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AI based Sensor Fusion for Robust Feature Extraction for
Autonomous Navigation of Spacecraft Missions to Asteroids with

application to ESA Hera mission

Iain Hall∗, Jinglang Feng†, Hao Peng ‡, and Massimilano Vasile§

Missions to visit asteroids depend on autonomous navigation to carry out operations. The
estimation of the relative position and attitude (pose) of the spacecraft to the target asteroid
is a key step but can be challenging in the poor illumination conditions which can occur for
asteroids. We explore how sensor fusion using deep learning can allow for robust estimation of
pose. Visible images, thermal images, and different levels of fusing visible images and thermal
images are tested using synthetic images of Didymos, the target of ESA’s Hera mission. Pose is
estimated thorough the extraction of centroid and keypoint features using Convolutional Neural
Networks which are also used for sensor fusion. We find that sensor fusion has little effect
in centroid estimation when compared to using just visible or thermal images. Sensor fusion
improves keypoint estimation over using a single image type with feature fusion outperforming
source fusion. This leads to a more accurate estimate of relative pose.

I. Nomenclature

𝜃 = Sun phase angle
𝑒𝑝 = Pixel error
𝑟 = Spacecraft asteroid range
𝑓 = Focal length
𝜇 = Pixel pitch
𝑒𝑑 = Distance error
𝑒𝑝𝑜𝑠 = Position error
𝑒𝑞 = Orientation (quaternion) error
𝑷𝑃𝑟𝑒𝑑 = Predicted keypoint position
𝑷𝐺𝑇 = Ground Truth keypoint position

II. Introduction

Deep space missions to asteroids depend significantly on autonomous navigation systems to perform proximity
operations around the target asteroids [1], which requires the perception of the target and its relative pose (position

and attitude). The dynamical environment around asteroids is challenging due to poor illumination conditions and large
uncertainties in the target’s shape and motion. Developing robust pose estimation methods is essential to a mission’s
success.

Visual relative navigation has been a key component of recent missions to visit asteroids. Hayabusa-1, Hayabusa-2,
and OSIRIS-REx all operated vision based navigation allowing them to autonomously operate[2–4]. This allows the
missions to carry out operations that wouldn’t be possible with the long delays when communicating with Earth.

All these missions used monocular visual navigation, but the Hera mission - ESA’s mission to visit Didymos and
Dimorphos, has a range of sensors which can be used for navigation. The sensors include a visual camera (AFC), a
thermal camera (TIRI), a multi-spectral camera, and a laser altimeter (PALT). The GNC system on the mission will use
sensor fusion to take advantage of these different sensors [5]. Sensor fusion will allow for visual images to be combined
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with thermal images to reduce the effect of sun phase angle and illumination conditions on the navigation. The fusion of
visual images with altimeter data will allow for more accurate estimation of range (perpendicular to the camera) which
is a weakness of visual cameras.

Sensor data fusion can also be done at different levels of data processing: source fusion (low-level) – fusing the data
directly output by the sensors, feature fusion (mid-level) – fusing features identified partway through the data processing,
and decision fusion (high-level) – fusing the end results of the data processing from different sensors [6]. Hera will use
Decision level fusion for its GNC.

For navigation of Hera in the 30-8.5km range from Didymos, centroid based position estimation will be used. The
centroid will be extracted using a Lambertian sphere correlation [7]. For navigation at closer than 8.5km features must
be extracted for relative pose estimation. This will be done using Kanade-Lucas-Tomasi (KLT) feature tracker [8].
These are both conventional image processing techniques and do not take advantage of Deep learning (DL).

DL has been used for a range of different image processing applications [9–11], with Convolutional Neural Network
(CNN) architectures being common and very successful. DL methods have been explored for other pose estimation
and pose estimation related tasks. In autonomous ground vehicles DL feature extraction methods are used to carry out
simultaneous localisation and mapping (SLAM)[12]. For artificial satellite pose estimation DL methods have been
explored in the literature [13], with the satellite pose estimation challenge (SPEC) competitions in 2019 [14] and 2021
[15] pushing its development. In the literature for artificial satellite pose estimation the extraction of known keypoints
and estimation of pose using Perspective-n-Point (PnP) solvers have been the most successful in the SPEC competitions.
The extraction of keypoints is done using DL methods while the PnP problem is solved by non-DL methods. The PnP
problem is the challenge of estimating a camera’s relative pose from a set of points in the camera image, with knowledge
of the relative 3D physical positions of the points to each other [16].

DL’s success in these tasks has also attracted research in asteroid relative navigation. In Kaluthantrige et al.[17] the
HRNet architecture is used to extract the centroid, sub solar point, and keypoints on the edge of the Didymos asteroid.
These are used for estimating the relative position of the asteroid. In Pugliatti et al.[18] a range of DL architectures are
developed, primarily CNNs for extraction of features and semantic segmentation of asteroids. These works both focus
on how DL can be applied to the navigation of ESA’s Hera mission. Both rely on synthetic images allowing for labels to
be easily defined, in Kaluthantrige et al. ESA’s PANGU[19] tool is used, while Pugliatti et al. develop a tool, CORTO
[20], for synthetic image generation based on Blender[21].

DL slam feature extractors have been explored in Knuuttila et al. [22] and Driver et al. [23]. In Knuuttila et al. they
adapt the R2D2 feature extractor architecture [24] training it on a real image dataset made using images from NASA’s
Planetary Data System [25] and ESA’s Planetary Science Archive [26]. Synthetic image augmentation is used to create
image pairs for training feature extraction and tracking. In Driver et al. they train the SuperPoint[27], R2D2[24], and
ASLFeat[28] architectures on a dataset of real asteroid images. The dataset is also made using images from NASA’s
Planetary Data System, using stereophotogramy to develop pixel correspondences between images. In Letizia et al. [29]
thermal and visible images for asteroid SLAM are explored. They use synthetically generated images and use ORB [30]
and SURF [31] feature extractors. The visible images are obtained using PANGU [19] while they develop thermal
models for producing thermal images.

Through this work we will explore how source fusion and feature fusion can be combined with DL for asteroid
navigation. The developed architectures will be applied to synthetically generated images of Didymos, the target of
ESA’s Hera Mission.

This work aims to evaluate how sensor data fusion can improve the robustness of pose estimation, which allows for
the shortcoming of an individual sensor to be addressed by combining it with complimentary data from other sensors.
The fusion of visible camera data and thermal camera data is explored in this study as they are common sensors onboard
spacecraft around asteroids. This allows the limitations of visible images in shadow to be addressed by thermal images.

The key contribution of this work is to assess how an existing CNN architecture can be used to fuse visible and
thermal images for extracting features from asteroids. The different fusion architectures are then assessed for accuracy
and robustness of feature extraction. The features being extracted are the centroid and a set of known keypoints which
can be used in a PnP solver.

This paper is arranged as follows, Section III describes the method. Section IV shows the results for the models on
the test dataset. Section V discusses the results, Section VI contains the conclusion, and Section VII outlines future
work.
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III. Method
This section outlines four key parts of the method: the methods of fusing sensor data, the CNN architecture used for

the identification of features, the PnP method, and the synthetic image generation pipeline.

A. Sensor Data Fusion
In this work we explore two types of sensor fusion, source level sensor fusion and feature level sensor fusion. For

source level fusion the visible (1 channel) and thermal (1 channel) images are input as a single image with 2 channels
made from concatenating the two individual image tensors. This 2 channel image is used as an input to a CNN which
is trained to extract either centroid or keypoint features. This approach minimizes computational cost and network
complexity for a given network size. This fusion architecture is shown in Figure 1. The input images must be modified
because the cameras have different focal lengths, sensors sizes, and resolutions. The thermal image is modified so that
the angular resolution is the same as for the visible image, so that the pixels in the thermal image and visible image
correspond to the same physical location on the asteroid.

CNN

Visible Image

Thermal Image
Fused Image Feature Maps

Fig. 1 Source level sensor fusion architecture.

In feature level fusion the data from the sensors are input individually into separate CNN’s, processing them into
feature space. These features can then be fused through concatenation before further processing through a joint CNN.
This allows sensor specific features to be identified individually and is slightly more computationally complex than
source fusion. This architecture is shown in Figure 2. The thermal image is also modified before entry into the CNN
so its angular resolution matches the visible image. This is done so that the features extracted from it correspond in
location to features extracted from the visible image. Both sensor fusion architectures are established architectures of
fusing visible and infra-red images in other fields [32].

CNNVisible Image

Thermal Image
Feature Maps

CNN

CNN

Fused Features

Fig. 2 Feature level sensor fusion architecture.

B. Deep Learning Model
The CNN architecture used is the High Resolution Network (HRNet) [33] which was originally developed for

human pose estimation. It has also been successfully used for satellite pose estimation and for asteroid centroid and
edge detection[17, 34]. The base HRNet architecture is shown in Figure 3, the parallel structure of feature extraction at
different resolutions allows it to extract features at both large and small scales and recombine them. The input to the
network is an image and it outputs a set of feature maps representing the estimated position of each keypoint. Each
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feature map only represents one keypoint and the location of the key point is taken from the peak pixel location. To
improve the training a Gaussian distribution around the key point is actually used as the label. The network is modified
to match the fusion methods described, with the network being split in half for feature fusion.

Fig. 3 HRNet architecture[34].

A set of 4 models were produced for centroid estimation using the two sensor fusion architectures described and the
base HRNet architecture. The base HRNet architecture was used to do visible image to centroid and thermal image to
centroid estimation. The Fusion architectures were then used to make networks for source fusion to centroid and feature
fusion to centroid respectively. A further 4 models were produced similarly but for estimating the full 16 keypoints
instead of just the centroid. This led to a total set of 8 models to be trained and tested. The loss function used for
training is the Pixel-wise Mean Square Error (MSE) between the output feature maps and the labels. The error refers to
the difference between the activation of a specific pixel in the output and the desired output activation as specified by the
label.

The parameters used in training are shown in Table 1, and they were trained on an NVIDIA L4 GPU [35].

Table 1 Model training parameters

Training Parameter Value
Learning rate 10−3

Number of Epochs 30
Batch Size 64
Input image Dimensions 256x256
Output feature map Dimensions 64x64

C. Perspective-n-Point
The PnP problem is solving the pose of a camera relative to a reference frame with knowledge of a set of keypoints.

In Figure 4 the keypoints identified by the camera are a 2D projection of the 3D points on the asteroid, and their 2D
projection is a result of the camera’s pose and intrinsic properties (focal length and resolution). This means that it is
possible to solve the camera’s pose from the keypoints if the position of the keypoints is known in the asteroid refernce
frame. The 16 keypoints are used to estimate the pose of the spacecraft using the MATLAB implementation [36] of a
PnP solver by Gao et al. [16].

D. Synthetic Data Generation
For training and testing DL models large datasets are needed. Due to the difficulty in labeling asteroid datasets

containing visible and thermal images synthetically generated images are used. This is done using Blender, an artistic
rendering and modelling tool, taking advantage of the physically based Cycles render engine [21]. Blender’s open-source
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Fig. 4 Perspective-n-Point for relative pose estimation to Didymos

nature and Python API has led to its use for synthetic training data generation for other DL based satellite pose estimation
methods and for synthetic image generation of asteroids[20, 37].

A pipeline was developed for generating the synthetic image dataset and labels, which is shown in Figure 5. There
were 3 main tasks - generation of relative positions and labels, thermal modelling, and rendering. For the generation of
relative positions and labels a set of random satellite position vectors within the range, of 8.5km to 30km are generated to
provide a large number of different views of the asteroid. The positions of the keypoints in the camera image were also
extracted at this point to provide labels. The selection of 8.5km to 30km was done to represent Early Characterisation
Phase (ECP) and Detailed Characterisation Phase (DCP) in the Hera mission with a range of sun phase angles. The
range, r, and sun phase angle, 𝜃, are shown in Figure 6.

Thermal modelling is carried using the MATLAB PDE toolkit [38]. The temperature model of the asteroid is run
for 1 month with the asteroid rotating. This was to provide a more representative quasi steady state temperature, as
using a purely steady state model would result in the sun facing side of the asteroid being much hotter than the dark
side, which is not accurate due to Didymos’s rotation. The asteroids thermal parameters are shown in Table 2, with 3
different versions being run at different distances from the sun: 1AU, 1.5AU, 2AU. These distances were selected to
reflect the perihelion, a mid-point, and the aphelion in Didymos’s orbit. A temperature map was then produced by
interpolating the temperature from the model over each surface of the asteroid’s blender model. This could then be
applied as a texture in Blender to be used when rendering thermal images.

Table 2 Thermal Model properties [39]

Property Value Unit
Didymos Density 2550 𝑘𝑔/𝑚3

Surface emissivity (thermal) 0.9 n/a
Albedo (visible) 0.07 n/a
Thermal inertia 320 𝐽𝑚−2𝐾−1𝑠−1/2

Rotation period 2.26 hours

The relative positions and the temperature maps were then used in the rendering step. An image pair containing a
visible image and thermal image was generated for each relative position with the camera properties of the thermal and
visible camera shown in Table 3. 5,000 images were rendered for each temperature map, for a total of 15,000 images.
For each of these images the centroid of Didymos was in the centre of the frame, which lacks diversity and encourages
the model to learn to identify the middle pixel rather than the centre of Didymos. To address this a second image pair
was generated for each rendered image pair, in which the original images undergo an affine transform rotating and
translating them. The affine transform was a random rotation and a random translation, within limits that ensure all of
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Fig. 5 Pipeline for producing synthetic data for training and testing of the network.

Fig. 6 Diagram showing range (r) and sun phase angle (𝜃).

Didymos remained in frame. This extended the dataset to 30,000 images. A final step was undertaken to make sure
the thermal and visible images had the same angular pixel pitch (𝑜/𝑝𝑖𝑥𝑒𝑙) so that pixels mapped to the same physical
points. This was done by cropping and resizing the thermal image to match the angular pitch of the visible image. The
dataset of 30,000 image pairs were split into a training set of 21,000 pairs and a testing set of 9,000 pairs. An example
image pair with 2 of 16 labels is shown in Figure 7. For each image pair two sets of labels were produced for training
the CNNs. One was a single feature map per image pair which contained a Gaussian around the centroid of Didymos.
This was used for training the identification of the centroid. The second set was a group of 16 feature maps per image
pair where each feature map represents a single keypoint, manually chosen as salient features on the surface of Didymos.
These can be used to estimate the relative pose by solving the PnP problem.

Table 3 Thermal camera and Visible camera properties

Camera Property Visible Thermal Unit
Focal Length 106 100 𝑚𝑚

Sensor Width 10.2 17.5 𝑚𝑚

Image Dimensions 1020x1020 768x768 pixels
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Fig. 7 Example image pair with the centroid label and label for Keypoint 2.

IV. Results
The results for the different models performances on the 9,000 image pair test set is presented in this section. A

summary of the results are shown in Table 4 where the performance of each model is measured in the MSE, the pixel
error, and the distance error. The pixel error, 𝑒𝑝 , is the distance between the peak pixel of the output feature map and the
position of the ground truth keypoint in that feature map. The pixel error is shown in Equation (2) where each Position
vector, 𝑷, is a 2 element vector representing its horizontal, 𝑢, and vertical, 𝑣, positions in the image. The position
vectors are the ground truth position vector, 𝑷𝐺𝑇 , and the predicted position vector, 𝑷𝑃𝑟𝑒𝑑 .

𝑷𝑝𝑥𝑙 = (𝑢, 𝑣) (1)

𝑒𝑝 =

���𝑷𝑃𝑟𝑒𝑑
𝑝𝑖𝑥𝑒𝑙 − 𝑷𝐺𝑇

𝑝𝑖𝑥𝑒𝑙

��� (2)

This can be converted into a distance at the range of the asteroid using the ground truth range, 𝑟. The conversion
from pixels to metres at the asteroid is shown in Equation (3), which is then used to find the distance error, 𝑒𝑑 , defined
in Equation (4).

𝑷𝑎𝑠𝑡𝑒𝑟𝑜𝑖𝑑 = 𝜇𝑷𝑝𝑖𝑥𝑒𝑙 ×
𝑟

𝑓
(3)

𝑒𝑑 =

��𝑷𝑃𝑟𝑒𝑑
𝑎𝑠𝑡𝑒𝑟𝑜𝑖𝑑

− 𝑷𝐺𝑇
𝑎𝑠𝑡𝑒𝑟𝑜𝑖𝑑

��
𝑟

(4)

An example result for the extraction of a keypoint is shown in Figure 8 where an image pair is used to predict
keypoints. The predicted labels are shown on the right with red crosses at the point the keypoint is identified, the
predicted keypoint from the visible only model is shown on the top right while the predicted keypoint using the feature
fusion model is shown in the bottom right. It can be seen that while the prediction by the visible only model appears
cleaner, the prediction by the feature fusion model is actually closer to the ground truth. Similar results are found over
the full test set, and this is reflected in the average performances.

A. Centroid Estimation
In Figure 9 the distance error, 𝑒𝑑 , is shown against sun phase angle (a) and range (b). For sun phase angle 𝑒𝑑 is

averaged over 5𝑜 bins where it can be seen that the centroid error does not appear to be influenced by sun phase angle.
For range 𝑒𝑑 is averaged over 1𝑘𝑚 bins and it can be seen that the models all perform very similarly, with the distance
error showing no clear trends with range. This similarity in performance can also be seen in their overall average error
shown in Table 4.

B. Key point Estimation
The keypoints extracted from the feature maps are compared to the ground truth locations to provide 𝑒𝑑 for the

predicted keypoint position. The mean 𝑒𝑑 over the 16 keypoints is shown in Figure 10 plotted over the sun phase angle,
with 𝑒𝑑 averaged over 5𝑜 bins. The keypoint 𝑒𝑑 over range is averaged over 1𝑘𝑚 bins. There is significantly more
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Fig. 8 Example result of keypoint prediction with Visible only and Feature fusion models.

(a) Centroid 𝑒𝑑 over sun phase angle. (b) Centroid 𝑒𝑑 error over range.

Fig. 9 Centroid distance error, 𝑒𝑑

difference in the performance of the different models. Feature fusion performs best followed by Source fusion, then
Thermal only, with Visible only performing the worst by a significant margin. The relative performances can also
be seen in Table 4. There are clear trends with sun phase angle and range in keypoint estimation. It can be seen in
Figure 10 that the visible model performs worse at higher sun phase angles while the other models don’t vary with sun
phase angles. For all four models 𝑒𝑑 decreases as the range increases.

C. Pose Results
The relative pose of the spacecraft to the asteroid is found from the keypoints by solving the PnP problem. A sample

result showing the ground truth orientation and the predicted orientation is shown in Figure 11. The quaternion error,
𝑒𝑞 , is used to define the error in the orientation estimation aspect of pose estimation. It is defined in Equation (5) where
𝒒𝑃𝑟𝑒𝑑 is the predicted rotation quaternion of the satellite to Didymos and 𝒒𝐺𝑇 is the ground truth rotation quaternion.
The position error, 𝑒𝑝𝑜𝑠 , is defined in Equation (6) and is the distance between the ground truth satellite position,𝒓𝐺𝑇 ,
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(a) Keypoint 𝑒𝑑 over sun phase angle. (b) Keypoint 𝑒𝑑 over range.

Fig. 10 Keypoint distance error, 𝑒𝑑

Table 4 Mean errors for pixel position (𝑒𝑝), feature map MSE, and distance error 𝑒𝑑 with their standard
deviations (Sd.)

Model 𝑒𝑝 Sd. (𝑒𝑝) MSE (10−5) Sd. (MSE) 𝑒𝑑 (10−3) Sd. (𝑒𝑑)
Visible only to centroid 0.20 0.24 0.95 3.17 0.300 0.354
Thermal only to centroid 0.19 0.23 0.92 2.88 0.293 0.338
Source fusion to centroid 0.20 0.23 0.68 2.88 0.299 0.352
Feature fusion to centroid 0.20 0.23 1.16 3.38 0.300 0.352
Visible only to keypoints 0.84 0.75 15.1 18.0 1.27 1.13
Thermal only to keypoints 0.57 0.20 8.09 5.80 0.858 0.307
Source fusion to keypoints 0.54 0.18 7.10 2.88 0.809 0.277
Feature fusion to keypoints 0.48 0.22 5.25 4.36 0.724 0.332

and the predicted satellite position, 𝒓𝑃𝑟𝑒𝑑 , normalised to the ground truth range, 𝑟.

𝑒𝑞 = 2𝑎𝑟𝑐𝑜𝑠
(
𝒒𝑃𝑟𝑒𝑑 .𝒒𝐺𝑇

)
(5)

𝑒𝑝𝑜𝑠 =
|𝒓𝑃𝑟𝑒𝑑 − 𝒓𝐺𝑇 |

𝑟
(6)

The results for 𝑒𝑞 over sun phase angle and range are shown in Figure 12. The feature fusion, source fusion, and
thermal only models show no variation with sun angle. The visible only model increases in error at sun phase angles
over 60𝑜. It can also be seen that there is no clear trend with range for all 4 models. The results for 𝑒𝑝𝑜𝑠 over sun angle
and range are shown in Figure 13. A clear increase in 𝑒𝑝𝑜𝑠 with sun angle for the visible only network while the other
networks show no clear trend. As range varies we see relatively little influence on 𝑒𝑝𝑜𝑠 for the visible network. For
the thermal network the error slightly increases with range, while 𝑒𝑝𝑜𝑠 for the source and feature fusion significantly
increases with range, with a higher error than the visible and thermal networks at ranges greater than 26km. The mean
performance of the models for pose estimation are shown in Table 5.

V. Discussion
The results in centroid estimation show that there is almost no effect on error as a result of sun phase angle, range, or

fusion method. The models are able to perform very effectively on the task of estimating the centroid keypoint with an
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Fig. 11 Orientation example result

(a) 𝑒𝑞 over sun phase angle (b) 𝑒𝑞 over range

Fig. 12 Orientation errors (𝑒𝑞) for the pose estimated by solving the PnP problem

Table 5 Mean Errors for position and orientation during pose estimation with their standard deviations (sd.)

Model 𝑒𝑝𝑜𝑠 Sd. (𝑒𝑝𝑜𝑠) 𝑒𝑞 Sd. (𝑒𝑞)
Visible only to pose 0.172 0.278 0.335 0.951
Thermal only to pose 0.124 0.229 0.229 0.798
Source fusion to pose 0.114 0.207 0.207 0.757
Feature fusion to pose 0.104 0.206 0.196 0.759

average error 0.2 pixels. This means that the use of fusion methods is unnecessary for this task as the model is able to
achieve high performance without this. The average error of 0.2 also likely arises from the difference in the nature of the
ground truth keypoints and the predicted keypoints. The predicted keypoints are always limited to integer pixel positions
from the feature map while the ground truth keypoints are a floating point values based on the camera properties. To try
and reduce the error resulting from this a few strategies could be pursued.

If the network were to downsize the image less the difference between the predicted keypoint and the output pixel
keypoint would be smaller. The models currently downsize from 256 to 64 pixels, but if they instead go from 256 to
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(a) 𝑒𝑝𝑜𝑠 over sun phase angle (b) 𝑒𝑝𝑜𝑠 over range

Fig. 13 Position errors (𝑒𝑝𝑜𝑠) for the pose estimated by solving the PnP problem

256 pixels this would reduce the error to a quarter of its current value. This would however lead to a 16 times larger
memory requirement making it impractical. Instead the network could be modified to have up sampling layers at the
final stages to take the image back to 256 by 256 pixels without having to process it at that size for the entire network.
This method would lose information during the downsizing and up-sampling which would likely make it less accurate
than not downsizing at all. A final potential method would be to use another method for selecting the centroid/keypoint
such as the weighted mean of the feature map. This could allow the network to estimate the position of keypoints and
more accurately, reducing the final pose error.

From the results for the full 16 keypoint estimation we can see that the sun phase angle has a significant effect on the
estimation of the keypoint positions for the visible only model, with increasing sun phase angle leading to a higher error
in keypoint prediction. This is because as the sun phase angle increases a greater portion of Didymos will be in shadow
and their will be less asteroid visible for features to be extracted from. This does not effect the thermal or fusion methods
as the thermal image is not significantly affected by the sun phase angle. On a slower rotating asteroid their may be an
effect as the dark side would be able to cool down, reducing the quality of the thermal images at high sun phase angles.

For distance error with range we see a similar trend for all four keypoint extraction models. As the range increases
all the models tend to perform better, with feature fusion performing best across all distances. This trend is only true for
shorter distances with the distance error not significantly varying at ranges greater than 20km. The absolute distance
between the keypoint ground truth and prediction will be increasing, but not at the same rate as the range does, which
leads to a reduction in 𝑒𝑑 .

The relative performance gap between visible only model for keypoint estimation and the other models shows that
the use of thermal images, not data fusion, has a more significant effect on performance. This would indicate that
using thermal data is more important, however this is only tested against synthetic data. It is of note that the model of
Didymos used has relatively few surface features compared to real images of asteroids while the thermal image appears
to have a higher level of relative detail. It would be useful for understanding the effect of data fusion to try and vary the
quality of the different image types. This could be done by using a more detailed visible model and less detailed thermal
model and assess the effect on the different models.

The improvement in performance by the feature fusion network compared to the source fusion network could be due
to the feature fusions networks ability to learn data type specific features in the early stages instead of having to learn to
extract features which are common to both image types. It could also be explained simply by the larger number of
parameters in the feature fusion model, and further investigation would be necessary to determine which was the more
important factor.

The large variation in the models performance on different image pairs indicated by the large standard deviations
indicates the possibility of an unaccounted for factor effecting them. Because there is no indication if the model is
confident in a predicted keypoint position and has large variation in performance, there would be insufficient trust in the
system to use it in GNC.
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The pose results show that the performance on keypoint extraction doesn’t exactly indicate the performance on pose
estimation. Feature fusion still achieves the lowest errors for both position and orientation estimation while visible only
still performs worst. However, the size of the standard deviation relative to the average pose error is larger indicating a
significant sensitivity to errors in the keypoint estimation. The trend of improving performance with range is also not
clear in orientation error, while position error actually increases at higher ranges for all models but visible. The nature of
using a PnP solver requires known keypoints, for this to be used in a mission an observation period at longer distances
before pose estimation is necessary would be required to allow for the keypoints to be identified and trained on.

VI. Conclusion
In this work we explored how thermal images, visible images, and fusion of those images can be used to extract

features for estimating satellite pose using DL methods. We developed a dataset for training and testing DL models, use
the HRNet architecture to carry out data fusion and tested the effect of data fusion using our dataset. In the results
we show that using only visible images results in poor performance at high sun phase angles, with thermal images
allowing for robustness to illumination conditions. We also found that using feature fusion outperformed other models,
demonstrating the advantage it can provide for robust and accurate feature extraction. We used the extracted features to
estimate the relative pose of the spacecraft by using a PnP solver, with features extracted by fusion methods performing
best.

VII. Future work
The high standard deviation in the pose estimation shows that the method is highly sensitive to some unknown

factors, so further analysis should be done to try and identify these factors. Further experimentation with different DL
architectures for the models should be done to assess the effect of output heat map size, network size, and different
feature extraction methods on the pose estimation. Similarly the models should be tested against additional datasets
which provide a more varied quality of visible and thermal images to assess their effect. Future work should explore
how the models developed can be validated against real data. This could be done using publicly available image data
from the Hayabusa-2 mission which operated both visible and thermal cameras. The challenge for this would be in the
generation of labels for the data.
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