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Based on agent opinion analysis theory, Bayesian predictive synthesis (BPS) is a framework for combin-
ing predictive distributions in the face of model uncertainty. In this article, we generalize existing paramet-
ric implementations of BPS by showing how to combine competing probabilistic forecasts using interpretable
Bayesian tree-based machine learning methods. We demonstrate the advantages of our approach—in terms
of improved forecast accuracy and interpretability—via two macroeconomic forecasting applications. The first
uses density forecasts for GDP growth from the euro area’s Survey of Professional Forecasters. The second
combines density forecasts of U.S. inflation produced by many simple regression models.

1. introduction

Forecasts of macroeconomic and financial variables are used by forward-looking decision
makers, not least by central banks given that changes in their policy tools take time to have an
impact on the macroeconomy. This requires them to set monetary policy targeting forecasts of
future macroeconomic values (e.g., see Woodford, 2007). Increasingly, as popularized by the
Bank of England’s “fan charts” for inflation and GDP growth, these forecasts take the form of
density forecasts and thus provide a full probabilistic representation of the uncertainty inher-
ent in any single-valued (point) forecast. The decision maker is then aware of the risks asso-
ciated with the forecast and can extract probability event forecasts of specific interest and/or
credible intervals from the underlying density forecast.

As well as the uncertainty associated with any given forecast, there is uncertainty about the
“best” forecasting model. Competing density forecasts can come from different reduced-form
or structural macroeconomic models estimated by Bayesian or frequentist methods, and/or be
subjective and come from surveys. One way or another, all these multiple density forecasts are
likely wrong or “incomplete,” to use terminology from Geweke (2010) discussed further be-
low. So the decision maker should not select one single forecast alone. Instead, building on the
idea of combining point forecasts (Bates and Granger, 1969), a growing literature has found
that combining multiple density forecasts can be effective both in improving accuracy and in
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reflecting forecasting practice at some central banks.1 The literature concludes that combined
density forecasts tend to be more accurate and more robust than single-model approaches
that ignore model uncertainty; for a review, see Aastveit et al. (2019). A related literature has
recently shown how combined density forecasts can also be used to average impulse responses
(Ho et al., 2024) and how they can be integrated into decision analysis (Tallman and West,
2023; Chernis et al., 2024).

In this article, we extend existing density forecast combination strategies by proposing a
more flexible and general nonparametric approach. This allows the competing density fore-
casts to be formally combined in a nonlinear and time-varying manner, with the combination
weights on the competing density forecasts determined by information that may be external
to the forecasting models. This information might include time-varying or time-invariant char-
acteristics of the competing density forecasts not directly reflected in their predictive distri-
butions. Or it might capture other common time-varying factors, such as general information
that the decision maker may have about the macroeconomic environment or financial condi-
tions, external to the forecasting models. Our approach reflects the reality that decision mak-
ers informally likely aggregate multiple density forecasts neither linearly nor independently of
additional information they may have on current macroeconomic and financial conditions. We
show how, despite their statistical flexibility and use of Bayesian machine learning algorithms,
it is still possible to interpret the proposed combined density forecasts.

Key to our new model combination strategy is Bayesian predictive synthesis (BPS). BPS
has emerged, as extended into a time-series context by McAlinn and West (2019), as a general
method of combining density forecasts with a strong theoretical basis. BPS draws on an earlier
Bayesian literature on agent or expert opinion analysis (West and Crosse, 1992). It provides
a formal and theoretically justified method for pooling densities. BPS can be shown to nest
many previous approaches, including the “linear opinion pool” widely used in the aforemen-
tioned literature (see, e.g., subsection 2.2 of McAlinn and West, 2019), and has been used suc-
cessfully in various applications in economics, such as McAlinn et al. (2020), Chernis (2023),
and Aastveit et al. (2023). In this article, we develop density forecast combination strategies
within the BPS framework.

In existing implementations of BPS, the so-called “synthesis function,” which determines
the weight attached to each density, needs to be specified parametrically. Common choices are
to assume that the synthesis function takes the form of a dynamic linear regression, with pa-
rameters that are allowed to change over time typically as random walk processes. This spec-
ification of the synthesis function thus allows the weights on competing density forecasts to
evolve smoothly over time. But such an assumption may not be valid. Misspecification occurs
if the weights depend on other factors or if they follow a different law of motion than a ran-
dom walk. A random walk process for the weights also provides little explanation for why in-
dividual models receive weight. It does not directly link temporal changes in the weights to
external driving information.

These considerations motivate this article. BPS has theoretically rigorous foundations, but
the manner in which it has been implemented in practice risks misspecification due to the
adoption of particular and untested parametric assumptions. We therefore propose to use
flexible nonparametric techniques, which can incorporate additional (external) information
known to the decision maker, to specify the synthesis function. Specifically, we use regression
trees to learn the law of motion governing the coefficients of a (conditionally) linear synthesis
function. Accordingly, we label our version of BPS, BPS-RT, or simply, RT.

Regression tree methods are a natural way to let the model learn the law of motion gov-
erning the combination weights, as specified in the synthesis function. In conventional (single-

1 See, among many others, Mitchell and Hall (2005), Wallis (2005), Hall and Mitchell (2007), Geweke and Amisano
(2011), Koop and Korobilis (2012), Waggoner and Zha (2012), Billio et al. (2013), Aastveit et al. (2014), Conflitti et al.
(2015), Kapetanios et al. (2015), Chernis and Webley (2022), Knotek and Zaman (2023), Aastveit et al. (2023), Čapek
et al. (2023), and Diebold et al. (2023). Aastveit et al. (2019) survey and provide references to uses of density forecast
combinations in fields beyond macroeconomics.
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machine learning bps 3

model) forecasting applications, tree-based models of the conditional mean have proven
highly successful (see, e.g., Clark et al., 2023; Huber and Rossini, 2022; Huber et al., 2023).
Crucially for our purposes, regression-tree methods require the choice of covariates, which we
call “weight modifiers.” These weight modifiers help determine the weights attached to the
density forecasts. In contrast, conventional implementations of BPS model the combination
weights as random walks and any relevant information in the form of additional (external) co-
variates is neglected.2 For example, decision makers may wish to let the weights on different
forecasting models vary with the state of the economy or vary as a function of the features of
each forecast density. Our tree-based specification for the synthesis function is able to condi-
tion on both “global” (i.e., macro information not associated with a particular forecaster) and
“local” (i.e., micro information associated with a given forecaster) variables when determining
the weights. The weights on each density forecast are dynamically determined via a sequence
of decision rules. This way RT learns how to combine predictions in a highly flexible way us-
ing all relevant information contained in the predictive densities and the weight modifiers. We
can then use the properties of the decision rules to tease-out which weight modifiers are most
important in determining the combination weights. In order to help the decision maker fur-
ther interpret the combined density and better understand the role each individual density is
playing in the combination, we use a conditionally linear synthesis function. We show how this
means that RT can be used to understand the role of model incompleteness, agent clustering,
and the time-varying importance of the different weight modifiers.

Our article is related to the growing literature in macroeconomic modeling using machine
learning and nonparametric methods to combine density forecasts. A small number of other
papers have used nonparametric techniques to combine predictive densities (e.g., Bassetti
et al., 2018, 2023; Jin et al., 2022). However, unlike our proposed method, these papers nei-
ther use regression trees nor fit explicitly within the formal BPS framework. Unlike popular
approaches that use regression trees to estimate nonparametric regressions, we use them to
model how the weights change over time as a function of additional covariates. Our approach
is related to a recent paper by Farrell et al. (2020) that models the parameters of economic
models as unknown functions of additional covariates, capturing heterogeneity in a flexible
manner. Similarly, papers such as Creal and Kim (2021), Deshpande et al. (2024), Coulombe
(2024), and Hauzenberger et al. (2023) treat the parameters of regression models nonpara-
metrically instead of assuming a known functional relationship between the covariates and the
endogenous variables.

The next section of the article introduces and motivates BPS in theory and then discusses
how it has been implemented in the existing literature. It then proposes our generalization,
RT, and explores its properties. Section 3 demonstrates the utility of RT by undertaking two
forecasting applications. The first application takes the individual forecaster density forecasts
from the European Central Bank Survey of Professional Forecasters (ECB SPF) and com-
bines them. The second application forecasts U.S. inflation using a commonly used large set of
indicators. The predictive densities that are synthesized are produced by regression models us-
ing the different indicators. We find that RT produces well-calibrated and accurate forecasts.
Notably, we find that single-tree models perform as well as or, in some cases, even better than
multiple tree models. This finding stands in contrast to standard recommendations when using
regression trees. This suggests that a relatively parsimonious weight scheme with few changes
in weights is supported by the data. The superior performance of RT stems from its better
ability to explain periods of volatility, such as the global financial crisis that affected euro area
(EA) GDP growth and the post-COVID inflation period in the United States. Zooming in on

2 Notable recent exceptions are Oelrich et al. (2023), who, following Li et al. (2023), let the weights in linear den-
sity forecast combinations depend on (potentially time-varying) exogenous variables. As Oelrich et al. (2023) explain,
such linear pools are one specific instance of BPS. Letting the combination weights in linear pools change over time
according to these “pooling variables,” as in the more general (nonlinear) BPS framework that we consider, can offer
more flexibility than assuming that the combination weights follow an assumed autoregressive process; cf. Del Negro
et al. (2016).

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12759 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [28/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 chernis et al.

the best performing RT specification in the U.S. inflation application, we show how the combi-
nation forecasts from RT can be interpreted. RT can be used to understand the role of model
incompleteness, agent (forecast) clustering, and the time-varying importance of the different
weight modifiers. We find little model set incompleteness during the post-COVID inflation pe-
riod, suggesting that RT’s success comes from its ability to successfully forecast inflation using
the underlying models with changes in the combination weights driven by a time trend. This
contrasts with the earlier period of lower inflation, when business cycle indicators are shown
to be more important. Section 4 concludes. Online Appendix A provides details on Bayesian
inference of RT and Online Appendix B provides additional empirical results, as referenced
in the main article.

2. bps with regression trees

In Subsections 2.1 and 2.2, we provide some background on BPS, distinguishing between
BPS in theory and its use in practice in extant empirical applications. Then in Subsections 2.3
and 2.4, we explain how regression trees can be used to provide a more flexible way of opera-
tionalizing BPS.

2.1. Bayesian Predictive Synthesis. BPS is a foundational theoretically coherent Bayesian
method for combining predictive densities.3 The theory of BPS provides a pooled predictive
distribution for the variable being forecast (say GDP growth) given a set of individual density
forecasts. Operationally, this pooled predictive distribution is produced using Markov chain
Monte Carlo (MCMC) methods involving two steps. In the first step, draws are taken from the
individual predictive densities for GDP growth. These draws are then, in effect, treated in a
second step as explanatory variables in a time-series model where the dependent variable is
the actual outcomes for GDP growth. This time-series model amounts to the synthesis func-
tion. Standard choices for this function are typically based on linearity, either simply a con-
stant linear relationship or a dynamic relationship where the linear coefficients evolve over
time according to a random walk. As pointed out by Aastveit et al. (2023), this means that
BPS can be thought of as a multivariate regression relating the target variable (GDP growth)
to the forecasts for GDP growth, which are treated as generated regressors. We make use of
this generated regressor interpretation below.

More formally, at time t we assume that a decision maker is confronted with h-step-ahead
forecast densities for variable yτ+h for τ = 1 . . . t. These forecast densities are produced by J
different agents, experts, or models. We label these predictive densities {π jτ (x jτ+h|t )}J

j=1. Thus,
x jτ+h|t is the forecast of yτ+h made by agent j at time t and it is important to stress it is a
random variable, not simply a point forecast. xt+h|t = (x1t+h|t, . . . xJt+h|t )′ denotes the vector of
forecast densities for all agents.

Agent opinion analysis theory (West, 1992; West and Crosse, 1992), extended to a time-
series context by McAlinn and West (2019), shows that the optimal predictive density for yt+h

takes the form:

p(yt+h) =
∫

α(yt+h|xt+h|t )
J∏

j=1

π jt (x jt+h|t )dxjt+h|t ,(1)

where α(yt+h|xt+h|t ) denotes the synthesis function that reflects how the decision maker com-
bines their prior information with the set of expert-based forecasts.4

3 For a general description of BPS, see McAlinn and West (2019); specific implementation details related to our ap-
plications are discussed below and in Online Appendix A.

4 The synthesis function depends on unknown parameters and latent states that control the properties of the syn-
thesis function but we have suppressed these to simplify the notation.
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machine learning bps 5

Theory offers no guide as to the specific choice of the synthesis function, α(yt+h|xt+h|t ). But
a common choice in empirical applications, used, for example, in McAlinn and West (2019),
McAlinn et al. (2020), and Aastveit et al. (2023), is to assume the synthesis function takes the
form of a dynamic linear regression model with time-varying coefficients. Our synthesis func-
tions also have a dynamic regression form. Similar to Chernis (2023), we use a noncentered
parameterization (see Frühwirth-Schnatter and Wagner, 2010), which parameterizes the linear
synthesis function in terms of a constant coefficient regression component, and a time-varying
part, which captures deviations from constant coefficients:

α(yt+h|xt+h|t ) = N

⎛
⎝yt+h|ct+h +

J∑
j=1

(γ j + β jt+h)x jt+h|t , σ 2
t+h

⎞
⎠,(2)

where ct+h is a time-varying intercept that, throughout the article, is assumed to follow a ran-
dom walk, γ = (γ1, . . . , γJ )′ are time-invariant weights, and βt+h = (β1t+h, . . . , βJt+h)′ denotes
the time-varying combination weights.5 The dynamics of βt+h are a crucial modeling choice in
BPS and the most common assumption is that the weights evolve according to independent
random walks with innovation covariance matrix V . This choice leads to a version of BPS that
we label “RW.” This model also assumes that the (log) variance ςt+h := log σ 2

t+h evolves ac-
cording to an AR(1) model with autoregressive coefficient ρς , unconditional mean μς , initial
value ς0, and error variance σ 2

ς .6

Note that, even though the synthesis function given in (2) assumes Gaussianity and linear-
ity, it is very flexible. That is, although it is linear at a given point in time (which aids in in-
terpretation), the weights in the linear combination can change over time. Furthermore, al-
though (2) implies a Gaussian density conditional on all the parameters of the synthesis func-
tion (namely, βt+h, xt+h|t , ct+h, and σ 2

t+h), when we carry out unconditional predictive infer-
ence, we marginalize out these parameters, leading to a predictive density that can be highly
non-Gaussian. Additional flexibility is gained through the time-varying intercept and error
variance. The reason we include them is related to the issue of model set incompleteness, dis-
cussed below.

2.2. Properties of BPS. In this subsection, we briefly discuss some properties of BPS in
general and then our particular parameterization of the synthesis function.

At a general level, and in contrast with some linear approaches to combining models and
density forecasts, such as Bayesian model averaging (BMA), the weights on each density are
restricted neither to lie between zero and one nor to sum to unity.7 Moreover, the degree of
temporal change in the weights of RW depends on the magnitude of the state innovation vari-
ances for these parameters: Small values imply slow, smooth adjustment of the weights over
time; large values allow for bigger, sharper changes.

We emphasize two features of our parameterization of the synthesis function before we
introduce our regression-tree approach, which provides a more flexible nonparametric rep-

5 Outside of the BPS paradigm, we can also view (2) as a special case of density forecast combination strategies that
take convolutions of densities from different models, where the weights are also allowed to vary flexibly both across
time and models; see Billio et al. (2013) and Casarin et al. (2023).

6 The prior choices for these parameters are given in Online Appendix A.1. Homoskedastic cases, which we also
consider in our empirical work, are obtained setting σ 2

ς to zero. Below, for notational ease, we do not explicitly note
those parameters relating to SV in the conditioning arguments.

7 Linear density forecast combination methods often require the weights to lie between 0 and 1 and sum to 1. This
facilitates Bayesian interpretation of the weights, as posterior probabilities in BMA, but even outside of the Bayesian
framework the weights are often required to sum to unity to ensure that the combined density is a density (integrates
to unity). However, the restriction that the weights be positive can be relaxed even in linear density forecast combina-
tions; for discussion and references, see Genest and Zidek (1986). It is also of note that in linear point forecast com-
binations, as seen in Bates and Granger (1969) and Granger and Ramanathan (1984), there is also no need for the
weights to be positive and/or to lie within the unit circle.
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6 chernis et al.

resentation of the synthesis function. First, as a special case, we can define a static version of
BPS that assumes time-invariant weights βτ = 0J for all τ but leaves γ unrestricted. We label
this instance of BPS, which assumes that the combination weights are constant over time,
“CONST.”

Second, the presence of both an intercept and an error in the synthesis function means that
these versions of BPS allow for model set incompleteness (Geweke, 2010). That is, they allow
the true (but unknown) model not to be in the decision maker’s model space; see, for exam-
ple, Billio et al. (2013) and Aastveit et al. (2018). A conventional model combination scheme,
such as BMA, sets both intercept and error variance to zero. The fact that the intercept, ct+h,
and error variance, σ 2

t+h, are both time varying provides additional flexibility when modeling
the degree of model set incompleteness. Note that these specific assumptions are equivalent
to embedding a popular benchmark for forecasting (especially of inflation)—the unobserved
components SV (UCSV) model of Stock and Watson (2007)—within our set of now J + 1
density forecasts. This is also related to an alternative treatment of model set incompleteness
in BPS that adds a fictitious baseline predictive density to the set of densities being synthe-
sized (see, for instance, the discussion in subsection 2.2.3 of Tallman and West, 2023).8 In our
case, this baseline predictive density comes from a UCSV model. But importantly, as when es-
timating a mixture density, the parameters of the UCSV density are estimated simultaneously
with the weights in the synthesis function.

2.3. Machine Learning the Synthesis Function. In this article, our proposal is to re-
lax the restrictions in RW by considering more flexible forms of time variation in βt+h.
Specifically, we use techniques from machine learning to model the dynamic evolution of
βt+h and the constant component of these combination weights, γ , in a nonparametric
manner.

Conventional implementations of Bayesian machine learning methods, such as regression
trees, cluster observations into groups. In our implementation, the “observations” are the
combination weights attached to each agent’s forecast density. The clustering is achieved
based on some observed variables that we call “weight modifiers.” These are denoted by a
Kγ -vector zγ

j (of constant weight modifiers) and a Kβ-vector zβ

jt+h|t (of time-varying weight
modifiers). These target t + h but are known at time t and are application specific. In Sub-
section 3.1, we discuss their choice in more detail, but we note here that weight modi-
fiers could be characteristics of the agent’s forecasts (e.g., past forecast performance, fore-
cast uncertainty, or higher moments) or indicators of macroeconomic conditions (e.g., uncer-
tainty or financial conditions) such that the weights can change based on the state of the
economy.

We postulate a general nonlinear relationship between the weights and the weight modifiers
through unknown functions μ

γ

j (zγ

j ) and μ
β

j (zβ

jt+h|t ). In particular, we assume:

γ j ∼ N (μγ

j (zγ

j ), τ γ

j ) and β jt+h ∼ N (μβ

j (zβ

jt+h|t ), τ
β

j ),(3)

where τ
γ

j and τ
β

j denote prior scaling parameters. For expositional convenience, we define

μ
γ

j := μ
γ

j (zγ

j ) and μ
β

jt+h := μ
β

j (zβ

jt+h|t ). This flexible model differs from existing implementa-
tions of BPS through both the hierarchical priors used on elements in γ and βt+h and by in-
corporating additional covariates into the decision maker’s information set via the use of the
weight modifiers.

8 Diebold et al. (2023) also add a fictitious forecaster in their ECB SPF application that, like ours below, combines
forecaster-level density forecasts.
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machine learning bps 7

The best way to illustrate the effect the scaling parameters have on the actual estimates of
the weights is to consider a reparameterization of the synthesis function. Integrating out γ j

and β jt+h by plugging Equation (3) into Equation (2) yields:

yt+h = ct+h +
J∑

j=1

⎡
⎢⎢⎢⎣

(
μ

γ

j (zγ

j ) +
√

τ
γ

j ν
γ

j

)
︸ ︷︷ ︸

γ j

x jt+h|t +
(

μ
β

j (zβ

jt+h|t ) +
√

τ
β

j ν
β

jt+h

)
︸ ︷︷ ︸

β jt+h

x jt+h|t

⎤
⎥⎥⎥⎦ + σt+hut+h,(4)

with ν
γ

j , ν
β

jt+h, and ut+h ∼ N (0, 1) denoting process innovations. The innovations, ν
γ

j and ν
β

jt+h,
and the corresponding scaling terms control the degree of dispersion of the actual weights
from those expected under the prior mean. If the scalings are close to zero, the posterior of γ j

and β jt+h is pulled toward the prior mean and the resulting estimates will be close to μ
γ

j (zγ

j )

and μ
β

j (zβ

jt+h|t ) and so strongly depend on zγ

j and zβ

jt+h|t . If this is not the case, the resulting
scaling parameters would be larger so that substantial deviations from the prior means are
more likely.

Another feature of this representation is worth emphasizing. As opposed to a model that
directly approximates the synthesis function nonparametrically, the specification in (4) intro-
duces interaction terms. For instance, for the constant coefficient part of the synthesis func-
tion we have the form μ

γ

j (zγ

j ) × x jt+h|t . This specific form reduces the risk of overfitting by
introducing structure on the space of functions that we approximate. Furthermore, since (4)
is conditionally linear in x jt+h|t , at any point in time interpretability is ensured, even though
(4) is unconditionally nonlinear and time varying. We stress that we do not allow the indi-
vidual forecasts themselves to be weight modifiers. That is, we do not let zβ

jt+h|t equal x jt+h|t
(or xt+h|t ). If there were equality, we would end up with a type of nonparametric regression
model.9

This treatment can be contrasted with the alternative of treating the synthesis function, α,
itself nonparametrically. As stated in the introduction, the main advantage of our approach
is interpretability, since inspection of the elements of βt+h lets us gauge the importance of a
particular forecaster in shaping the combined forecast. Put differently, and using the words
of Farrell et al. (2020), our approach models “heterogeneity” in the weights. Notice, however,
that the dynamic nature of our model implies that heterogeneity can be either static (related
to μ

γ

j ) or dynamic (related to μ
β

j ), or both.

2.4. Implementing BPS with Regression Trees. In principle, any technique can be used to
infer the shape of the two functions, μ

γ

j and μ
β

j . For instance, neural networks (Farrell et al.,
2020, 2021), Gaussian processes (Clark et al., 2024; Hauzenberger et al., 2025), or regression
trees (Coulombe, 2024; Creal and Kim, 2021; Deshpande et al., 2024) might be used. Given its
empirical success, we use Bayesian additive regression trees (BART; see Chipman et al., 2010)
to estimate μ

γ

j and μ
β

j nonparametrically.
BART approximates the prior mean functions through a sum-of-trees model with S trees:

μ
γ

j (zγ

j ) ≈
S∑

s=1

g(zγ

j |T γ
s ,φγ

s ) and μ
β

jt+h = μ
β

j (zβ

jt+h|t ) ≈
S∑

s=1

g(zβ

jt+h|t |T β
s ,φβ

s ),(5)

where g denotes a tree function that is parameterized by so-called tree structures, T n
s , and ter-

minal node parameters, φn
s , for n ∈ {β, γ }. The basic idea behind a single tree is that the tree

9 In this case, β jt+h = μ
β

j (x jt+h|t ) +
√

τ
β

j ν
β

jt+h would be an unknown function of x jt+h|t and hence the forecast-
ers could impact yt+h in a nonlinear manner, jeopardizing interpretability. The only difference to a standard BART
model is that this term would be additionally scaled by x jt+h|t in the synthesis function.
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8 chernis et al.

structures describe sequences of disjoint sets. These sets partition the input space (determined
by zγ

j and zβ

jt+h|t , respectively). Each of these sets is associated with a particular terminal node
parameter. In our case, the terminal node parameters serve as prior expectations for the γ js
and for the β jt+hs. The input space is associated with the vectors of weight modifiers, zγ

j and

zβ

jt+h|t .
There are two main justifications for our RT modeling approach. First, there is no reason to

restrict attention, as in RW, to random walk specifications for the evolution of βt+h. RW im-
plies, at a given point in time, a linear relationship between yt+h and xt+h|t . This assumption
might be warranted in tranquil periods. But, in unusual times, nonlinearities could be present,
and exploiting these might lead to more accurate forecasts. Our regression-tree approach al-
lows for flexibility in the way such nonlinearities are modeled and lets the data speak. Second,
and this holds across all existing instances of BPS not just RW, an implicit assumption made is
that the information set available to the decision maker comprises exclusively the agent-based
forecast densities.10 But, in principle, additional unmodeled information is available to the de-
cision maker and might help inform evolution of the weights. In our RT approach, the weight
modifiers, zγ

j and zβ

jt+h|t , comprise this extra information.
We estimate the tree structures and the terminal parameters alongside all other unknown

parameters and therefore need to specify priors for them too. In doing so, we follow the rec-
ommendations of Chipman et al. (2010). One of the key advantages of BART is that little tun-
ing of hyperparameters is necessary. Chipman et al. (2010) show that their recommended pa-
rameters work well across a wide variety of data sets and simulations. Similarly, several stud-
ies in economics have shown that these standard settings perform well (Clark et al., 2023;
Hauzenberger et al., 2023; Huber and Rossini, 2022; Huber et al., 2023). An important mod-
eling choice is the number of trees. We consider a range of values for S between 1 and 250.
We begin with the S = 1 tree, motivated by the stylized fact that parsimony often works well
when combining forecasts (see Timmermann, 2006). The much richer specification with S =
250 trees is motivated by the fact that the wider BART literature has found that adding in ad-
ditional trees beyond 250 seldom improves performance.

The remaining model and prior specification choices are standard (follow the recommenda-
tions in the BART literature) and are discussed in detail in Online Appendix A. This tech-
nical appendix also describes the MCMC methods used to estimate RT. In summary, these
MCMC methods use standard methods for predictive simulation from each individual model
(to draw from each agent’s forecast density) and then use standard methods for drawing from
the regression-tree model conditional on the individual-agent draws. For RT, the algorithm for
drawing the parameters of the regression trees is taken directly from Chipman et al. (2010).

2.5. Pooling Properties of RT Combinations. RT uses regression trees as a prior that
“pools” individual forecasts into groups based on the weight modifiers. In order to illustrate,
note that the tree-based method of determining the weights is defined by disjoint sets that are
determined by splitting rules. The rules are of the form zβ

k, jt+h|t ≤ dk or zβ

k, jt+h|t > dk, where

zβ

k, jt+h|t is the kth weight modifier for the jth agent/model and dk is a threshold parameter
associated with the kth weight modifier, which is estimated from the data. It is important
to note, however, that any splitting rule associated with the kth weight modifier is common
across agents and periods (i.e., it is specific neither to agent j nor to period t). Hence, the
thresholds dk and thus the tree structures do not have t or j subscripts and are common across
agents/models and time. Since these splitting rules effectively govern the prior mean, μ

β

jt+h,
this structure in a sense captures the notion of a pooling prior and reflects the situation that
the decision maker decides on the weights associated with each of the different agents based

10 As mentioned in footnote 2, an exception is Oelrich et al. (2023), who when combining density forecasts using
the linear opinion pool also let the weights depend on exogenous variables. Our RT model generalizes to consider
BPS combinations beyond the linear special case and to allow for nonlinearities in how the weight modifiers affect
the weights.
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machine learning bps 9

on using additional factors zγ

j and zβ

jt+h|t according to a set of common decision/splitting rules.
The same structure also holds for the γ js, with the difference that the splitting rules control-
ling μ

γ

j pool exclusively over the cross-section and not over time (since the γ js are time invari-
ant).

To see this pooling feature more clearly, consider an RT model that assumes βt+h = 0J and
features only a time-invariant part γ , for which the prior mean μγ = (μγ

1 , . . . , μ
γ

J )′ is defined
by a single tree (S = 1) and by a single effect modifier in zγ

j (i.e., zγ

j is a scalar with Kγ = 1). In
this case, the prior on γ j can be written as:

γ j = g(zγ

j |T γ
s ,φγ

s ) +
√

τ
γ

j v j, v j ∼ N (0, 1).(6)

If we now compute the difference between γ j and γm for distinct agents, j �= m, and assume
that zγ

j and zγ
m are similar, in the sense that both imply the same decomposition of the input

space and are thus located in the same terminal node of the tree, we end up with:

(γ j − γm) ∼ N (0, τ
γ

j + τ γ
m).(7)

This equation implies that if the tree suggests that the characteristics between agents are
so similar that they are grouped together in the same terminal node, the same prior mean
applies and the difference between prior means will be zero. The presence of the prior scal-
ing parameters τ

γ

j and τ
γ
m will then allow for data-based testing of whether that restriction

should be strongly enforced or not. Since both prior means would coincide, setting both τ
γ

j

and τ
γ
m to values close to zero would induce a clustering of γ j and γm around g(zγ

j |T γ
s ,φ

γ
s ) =

g(zγ
m|T γ

s ,φ
γ
s ). Hence, the choice of the prior specified on the scaling parameter τ

γ

j is crucial in
determining the clustering behavior of RT.

Another feature of our prior is that the decision maker adjusts their weights on the agents’
densities depending on the (common) macroeconomic environment as captured by the weight
modifiers, which might include, as discussed, indicators of the state of the business cycle, mea-
sures of economic uncertainty, or deterministic trends. For example, in turbulent times larger
weights on component densities that are far from Gaussian and feature, say, heavy tails might
lead to better combined density forecasts. Our approach can control for this, if supported by
the data.

2.6. Illustrating RT Combinations. Our RT model has many bells and whistles. However,
the main mechanisms can be explained easily using a simple toy example that turns off many
of the features described above. This example is neither meant to be realistic nor to provide
simulation evidence that our model works in a controlled environment. Rather, it is intended
to illustrate how our approach allocates combination weights.

Assume that, unknown to the decision maker, the “true” data for yt are generated by the
following threshold model:

yt =
{

ρ1yt−1 + cρ2yt−2 + σ0νt, for t = 1, . . . , 200,

cρ1yt−1 + ρ2yt−2 + σ0νt, for t = 201, . . . , 350,
(8)

where ρ1 = 0.8, ρ2 = −0.8 and σ0 = 1.2, y0 = y1 = 0, c = 1/100, and νt ∼ N (0, 1).
Then, J = 2 agents predict yt as follows (these forecasts are one-step-ahead, h = 1):

x1t ∼ y1t = N (ρ1yt−1, (1 − ρ2
1 )σ 2

0 ),(9)

x2t ∼ y2t = N (ρ2yt−2, (1 − ρ2
2 )σ 2

0 ).(10)
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10 chernis et al.

Notes: As weight modifiers, we use a simple linear time trend, as well as agent-specific squared forecast error (SFE)
and continuous ranked probability score (CRPS). Each oval box in panel (a) indicates the terminal node parameter
of a particular branch and the share (in percent) of observations belonging to this branch.

Figure 1

illustration of rt

Both agents use forecasting methods with a different type of misspecification. The first
agent’s forecast is almost correctly specified for the first part of the sample, but the second
agent’s is substantially misspecified. In the second part of the sample, this switches. We would
hope that RT, when combining these two misspecified densities, would put more weight on the
first agent when t ≤ 200, then increase the weight on agent 2 when t > 200.

Notice that the structure of the data-generating process (DGP) implies that RW is severely
misspecified, since it implies that the combination weights on the two agents evolve smoothly
over time. Our more flexible choice of synthesis function, (2), conditional on choosing appro-
priate effect modifiers, as we shall show, is capable of accommodating the break at t = 200.

We consider three variables as weight modifiers. The first is a simple deterministic time
trend, zβ

1, jt+1|t = t + 1, that is common to both agents. The remaining two effect modifiers
are agent-specific and measure historical forecasting performance. In order to capture his-
torical point forecasting performance, we consider each agent’s squared forecast error (SFE)
as recursively computed at time t: zβ

2, jt+1|t = (yt − E(x jt|t−1))2 for j = 1, 2. Then to measure
past density forecasting performance, we consider each agent’s continuous ranked probability
score (CRPS).11

Our synthesis function is given by Equation (2). In order to facilitate illustration of RT,
we make some simplifying assumptions. We set the time-invariant weights γ = 0 and, for the
prior on βt+1, set the scaling parameters equal to zero so that the weights and prior means
coincide, and we focus on the single-tree case (S = 1). For expositional ease, we drop corre-
sponding sub- and superscripts when there is no loss in meaning. Under these simplifying as-
sumptions, the synthesis function, similarly to (4), reduces to:

α(yt+1 | xt+1|t ) = N
(
yt+1 |ct+1 + g(z1|T , φ)x1t+1|t + g(z2|T , φ)x2t+1|t , σ 2

t+1

)
.

This equation shows that with the scaling parameters set equal to zero, we end up with a
BART model that assumes the weights depend nonlinearily on zt+1|t .

Figure 1 depicts in panel (a) the estimated tree and in panel (b) the temporal evolution of
the estimated weights. We emphasize that these weights are in-sample estimates, that is, condi-
tional on data through T = 350.

11 If F is the c.d.f. of the forecast and y the subsequent realization, then CRPS(F, y) = ∫
(F (x) − 1x≥y)2dx.
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machine learning bps 11

The tree in panel (a) can be understood as follows. Let us start at the bottom of the tree.
We see five terminal nodes. Hence, we observe five groups/clusters that define the prior mean
both over time and across agents. Put differently, there are a total of five “breaks” over time
and across agents in the prior mean.

How we pool is defined by the splitting rules. These are understood by turning to the top
of the tree. At the root (level 0), the SFE is used as a splitting variable. The threshold pa-
rameter is 1.8 and, hence, if the SFE in the previous period is larger than or equal to 1.8, we
move down the left branch of the tree. At the first level, the lagged CRPS shows up as the
next threshold variable. If the CRPS is smaller than 1.3, we end up in a terminal node and set
the weight associated with an agent that has an SFE greater than or equal to 1.8 and a CRPS
smaller than 1.3 equal to E(β jt ) = 0.054. These conditions are fulfilled 21% of the time. By
contrast, if the CRPS is greater than or equal to 1.3, we drop down to the second level of the
tree. In this segment, time shows up as a splitting variable and if t ≥ 201, we assign a weight
of 0.72. For t < 201 we introduce a further splitting rule that splits the sample once more by
testing whether t < 42. If this is the case, a negative weight of −0.062 is applied, whereas if
42 ≤ t < 201 the weight is 0.15. If the past SFE is smaller than 1.8, we end up in the right
branch of the tree and assign a weight equal to 0.7.

Hence, the tree suggests that, first and foremost, the decision maker selects agents accord-
ing to the past performance of their forecasts, since both SFE and CRPS are identified in the
estimated tree. Under our DGP, this implies that weights dynamically update if a given agent
issued a poor prediction in the previous period without taking into account the past perfor-
mance of her forecasts. In order to understand how these decision rules translate into the ac-
tual evolution of model weights, panel (b) shows the weights over time. These indicate that
in the first part of the sample, Agent 1 receives substantial weight, whereas Agent 2 receives
relatively little weight. This makes sense, given that the former is only mildly misspecified,
whereas the latter features substantial model misspecification. As expected, given the struc-
tural break in the DGP, the decision maker now overweights the second agent, whereas the
weight on Agent 1 is now much smaller.

This simple exercise illustrates how the decision maker incorporates additional information
(time and past forecast errors in this case) to combine models. In general, though, the prior
scaling parameters in RT are greater than zero, and hence, the regression tree gives rise to
prior expectations that, in turn, inform the posterior estimates of the weights. Hence, if there
is no relationship between the weights and the weight modifiers, the resulting prior variance
would be large and the weights would follow a white noise process.

3. two macroeconomic forecasting applications

We investigate the performance of RT in two forecasting exercises. In the first application,
we combine predictive densities of GDP growth for the EA produced by individual profes-
sional forecasters participating in the ECB SPF. Beyond its intrinsic interest, this data set
is a good testing ground for RT because it has been used before when comparing alterna-
tive density forecast combination methods, including by Conflitti et al. (2015), Chernis (2023),
and Diebold et al. (2023). Second, we forecast U.S. inflation using a set of autoregressive dis-
tributed lag (ADL) regression models. This data set and model set have been used by Stock
and Watson (2003) and Rossi and Sekhposyan (2014), the latter using an ADL strategy simi-
lar to the one we deploy below to create each of the agent’s forecast densities.

These two applications differ not only geographically and in terms of target variables, but
also in the number of agents and the nature of the forecast densities the agents provide. The
EA GDP growth application features a relatively small number of subjective, most likely
judgment-informed, forecasts (ECB, 2019) that are provided in the form of histograms (with
J = 14). In contrast, the U.S. inflation application uses a large number of model-based pre-
dictive densities, which are continuous and produced with distinct ADL regressions (with
J = 56). Further details on the design of both applications are provided in the subsequent
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12 chernis et al.

Subsections 3.2 and 3.3. Both applications’ evaluation samples cover the global financial crisis,
the EA crisis, and the COVID-19 pandemic. Taken together, these two applications enable a
comprehensive assessment of RT.

3.1. Bayesian Machine Learning, Parametric, and Benchmark Specifications. In order to
draw out its properties, we consider, as set out in Subsection 3.1.1, a range of alternative
specifications for RT, our Bayesian machine learning combinations. These are then compared
against a set of competitor specifications as explained in Subsection 3.1.2. These comprise
parametric BPS specifications and “simple” arithmetic and geometric density forecast combi-
nations. With the aim of isolating the contribution of the individual forecasts to accuracy, we
also compare both RT and parametric BPS combinations applied to the J individual forecasts,
as in (1), with variants applied to aggregated forecasts. The rationale for this comparison is
that, in (1), the BPS synthesis function, when estimating combination weights on the J indi-
vidual forecasts, can both correct for potential miscalibration and capture any dependencies
between the J density forecasts. By applying BPS to a forecast that is already combined, we
strip out these effects. Specifically, we let the synthesis function take the form: α(yt+h|x̄t+h|t ) =
N

(
yt+h|c̄t+h + βt+hx̄t+h|t, σ 2

t+h

)
, where the “average” forecast, x̄t = (1/J)

∑J
j=1 x jt+h|t , is the

arithmetic average. Variants of BPS that work off the average forecast, instead of exploiting
all J individual forecasts, are labeled “BPS: AVG. AGENT.”

The benchmark, against which we compare the forecast accuracy of every specification, is
the traditional (parametric) implementation of BPS with time-varying weights (RW) and ho-
moskedastic errors. Table 1 summarizes the full set of models and specifications used. We now
explain each specification in turn.

3.1.1. RT specifications. We distinguish RT specifications according to the chosen weight
modifiers, the number of trees, and whether RT is applied to the individual or combined fore-
cast(s). Starting with the weight modifiers, we group and label them (cf. Table 1) as follows:

• Cross-sectional (“local”) weight modifiers (zγ

j ): These allow the combination weights to
vary by agent (but not over time, beyond the fact that even constant weight specifica-
tions will see the weights change through the out-of-sample window). In order to distin-
guish between “good” and “bad” forecasters, we score each agent’s historical (ex post)
forecast accuracy. Specifically, to capture historical point and density forecast accuracy,
we set zγ

j equal to agent-specific averages of SFE and CRPS. These averages are up-
dated recursively through the out-of-sample window to reflect information only known
in real time.

• Time-varying (“global”) weight modifiers (zβ

jt): These indicators let the weights on
agents vary over time to reflect economy-wide information. We consider a time trend
(t), a measure of cross-sectional dispersion across agents defined as the standard de-
viation across the J experts’ mean forecasts (“Disagr”), and the following application-
specific measures designed to allow the combination weights to reflect the evolving state
of the macroeconomy.
• EA SPF GDP application: We use the European economic policy uncertainty (EPU)

index of Baker et al. (2016).12 In recessions, EPU rises; so allowing the combination
weights to depend on it enables them to move with the business cycle.

• U.S. inflation application: We consider households’ one-year-ahead inflation expecta-
tions (IE) from the University of Michigan survey and the Chicago Fed’s national fi-
nancial conditions index (NFCI).13 Both variables have been used to model inflation-
at-risk (Lopez-Salido and Loria, 2024).

• Cross-sectional and time-varying (“local”) weight modifiers (zβ

jt): These let the weights
on individual experts change over time to reflect information local to both a given agent

12 Available via https://www.policyuncertainty.com.
13 These are available from the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org).
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14 chernis et al.

and a point in time, specifically their recent forecast performance and attributes of their
latest forecast density. In order to capture recent forecast performance, we consider
each agent’s time t SFE and CRPS statistics, based on their forecasts made at time (t −
h), as available in real time. Then to allow the weights to cluster across agents, we also
consider as elements of zβ

jt the first four moments of each agent’s time t predictive den-
sity. This allows, among other things, for the possibility that high (ex ante) uncertainty
forecasters should be weighted similarly.

For each set of weight modifiers, we implement BPS variants with homoskedasticity and
with SV. In order to explore sensitivity to the number of trees, we consider BART specifica-
tions with S = {1, 50, 100, 250} trees. Of note is the single tree (S = 1) specification that leads
to a Bayesian regression-tree specification (see Chipman et al., 1998). In traditional Bayesian
implementations using trees for nonlinear regression, such as Chipman et al. (2010), it is gen-
erally found that increasing the number of trees, starting from S = 1, leads to an improvement
in forecast performance. But this improvement tends to peter out as the number of trees gets
moderately large. The conventional wisdom is that the precise choice of the number of trees is
not that important, provided that too small a value is not chosen. But this may not be the case
in BPS, since the data may prefer weights that are reasonably constant over time. As we shall
see, we find that single-tree methods do indeed tend to forecast well in practice.

3.1.2. Parametric and simple combinations. We consider six competitor parametric combi-
nations, with RW treated as the benchmark. Of the remaining five specifications, we examine
BPS with constant weights, plus RW and constant weight BPS but applied to the average fore-
cast (BPS: AVG. AGENT).

All these parametric BPS combinations make standard choices for the prior and MCMC
method. Specifically, they are implemented in a fashion similar to that in Hauzenberger et al.
(2022) and Chernis (2023). One change we make is to use the hyperparameter-free horseshoe
prior, which shrinks parameter estimates toward zero. This way we have the same prior on the
variance as with our regression-tree model. As the methods used are standard, we do not pro-
vide additional details here. Further econometric details are provided in Online Appendix A.

The remaining two competitor specifications are well-known “average” density forecasts.
First, as already used as an input into “BPS: AVG. AGENT,” we directly evaluate the arith-
metic average of the J individual density forecasts. Use of such a “linear opinion pool” with
equal weights, 1/J, remains a common way of combining density forecasts. Second, we con-
sider the geometric average, often called the logarithmic combination. This amounts to setting
α(yt+h|xt+h|t ) = 1 in (1).

Table 1 summarizes all the different specifications and the labels used to describe them
when we present the forecasting results. As can be seen, we consider several permutations
of the weight modifiers. We add to the set sequentially to assess the marginal benefit of each
weight modifier and the benefit of including them all together. We remind the reader that for
each specification in Table 1 we consider both homoskedastic and SV versions.

3.2. Forecasting EA Output Growth Using the Survey of Professional Forecasters. The
ECB has been producing the SPF since 1999. The ECB SPF is the longest running EA survey
of macroeconomic forecasts. Each quarter, the survey elicits from a panel of professional fore-
casters point and probability forecasts of EA inflation and GDP growth at various horizons.14

We consider the two-quarters-ahead forecasts of year-on-year EA GDP growth. On average,
there are 50 responses a quarter from a survey panel of over 100 professional forecasters.

There are a couple of features of the forecaster-level density forecasts from the ECB SPF
that we have to address in order to combine them. First, survey respondents provide their
probability forecasts over given (fixed) ranges. That is, they produce histogram instead of con-
tinuous density forecasts. For example, in the 1999Q1 survey, forecasters were instructed to

14 For a full description of the EA SPF, see Garcia (2003).
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machine learning bps 15

provide their probability forecasts over 10 bins. The first bin was GDP growth less than 0%,
with the bins then increasing in intervals of 50 basis points, until the 10th bin of higher than
4% growth. In order to accommodate the discretized nature of these probability forecasts, in-
stead of fitting a continuous density to the histogram (that may or may not have a good fit),
we use the histogram forecast data as is. We do this by, within our BPS approach, drawing
samples for each forecaster directly from the histograms. Details of our algorithm, which in-
volves a Metropolis–Hastings step, are given in Online Appendix A.2. Our sampling approach
changes over time to capture the fact that the bin definitions have been moved over time. In
particular, after shocks such as the global financial crisis and COVID-19, the ECB shifted the
bins to allow forecasters to say more about the probabilities in what were, prior to the survey
change, the extremes of the distribution. We also have to take a stand on the open intervals
at the bottom and top of the histogram. We set the end-points for the histograms equal to the
outer bin plus or minus (depending on whether we are at the top or bottom of the histogram)
two standard deviations of GDP growth, as estimated using the vintage of GDP data available
at the time the forecast was made.

Second, forecasters enter and exit the panel. This means that the panel is unbalanced. We
follow Diebold et al. (2023) in constructing the longest consistent panel possible by dropping
forecasters who are regular nonresponders and then filling in the occasional missing values for
the remaining forecasters. Specifically, we drop forecasters who have not responded for five or
more consecutive quarters. This results in a panel of 14 forecasters. Any missing forecast data
for these 14 forecasters are estimated using a Normal distribution based on the unconditional
distribution of GDP growth as estimated in real time.15

We then take these 14 forecasters’ densities and carry out a recursive out-of-sample evalua-
tion of the alternative BPS specifications over the sample 2005Q2 through 2021Q1. To do this,
we first estimate the BPS combinations on a set of training samples that comprise a sequence
of expanding windows of GDP and density forecast data. The GDP data used in the training
sample are that vintage of GDP data available to the forecasters when they made their fore-
casts. The first training sample uses forecasts from the five-year period targeting GDP out-
turns from 1999Q3 through 2004Q2. These forecasts are taken from the surveys administered
between 1999Q1 and 2003Q4. Given its publication lags and our desire to approximate the
information set available at the time the SPF forecasts are publicly available, the GDP out-
turns required to estimate the BPS synthesis function over this training sample are taken from
the 2004Q4 vintage. This estimated synthesis function then uses the 2004Q4 survey to forecast
(out-of-sample) 2005Q2. The training sample and vintage of GDP data are then extended by
one quarter, and forecasts are produced for 2005Q3. This process is continued until forecasts
are produced for 2021Q1. This set of out-of-sample BPS density forecasts is then evaluated
against GDP outturns taken from the June 9, 2021, vintage.

3.3. Forecasting U.S. Inflation Using a Set of Indicators from FRED-QD. We follow Rossi
and Sekhposyan (2014) and construct density forecasts of U.S. inflation using a set of ADL
models. Each ADL model considers 1 of 27 indicators taken from the FRED-QD data set
(McCracken and Ng, 2021), which is commonly used when forecasting macroeconomic aggre-
gates such as inflation in the United States. The selected indicators capture movements in as-
set prices, measures of real economic activity, wages and prices, and money. This rich and di-
verse set of economic indicators allows the ADL density forecasts of U.S. inflation to display
significant heterogeneity. Table A.1 in the Online Appendix provides an overview of the vari-
ables used as exogenous predictors, their mnemonics, and the transformations applied to en-
sure their stationarity.

15 We differ from Diebold et al. (2023) in two ways. First, they interpolate missing forecasts based on historical per-
formance. Second, we have a different number of forecasts because we use a different sample and we forecast GDP
growth instead of inflation.
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16 chernis et al.

We then use each of these ADL models to produce direct forecasts for quarter-on-quarter
consumer price (CPIAUCSL) inflation one-quarter-ahead (h = 1).16 Specifically, for each indi-
cator, x jt , for j = 1, . . . , 27, we estimate the set of ADL models:

πt+h = ρππt + απx jt + επ,t+h, επ,t+h ∼ N
(
0, σ 2

π,t+h

)
,(11)

where πt is inflation, ρπ is the autoregressive coefficient, and απ denotes the coefficient re-
lated to the jth exogenous indicator.17 We supplement these j = 1, . . . , 27 models with a 28th
model (the AR(1) model) that sets απ = 0 in Equation (11). We also allow σ 2

π,t+h, the error
variance, to be both time varying and constant. Hence, we estimate 28 models both with and
without SV, delivering, in total, a set of 56 individual models whose density forecasts we then
combine using BPS. All 56 models are estimated using standard Bayesian techniques. Details
are provided in Online Appendix A.3.

We first estimate these models on a training sample from 1970Q1 to 1989Q4. We then iter-
ate forward using a rolling estimation window of 80 quarters to account for possible structural
changes in the U.S. economy. The first 10 years of forecasts (1990Q1 to 1999Q4) are used as a
training window to estimate the BPS synthesis functions. The combined forecasts are then as-
sessed on the evaluation sample 2000Q1 to 2022Q4. This evaluation period includes distinct
economic periods characterized by different inflation dynamics, including the dotcom crash,
the global financial crisis, the COVID-19 period, and the postpandemic inflationary period.

3.4. Empirical Results. We break the empirical results into three parts presented in the fol-
lowing three subsections. First, we evaluate the relative and absolute density forecast accuracy
of RT. Second, we examine why RT forecasts more accurately than other approaches by com-
paring features of their forecast densities. Third, we demonstrate aspects of interpretability of
RT by examining how RT can be used to understand the role of model incompleteness, agent
clustering, and the time-varying importance of the different effect modifiers.

3.4.1. Forecast accuracy. We evaluate forecast accuracy in several ways. We first evaluate
the point (conditional mean) forecasts, extracted from the combined densities, using the root
mean squared forecast error (RMSE) loss function. Second, we evaluate the full predictive
densities. We emphasize evaluation of the predictive densities instead of the point forecasts.18

We measure the relative forecast accuracy of the forecast densities using two popular metrics:
CRPS and a tail-weighted CRPS. The former evaluates the whole density, whereas the latter
focuses on accuracy in the tails (Gneiting and Ranjan, 2011).19 In the Online Appendix (see
Subsection B.4), we also test the absolute calibration of the combined density forecasts using
the Rossi and Sekhposyan (2019) test on the probability integral transforms. We show that the
preferred RT specifications deliver well-calibrated density forecasts. We also indicate (in Sub-
section B.5 of the Online Appendix) how forecast performance fluctuates over time using the
Giacomini and Rossi (2010) test.

Figures 2 and 3 report the relative forecast performance of the different combinations in
the EA GDP growth and U.S. inflation applications, respectively, using the RMSE, CRPS,
and CRPS-tails loss functions. Each row in panel (a) of these figures reports the relative (to
the RW benchmark) performance of the RT specifications as differentiated by the number of
trees they use and whether they have SV or homoskedastic errors. The columns differentiate
which set of weight modifiers is used and whether BPS is applied to all individual forecasts or

16 We present the qualitatively similar one-year-ahead (h = 4) results in Figure B.1 in the Online Appendix.
17 For notational ease, we do not use j subscripts to distinguish parameters in Equation (11).
18 Since the loss functions of forecast users tend not to be quadratic—as the density forecast literature (see Aastveit

et al., 2019) emphasizes—it is always important to produce and evaluate complete probabilistic forecasts.
19 Figures B.5, B.6, and B.7 in Online Appendix B follow Gneiting and Ranjan (2011) and break CRPS tails into

their left and right tails.
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machine learning bps 17

(a) RT: Bayesian Machine Learning Combinations
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Notes: This figure shows root mean square error (RMSE) ratios, unweighted continuous ranked probability score
(CRPS) ratios, and a variant of quantile-weighted CRPS ratios that focuses on the tails. Gray shaded entries give the
actual scores of our RW benchmark (BPS: ALL AGENTS (RW), with homoskedastic error variances). Green shaded
entries refer to models that outperform the benchmark, whereas red shaded entries denote models that are outper-
formed by the benchmark. The best performing model specification by forecast metric is given in bold. Asterisks indi-
cate statistical significance of the Diebold and Mariano (1995) test (testing each specification against the benchmark)
at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) significance levels. See Table 1 for a summary of the different models.

Figure 2

relative forecast accuracy: ea gdp growth
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(a) RT: Bayesian Machine Learning Combinations
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actual scores of our RW benchmark (BPS: ALL AGENTS (RW), with homoskedastic error variances). Green shaded
entries refer to models that outperform the benchmark, whereas red shaded entries denote models that are outper-
formed by the benchmark. The best performing model specification by forecast metric is given in bold. Asterisks indi-
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at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) significance levels. See Table 1 for a summary of the different models.

Figure 3

relative forecast accuracy: u.s. inflation
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machine learning bps 19

just the average forecast. Panel (b) shows analogous results for the parametric alternatives to
RT, including the arithmetic and geometric averages.

Looking first at the RMSE results in panel (a) of Figure 2 for EA GDP growth, we see lit-
tle difference between the alternative RT specifications in terms of their point forecast accu-
racy when using the individual forecasts (BPS: ALL AGENTS). Their accuracy is also similar
to that of the benchmark (RW), with RMSE ratios around unity. Although the gains are still
modest, albeit statistically significant, RT is consistently more competitive, irrespective of the
number of trees or the presence of SV, when applied to the combined forecast (BPS: AVG.
AGENT). This is supportive of the stylized fact from the forecasting literature that simple
combination strategies, such as equal-weighted combinations of point forecasts, can be hard to
beat (see Timmermann, 2006), especially when the individual forecasts all perform relatively
similarly to each other. Comparing to the competitor forecasts (see panel (b) of Figure 2), we
find that the geometric average is the single best performing combination strategy in terms
of RMSE.

Turning to U.S. inflation (Figure 3), we see in the RMSE panel (panel (a)) that some of the
tree-based methods more consistently improve upon the point forecast accuracy of the bench-
mark and in a manner that is statistically significant. Of particular note is the superior perfor-
mance of the single-tree combinations, which frequently outperform models with more trees.
We discuss this finding further below. Contrasting EA GDP, we also now see gains to combin-
ing the individual forecasts, instead of applying BPS to the average forecast or producing the
arithmetic or geometric average.

The CRPS panels in Figures 2 and 3 reveal yet more of a payoff to using RT specifications,
relative to RW, when we evaluate the whole density. Many of the forecast accuracy gains for
RT are statistically significant. An implication of this finding is that RW’s assumption that the
combination weights follow a random walk is not supported by the data. But the CONST
specifications remain competitive for EA GDP growth. We also find, in the inflation applica-
tion, that RT can now produce more accurate forecasts when it exploits the individual fore-
casts.

The CRPS and CRPS tail results for inflation echo those under RMSE loss in concluding
that using fewer tree structures tends to be preferable. The best performing RT combinations
tend to have S = 1. The fact that a single-tree model produces more accurate forecasts con-
trasts with the conventional wisdom in the wider BART literature; see Chipman et al. (2010).
In our case, however, we model the weights, instead of the observed outcomes, nonparamet-
rically, and hence, the implied conditional mean relation (see Equation (4)) introduces more
restrictions relative to a standard BART model and hence lessens the risk of overfitting.

For density forecasts of U.S. inflation, we also find that adding SV improves forecasts. This
is consistent with the findings when forecasting with (single) Bayesian models (see Clark,
2011). Looking at the CRPS and CRPS tails results for inflation (in Figure 3, panel (a)), we
observe improvements from adding SV relative to the analogous model without SV. This is
despite the fact that—and we touch on this again below when showing that these models in
fact receive higher combination weights—in the U.S. inflation application, half of the com-
ponents models themselves allow for SV. By contrast, the findings for EA GDP growth are
somewhat more mixed. This is probably driven by the considerably smaller sample size.

Next we drill deeper into how specific choices of effect modifiers impact the performance of
RT. This is accomplished by comparing forecast accuracy across the final 5 columns of panel
(a) of Figures 2 and 3. This comparison reveals that the choice of weight modifier does affect
RT’s forecast accuracy. For the most part, just adding a time trend is not sufficient as there are
additional gains in accuracy to letting the weights adapt to reflect agents’ past forecast perfor-
mance and/or features. But it is not always the case that using more weight modifiers delivers
more accurate forecasts. The benefit of different modifiers varies by application and by which
row (which RT specification) is consulted.

In summary, these results show that our machine learning combination schemes outperform
existing parametric and simple density forecast combinations. But the gains are stronger in
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20 chernis et al.

the U.S. inflation application. In the EA GDP application, given the smaller number of more
similar agent-level density forecasts, it is, in our view, reassuring that RT, despite its greater
flexibility, remains competitive with equal-weighted combinations. We know from previous re-
search work that these simple combinations work well on this data set. In both applications,
we see more substantial gains to RT when the density forecast, instead of just the point fore-
cast, is evaluated. We also find significant performance variation across different RT specifi-
cations. For EA GDP growth, the best RT model employs 100 trees, exogenous indicators as
weight modifiers, and homoskedastic error variances. But we emphasize again that single-tree
RT variants perform extremely similarly. For U.S. inflation, the best-performing specification
is a single-tree RT model using all the weight modifiers with homoskedastic shocks.

3.4.2. Properties of the RT density forecasts. In this subsection, we examine how and why
RT forecasts more accurately. We focus on the best (most accurate) model in each application
and compare its forecast densities to those of the benchmark model, RW.20

Figure 4 shows a heat map of the difference in probabilities, in intervals of 1.5% for EA
GDP growth and of 1% for U.S. inflation, between RT and RW. Green (red) shading indicates
that RT adds (subtracts) probability relative to RW in that interval. This is the approach pi-
oneered by Diebold et al. (2023) as a way of visualizing the differences between competing
density forecasts.21

Panel (a) of Figure 4 shows that, in general, RT predictions are less dispersed than RW with
more mass near the subsequent outcomes. Additionally, the RT density adds probability to
low GDP growth outturns prior to the financial crisis and also forecasts higher growth than
RW in both the post-global financial crisis recovery and the rebound from the COVID-19-
induced recession.22 Panel (b) of Figure 4 show the analogous plot for U.S. inflation. Similar to
panel (a), RT places more mass closer to the outturn and produces forecasts that are, in gen-
eral, less disperse. Moreover, RT adjusts much more quickly to the increase in inflation post-
pandemic, attributing a higher probability to these outturns than RW. Consistent with the evi-
dence in Rossi and Sekhposyan (2014) that combinations of predictive densities for U.S. infla-
tion appear to be approximately Gaussian, the inflation forecast densities from RT also tend
to be symmetric (see Figure B.15 in the Online Appendix), although there is clear evidence of
a spike in downside risks in 2011, a time when the Fed was engaged in quantitative easing to
combat deflation threats.

3.4.3. Interpretation: A deeper dive into the mechanics of regression tree combinations for
U.S. inflation. This subsection explains how the decision maker can interpret the combined
forecasts from RT. In so doing, we focus on the preferred RT specification in the U.S. inflation
application, not least because this is where we observe greater differences across the compet-
ing combination strategies. We first show how to quantify the degree of model set incomplete-
ness, as a way of assessing how well the agents (the J forecasting models) that RT is com-
bining are actually able to forecast. Second, we assess the relative importance of individual
weight modifiers in driving RT.

In order to measure model set incompleteness we compute an R2-type measure. This esti-
mates the proportion of the variation in yt+h that is explained by the J agents. This measure

20 As seen in Figure 2 for the EA GDP growth application, the “best” RT specification—at least according to
RMSE and it remains competitive for CRPS and CRPS tails too—has a single tree and SV and uses averages of SFE
and CRPS as effect modifiers (i.e., SCORES). For the U.S. inflation application (see Figure 3), the “best” RT specifi-
cation has a single tree, homoskedastic errors, and the full set of weight modifiers (i.e., ALL).

21 For an alternative but complementary visualization, Figure B.14 in Online Appendix B shows the temporal evo-
lution of the underlying density forecasts from RT and the benchmark RW model over the EA and U.S. evalua-
tion samples.

22 As shown in Figure B.15 in the Online Appendix, in moving the probability mass from the centers to the left tail
of the forecast density, RT captures asymmetries in the forecast densities. Although there is some evidence of height-
ened downside risk asymmetries to GDP growth in the course of the financial crisis, consistent with the growth-at-risk
literature (Adrian et al., 2019), the evidence for negative skew is stronger still during the COVID-19 pandemic.
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machine learning bps 21

(a) EA GDP growth
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(b) US inflation
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Notes: This figure shows the difference in probabilities between the best performing RT model (in terms of CRPS)
and RW. We define a grid of possible values for EA GDP growth ranging from −15% to 15% with increments of
1.5%, whereas we define a grid of possible values for U.S. inflation ranging from −10% to 10% with increments of
1%. Green (red) shaded cells indicate that the best performing RT model adds (subtracts) probability relative to the
RW benchmark in the respective region.

Figure 4

difference in probabilities between rt and rw

is computed, for a specific period in the evaluation sample, as the ratio between the variation
in the conditional mean in Equation (2) explained exclusively by the RT component—which
is the conditional mean in Equation (2) without the time-varying intercept ct+h—and the over-
all variation of the target variable, yt+h. R2 values close to zero signify a high degree of model
incompleteness, which means that the agents’ forecasts are not informative about the target
variable. Instead, the intercept and error term in the BPS synthesis function, Equation (2),
explain a large portion of the total variation. In contrast, R2 values close to one indicate that
the agents’ forecasts are informative and account for the majority of the variation, implying a
complete model space.

Figure 5 plots this R2-type estimate over the evaluation sample. Given that it is computed
recursively, quarter-by-quarter, it experiences some volatility. But Figure 5 still evidences
meaningful temporal variations in the degree of model set incompleteness. We see increases
in model incompleteness during the period 2004–08, a time of extreme oil price volatility as
well as the global financial crisis and in the disinflation period after the 2015 oil price shock.
Interestingly, there is no clear evidence of an increase in model incompleteness during the

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12759 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [28/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 chernis et al.
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Notes: This figure shows the evolution of the model incompleteness measure over time. For each quarter in the eval-
uation sample, this measure is computed for our preferred RT specification (homoskedastic BPS: ALL AGENTS
(ALL), with a single tree) as the ratio between the variation explained exclusively by the RT part (i.e., the conditional
mean without the time-varying intercept) and the total variation, which thus can be interpreted as an R2 measure.
The green solid lines represent the posterior median of this incompleteness R2, which is bounded between zero and
one. Values close to zero suggest that model incompleteness, as measured by the time-varying intercept and the error
variance in Equation (2), plays an important role, whereas values close to one indicate that the RT part explains most
of the variation.

Figure 5

measuring model incompleteness: u.s. inflation

postpandemic rise in inflation, reinforcing the message from Figure 4 that RT was better able
to anticipate the 2021 rise in U.S. inflation.

We now turn to assessing the relative importance of the individual weight modifiers in driv-
ing the density forecasts from RT. We do so by looking first at the number of tree splits and
then by calculating inclusion probabilities for each weight modifier. Inclusion probabilities are
calculated as the number of splits associated with the respective weight modifier divided by
the total number of splits. Figure 6 examines the weight modifiers forecasting U.S. inflation.23

We start in panel (a) of Figure 6 by plotting the evolution of the total number of tree
splits over the evaluation sample. This panel indicates whether variability in the combination
weights comes from the time-varying (β jt+h) or constant component (γ j) of RT. Panel (a) re-
veals that RT tends to select a relatively small number of tree splits, especially for the time-
invariant weights. Typically for γ j we observe that the posterior mean of the number of tree
splits lies between 0.52 (lower quartile over the evaluation sample) and 1.15 (upper quartile,
with a few more exceptions in the upper tail), whereas the average over the evaluation sam-
ple is 1.28. On the other hand, the posterior mean number of tree splits for the time-varying
weights, β jt+h, ranges from 1.08 to 1.68 (indicating the interquartile range) and has an aver-
age of 1.59 over the evaluation sample. Placing these numbers in the context of a single-tree
split on, for example, γ j indicates that the combination weights tend to cluster around two dis-
tinct prior means. With this in mind, we interpret the results in panel (a) as showing that the
combination weights often fall into a handful of clusters that are more likely to be determined
by time-specific factors. However, the number of splits is modest, so the weights are relatively
stable over time. This finding is consistent with the density forecast combination literature
that finds that constant weight combinations often forecast well (see, e.g., Chernis, 2023).

Panels (b) and (c) of Figure 6 then show the inclusion probabilities for each of the constant
and time-varying weight modifiers. Panel (b) shows the inclusion probabilities for the weight
modifiers (average CRPS and average SFE) used to model the time-invariant combination

23 Analogous results forecasting inflation one-year-ahead are reported in Figure B.4 in the Online Appendix and
summarized below when the conclusions differ markedly from those discussed for the one-quarter-ahead forecasts.
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machine learning bps 23

(a) Number of (total) tree splits: Time-invariant and time-varying weights
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(b) Time-invariant weights: Two weight modifiers and their relative importance
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(c) Time-varying weights: Ten weight modifiers and their relative importance
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Notes: Panel (a) shows the evolution of the total number of tree splits over time, whereas panels (b) and (c) show
the marginal importance of each weight modifier for each quarter in the evaluation sample. Relative importance is
defined as the share of the total number of splits. For each quarter in the evaluation sample, we obtain the posterior
mean for these measures for our preferred RT specification (homoskedastic BPS: ALL AGENTS (ALL), with a sin-
gle tree). MOM1 to MOM4 denote the first four moments of an agent’s density. DISAGR is the standard deviation of
the 56 agents’ point forecasts made at time t, NFCI is the Chicago Fed’s national financial conditions index, IE is the
Michigan inflation expectations index, and TREND is a time trend.

Figure 6

number of tree splits for rt (S = 1) and relative importance for each weight modifier for u.s. inflation

weights. Neither CRPS nor SFE is obviously more important. Both weight modifiers receive
positive and often fairly similar probabilities of inclusion. This implies that RT does partition
models on the basis of their historical forecast accuracy.

Panel (c) of Figure 6 shows the importance of the time-varying weight modifiers. The first
thing to notice is that there is much more sparsity in terms of the weight modifiers RT selects.
For example, the various moments (MOM1-MOM4) and model dispersion (DISAGR) are
relatively unimportant. Although in the first half of the evaluation sample, we see that fea-
tures of the individual density forecasts drive the posterior inclusion probabilities. Specifically,
we see that the moments of the marginal densities and CRPS, lagged by the forecast horizon
h, are selected. But in the second half of the evaluation sample, we see the largest proportion
of tree splits attributed to the NFCI during and immediately after recessions. The Michigan
IE measure also receives more weight after the financial crisis. This is evidence that nonlinear
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24 chernis et al.
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Notes: This figure shows for our preferred RT specification the posterior median of the one-quarter-ahead combina-
tion weights, (γ j + β jt+h), on each of the 56 ADL agent forecasts. Green (red) shaded cells indicate that weights are
above (below) zero. Table A.1 in the Online Appendix provides an overview of the variables used as exogenous pre-
dictors and their mnemonics.

Figure 7

combination weights over the evaluation sample: u.s. inflation

features of RT are driven by weight modifiers related to the business cycle. In other words,
our RT model finds that the data support changing the combination weights abruptly with
business cycle fluctuations. Finally, the time trend receives a higher weight in the post-COVID
period of higher inflation seen in 2021 and 2022. This finding indicates that this inflationary
episode—unprecedented within the sample—requires a substantial and rapid adjustment of
the combination weights. These required weight dynamics cannot be fully captured by the
business cycle weight modifiers. Instead, a time trend (or, more precisely, a time dummy) is
ideal for modeling such a regime shift from low to high inflation during this exceptional pe-
riod.

Finally, in Figure 7, we look at the posterior median estimates of the combination weights
from the preferred RT specification over the evaluation sample to determine which agents get
the most weight, that is, are the most useful forecasters. In this model-based inflation forecast-
ing application, because the models only have one explanatory variable, we can thereby see
which economic variables are most important. First, focusing on RT we see that the error vari-
ance specification is an important determinant of the weights. Models with stochastic volatil-
ity tend to receive larger weights. This is most apparent in the COVID-19 period. This corre-
sponds to the period when RT outperforms the RW benchmark (see Figure B.12 in the On-
line Appendix). Additional results in the Online Appendix show that at the one-year-ahead
horizon, the stochastic volatility models do also get more weight on average, but only slightly
more than the homoskedastic models.

Second, there is a subset of agents (variables) that receives substantially more weight on av-
erage. These are models that are heteroskedastic and use either the unemployment rate (UN-
RATE), fixed private investment (FPIx), or the spread between 10-year government bonds

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12759 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [28/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



machine learning bps 25

and the three-month rate (GS10TB3Mx) as predictors. This indicates that there is some pay-
off, in terms of forecast accuracy, to occasionally placing a significantly higher weight on a
small subset of models. Interestingly, some models—those using GDP (GDPC1) and fixed
investment (FPIx) with homoskedastic shocks and nonfarm payrolls (PAYEMS) with SV—
get negative weights. This amounts to short-selling those models as a “hedge” against the
models with correlated forecasts. Interestingly, this pattern is exaggerated for the one-year-
ahead forecast combination weights where some real-activity variables get substantially neg-
ative weights (Figure B.9 in the Online Appendix).24

Although this subsection has focused on the U.S. inflation application, we end by return-
ing briefly to the EA GDP growth forecasting application. Figure B.8 in the Online Ap-
pendix shows that the combination weights on most individual forecasters from the ECB SPF
are, as anticipated given our earlier results, closer to equal than in the inflation application,
where there was greater sparsity in the weights. That said, we do still see higher weights on a
couple of agents (forecasters 6 and 14). We take this contrasting evidence across the two ap-
plications as empirical evidence that RT is sufficiently flexible to adjust to forecasting scenar-
ios that exhibit different dependence structures between the agents’ forecasts.

4. conclusion

Within the general BPS framework of McAlinn and West (2019), this article develops a
method for nonparametric density forecast combination using regression trees, RT, and shows
their value for probabilistic forecasting of macroeconomic variables in the face of model un-
certainty. Although a handful of papers use nonparametric techniques to combine densities,
ours is the first to use regression trees. In contrast to most applications of regression trees, we
model the coefficients, in our case the combination weights, instead of the variables using the
regression trees. We show how this aids interpretation, since the combination model remains
linear in the parameters. Additionally, regression trees use covariates, or weight modifiers, to
drive changes in parameters, in contrast to conventional BPS applications where model pa-
rameters follow a random walk. Taken together, our approach is flexible but retains inter-
pretability through linearity and the use of weight modifiers. We explain how RT can be used
to understand the role of model incompleteness, agent (forecast) clustering, and the time-
varying importance of the different weight modifiers.

We test the performance of RT in two different applications—combining model-based U.S.
inflation density forecasts and subjective histogram-based forecasts of EA GDP growth. We
find that, across both applications, RT forecasts well in terms of both relative and absolute
accuracy. Interestingly, and in contrast to standard BART applications, we find that using
a parsimonious single-tree specification outperforms models with more trees. Inspecting the
best-performing specification, we observe that this superior performance is due to less dis-
perse forecast densities and RT’s ability to better accommodate the shocks associated with the
global financial crisis (in the GDP application) and COVID-19 (in the inflation application).
Our proposed measure of model set incompleteness suggests that RT is able to capture much
of the post-COVID rise in inflation. Triggered by a rise in the relative importance of the time
trend in determining tree splits, itself highlighting the unusual nature of this inflationary pe-
riod, RT also shifts its combination weights toward component models with SV. This contrasts
with the prior period of lower inflation, when the business cycle indicators were found to be
more important weight modifiers.

Future lines of research could involve investigating, in other forecasting applications and
contexts, the usefulness of different sets of weight modifiers and the implications for weight

24 Figure B.10 in the Online Appendix provides additional perspective on the temporal stability of the combination
weights by plotting their sum over the evaluation sample. We see that when forecasting U.S. inflation this sum be-
comes negative during the global financial crisis, indicating how RT is reweighting most agents’ densities in the face
of temporal instabilities. The sum of the weights also spikes upward during the 2021–22 inflationary episode, again in-
dicating how RT can quickly adapt to temporal change.
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structure. For instance, this could draw on the ability of RT, via its choice of weight modifiers,
to capture general patterns of cross-sectional dependence between competing agents’ prob-
abilistic forecasts. Additional structure could be given to the clustering by, for example, let-
ting the combination weight on a given individual agent’s density forecast depend not only on
characteristics of their own forecast (such as its mean or variance) but on characteristics of the
other agents’ forecasts.

DATA AVAILABILITY STATEMENT The data and codes that support the findings of
this study are available at github.com/nhauzenb/chhkm-ier-bps. The data were obtained from
publicly available resources. The ECB Survey of Professional Forecasters (SPF) data is ac-
cessible via https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/
html/all_data.en.html, and the U.S. macroeconomic data can be obtained via https://www.
stlouisfed.org/research/economists/mccracken/fred-databases.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Table A.1: List of variables used for the autoregressive distributed lag (ADL) specifications.
Figure B.1: Relative forecast accuracy: US inflation, one-year-ahead (h = 4).
Figure B.2: Difference in probabilities between RT and RW, one-year-ahead US inflation (h =
4).
Figure B.3: Measuring model incompleteness: US inflation, one-year-ahead (h = 4).
Figure B.4: One-year-ahead horizon: Number of (total) tree splits for our single-tree models
and relative importance for each effect modifier.
Figure B.5: Relative tail forecast accuracy: EA GDP growth.
Figure B.6: Relative tail forecast accuracy: US inflation, one-quarter-ahead (h = 1).
Figure B.7: Relative tail forecast accuracy: US inflation, one-year-ahead (h = 4).
Figure B.8: Combination weights over the evaluation sample: EA GDP growth
Figure B.9: Combination weights over the evaluation sample: One-year-ahead US inflation (h
= 4)
Figure B.10: Sum of combination weights over the evaluation sample
Figure B.11: Evaluating model calibration using probability integral transforms (PITs)
Figure B.12: Evolution of the Giacomini and Rossi (2010) fluctuation test statistic
Figure B.13: Overall degree of shrinkage toward the prior mean for US inflation.
Figure B.14: RT and RW predictive densities
Figure B.15: Evolution of a quantile-based skewness measure for the RT predictive densities

references

Aastveit, K. A., J. L. Cross, and H. K. van Dijk, “Quantifying Time-Varying Forecast Uncertainty and
Risk for the Real Price of Oil,” Journal of Business & Economic Statistics 41 (2023), 523–37. https:
//doi.org/10.1080/07350015.2022.2039159.

———, K. R. Gerdrup, A. S. Jore, and L. A. Thorsrud, “Nowcasting GDP in Real Time: A Density
Combination Approach,” Journal of Business & Economic Statistics 32 (2014), 48–68. https://doi.
org/10.1080/07350015.2013.844155.

———, J. Mitchell, F. Ravazzolo, and H. K. van Dijk, “The Evolution of Forecast Density Combina-
tions in Economics,” in Oxford Research Encyclopedia of Economics and Finance (Oxford Univer-
sity Press, 2019). https://doi.org/10.1093/acrefore/9780190625979.013.381

———, F. Ravazzolo, and H. K. van Dijk, “Combined Density Nowcasting in an Uncertain Economic
Environment,” Journal of Business & Economic Statistics 36 (2018), 131–45. https://doi.org/10.1080/
07350015.2015.1137760

Adrian, T., N. Boyarchenko, and D. Giannone, “Vulnerable Growth,” American Economic Review 109
(2019), 1263–89. https://doi.org/10.1257/aer.20161923.

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12759 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [28/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/nhauzenb/chhkm-ier-bps
https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/html/all_data.en.html
https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/html/all_data.en.html
https://www.stlouisfed.org/research/economists/mccracken/fred-databases
https://www.stlouisfed.org/research/economists/mccracken/fred-databases
https://doi.org/10.1080/07350015.2022.2039159
https://doi.org/10.1080/07350015.2022.2039159
https://doi.org/10.1080/07350015.2013.844155
https://doi.org/10.1080/07350015.2013.844155
https://doi.org/10.1093/acrefore/9780190625979.013.381
https://doi.org/10.1080/07350015.2015.1137760
https://doi.org/10.1080/07350015.2015.1137760
https://doi.org/10.1257/aer.20161923


machine learning bps 27

Baker, S., N. Bloom, and S. Davis, “Measuring Economic Policy Uncertainty,” The Quarterly Journal of
Economics 131 (2016), 1593–636. https://doi.org/10.1093/qje/qjw024.

Bassetti, F., R. Casarin, and M. Del Negro, “Inference on Probabilistic Surveys in Macroeconomics
with an Application to the Evolution of Uncertainty in the Survey of Professional Forecasters dur-
ing the COVID Pandemic,” in R. Bachmann, G. Topa, and W. van der Klaauw, eds., Handbook
of Economic Expectations (Elsevier, 2023), 443–476. https://doi.org/10.1016/B978-0-12-822927-9.
00023-9.

———, ———, and F. Ravazzolo, “Bayesian Nonparametric Calibration and Combination of Predic-
tive Distributions,” Journal of the American Statistical Association 113 (2018), 675–85. https://doi.
org/10.1080/01621459.2016.1273117.

Bates, J., and C. Granger, “The Combination of Forecasts,” Journal of the Operational Research Society
20 (1969), 451–68. https://doi.org/10.1057/jors.1969.103.

Billio, M., R. Casarin, ———, and ———, “Time-Varying Combinations of Predictive Densities Using
Nonlinear Filtering,” Journal of Econometrics 177 (2013), 213–32. https://doi.org/10.1016/j.jeconom.
2013.04.009.
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