as a
minimum statistical standard for researchers when proposing
new option pricing models and benchmarking against existing
models, particularly when done on a large scale. The MCS is
conservative, however, in its control of the FWER defined as the
probability of making at least one false discovery. Controlling
for the FWER in this way, however, lacks power, where power
is loosely defined as the ability to reject false null hypotheses,
that is, to identify true discoveries. Our study should motivate
research in the direction of generalized approaches that offer
greater statistical power when correcting for multiple compar-
isons bias in such multimodel testing, see Beran (1988),
Lehmann and Romano (2005), Romano and Wolf
(2005a, 2007, 2010). This would be particularly important, for
instance, where an even larger suite of option pricing models is
analyzed.
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Endnotes
1Note that model parameters do not enter the sample statistic con-
structed under the MCS framework. In this sense, the number of
parameters of a given model is not a factor in the calculation of the

MCS. In option pricing model specification analysis, it is well es-
tablished that an option pricing model with more parameters is not
necessarily going to lead to better performance (Bakshi et al. 1997).
Hence, the MCS is a suitable framework for us to compare different
models with different parameter dimensions.

2The Lomax distribution corresponds to a Pareto Type II distribution
that has been shifted to initiate the range of variation at zero. The
EVD negative tail distribution has been chosen to test an implicit
hypothesis on the LTTM behavior of the pricing function.

3See also other studies in the context of option pricing models, such
as Huang and Wu (2004), H. Li et al. (2008), and Yang and
Kanniainen (2017).

4The risk‐neutral drift is the process such that the present value of the
underlying price results in a martingale. The r̃ process corresponds to
the interest rate process r in the absence of jumps, and it is otherwise
adjusted appropriately to compensate for the bias introduced by the
discontinuous price component. The coefficient r is the constant interest
rate corresponding to the 3‐month Treasury bill. For pricing modeling
purposes, the interest rate parameter is assumed to be constant, though
during the optimization it is observed daily.

5The articles Kou (2002) and Kou and Wang (2004) deal with a
double‐exponential jump size distribution. We consider a single‐
sided negative distribution as a hypothesis on the jump‐induced
skewness.

6From unreported analysis, we acknowledge that the impact of sto-
chastic intensity jumps in volatility is marginal, w.r.t. the likelihood
measure, whereas the self‐exciting feature of the jump in this model
renders it more troublesome to be estimated.

7To aid the reader, we make the Matlab code that implements the max‐
MCS test in (6) available through Matlab Exchange here (https://uk.
mathworks.com/matlabcentral/fileexchange/175383-mht_mcs_max).
The Matlab code is fully downloadable, and instructions for the function
usage are included in the function help section.

8When testing for (5), we need to keep track of which model de-
termines the negative value of ti j, to reject the correct model.

9Although the interest rate is assumed nonstochastic, daily interest
rate dynamics may be captured by the use of 3month T‐Bill quo-
tations as a proxy for the risk‐free rate. In this article, we do not
incorporate the effect of stochastic interest rate into the pricing
function. This impact is assumed to be small on shorter maturity
options and progressively increasing with the tenor. See, for
instance, Scott (1997) for a detailed analysis.

10The indices t j, attached to the maturity date T and the strike K of
the jth option in the t day sample, do not change the constant nature
of these variables. They indicate instead, respectively, the reference
panel date and the position of the corresponding option within the
panel, which is not necessarily constant.

11During the estimation, the sample is represented by 1445
observation days containing on average 845 prices, ranging from a
minimum of 34 to a maximum of 5594. A grand total of 2,967,861
observations are used. We discuss the data in detail in Supporting
Information Appendix B.1.

12In Section 3.1, we defined the MCS test with respect to a loss
function. It is straightforward that a model performance measure is
the opposite of a loss function, that is, the lower the loss then the
better the performance. Formally, they are the same function,
though when we refer to a superior model performance, the actual
test result will show an inferior loss. We will use the two terms
interchangeably, whenever no confusion arises.

13In the exercise produced in this article, the likelihood (12) and the
MSE show a −0.95 correlation.

14Notice that across the several loss function definitions, we deliber-
ately use the letter ε to indicate model errors. This is for the purposes
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of methodological consistency. Any definition is to be considered
confined to the performance measure to which it is associated.

15In the empirical exercise, we aggregate the residuals in 35 bins
between −5 and 5 plus two bins at ±∞.

16U.S. Options Price Reporting Authority 2015. S&P 500 Index Options
(SPX) Data. Proprietary Data Accessed Under License. https://www.
opraplan.com/.

17The presence of a jump in volatility is irrelevant as, asymptotically,
the model behaves as a jump‐less model with modified parameters.
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