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A comprehensive study of the effect of gravity-induced shape change on the diffusion-limited evaporation of
thin sessile and pendant droplets on a horizontal substrate is performed. Specifically, theoretical predictions for
the evolution, and hence the lifetime, of sessile and pendant droplets evaporating in four modes of evaporation,
namely, the constant contact radius (CR), the constant contact angle (CA), the stick-slide (SS), and the stick-jump
(SJ) modes, are obtained. In particular, it is shown that gravity-induced shape change can cause quantitative
differences in the evolution of sessile and pendant droplets compared to that of a droplet in the absence of (or in
the neglect of) the effect of gravity (a “zero-gravity droplet”). For example, whereas sessile and pendant droplets
evaporating in the CR mode evolve in qualitatively the same manner as a zero-gravity droplet, the evolution of
droplets evaporating in the CA mode is more complicated. Specifically, while a zero-gravity droplet evaporating
in the CA mode evolves according to the well-known d2 and 2/3 laws, an initially large sessile droplet evolves
according to qualitatively different d and 1/2 laws, and an initially large pendant droplet evolves with the contact
radius and the volume (but not, of course, the contact angle) behaving as if the droplet was evaporating in the CR
mode. It is also found, perhaps somewhat unexpectedly, that the maximum height of a sessile droplet evaporating
in the CA mode is a nonmonotonic function of time when the initial volume of the droplet is sufficiently large.
Furthermore, it is found that for all four modes of evaporation a sessile droplet always evaporates faster, and
hence has a shorter lifetime, than a zero-gravity droplet with the same initial volume, which in turn always
evaporates faster, and hence has a shorter lifetime, than a pendant droplet with the same initial volume. It is also
shown that for all four modes of evaporation the lifetime of a droplet is a monotonically increasing function of
the initial volume of the droplet, that the lifetime of a droplet evaporating in the CA mode is always longer than
that of the same droplet evaporating in the CR mode, and that the lifetimes of droplets evaporating in the SS and
SJ modes both always lie between the lifetimes of the same droplet evaporating in the extreme modes.
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I. INTRODUCTION

The evaporation of sessile droplets has been the sub-
ject of extensive experimental, numerical, and theoretical
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investigations in recent years (see, for example, the review
articles and books by Cazabat and Guéna [1], Routh [2],
Kovalchuk et al. [3], Larson [4], Brutin [5], Lohse and Zhang
[6], Brutin and Starov [7], Giorgiutti-Dauphiné and Pauchard
[8], Zang et al. [9], Brutin and Sefiane [10], Gelderblom et al.
[11], Erbil and McHale [12], Wilson and D’Ambrosio [13],
and the many references therein) due to its relevance in a
wide range of physical, biological, and industrial processes,
such as in agricultural spraying (see, for example, Tredenick
et al. [14]), chemical and biological assays (see, for example,
Garcia-Cordero and Fan [15]), and inkjet printing (see, for
example, Kuang et al. [16]). Particular attention has been paid
to the evolution and lifetime of an evaporating droplet (see,
for example, Picknett and Bexon [17], Birdi et al. [18], Hu
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and Larson [19], McHale et al. [20], Nguyen and Nguyen
[21], Stauber et al. [22,23], and Wilson and Duffy [24]),
and to the deposition onto the substrate from an evaporating
particle-laden droplet (see, for example, Deegan et al. [25,26],
and the additional review articles by Sefiane [27], Zhong
et al. [28], Mampallil and Eral [29], Parsa et al. [30], and
Yang et al. [31]).

The evolution, and hence the lifetime, of an evaporating
droplet depends on the manner (i.e., the mode) in which it
evaporates, which, in turn, depends on the physical properties
of the system, including the surface structure and roughness,
chemical heterogeneity, permeability, and porosity of the
substrate. In their pioneering work, Picknett and Bexon [17]
identified two so-called extreme modes of evaporation for
a droplet, namely, the constant contact radius (CR) mode,
in which the contact line remains pinned while the contact
angle decreases, and the constant contact angle (CA) mode,
in which the contact angle is constant while the contact
radius decreases, both of which have also been reported by
many subsequent authors (see, for example, Erbil et al. [32],
Panwar et al. [33], Sobac and Brutin [34], Talbot et al. [35],
Gleason and Putnam [36], Gao et al. [37], and Armstrong
et al. [38,39]). In practice, droplets often evaporate in a
so-called mixed mode, in which both the contact radius and
the contact angle vary in time. Perhaps the most frequently
reported mixed mode is the stick-slide (SS) mode (see, for
example, Bourgès-Monnier and Shanahan [40], Erbil et al.
[41], Semenov et al. [42], Nguyen et al. [21,43,44], Dash
and Garimella [45], Stauber et al. [22,23], and Kadhim et al.
[46]), in which the droplet initially evaporates in a CR (i.e., a
“stick”) phase until a critical receding angle is reached, after
which it evaporates in a CA (i.e., a “slide”) phase. Another
commonly reported mixed mode is the stick-jump (SJ) mode
(see, for example, Adachi et al. [47], Shanahan [48], Bodiguel
et al. [49], Orejon et al. [50], Askounis et al. [51–53], and
Dietrich et al. [54]), in which the droplet evaporates in a series
of CR phases separated by short “jump” phases in which the
contact line rapidly recedes and the contact angle rapidly
increases. Of course, an infinite variety of other mixed modes
can occur, including modes in which the contact radius and the
contact angle change simultaneously, but the CR, CA, SS, and
SJ modes capture a selection of the most frequently observed
behaviors.

Many of the previous studies of evaporating droplets either
ignore or neglect gravity. For example, the basic diffusion-
limited model for the evaporation of a small droplet (see,
for example, Murisic and Kondic [55] and Wilson and
D’Ambrosio [13]) does not include any gravitational effects.
However, there are a number of ways in which gravity can
play a role, including the effect of buoyancy in the atmosphere
(see, for example, Shahidzadeh-Bonn et al. [56], Kelly-Zion
et al. [57], Carle et al. [58], Carrier et al. [59], Moore et al.
[60], Dollet and Boulogne [61], and Kadhim et al. [46]), the
effect of buoyancy within binary droplets (see, for example,
Prahdan and Panigrahi [62], Edwards et al. [63], and Li
et al. [64]), and the effect of gravity on the deposition onto
the substrate from a particle-laden droplet (see, for example,
Sommer [65], Sandu and Fleaca [66], Hampton et al. [67],
Devlin et al. [68], and Moore and Wray [69]). There has also
been some work on the effect of gravity-induced shape change

on the evolution, and hence the lifetime, of an evaporating
droplet. For an (at least initially) pinned droplet on an inclined
substrate (see, for example, Du and Deegan [70], Kim et al.
[71], Timm et al. [72], Dhar et al. [73], and Cai et al. [74]),
it has been observed experimentally that inclining the sub-
strate can asymmetrically deform the droplet in a manner that
promotes depinning of the upper portion of the contact line,
which decreases the total evaporative flux and hence increases
the lifetime of the droplet. On the other hand, for a sessile
droplet on a horizontal substrate, Kadhim et al. [46] made
experimental observations of sessile droplets of water with
initial contact angles of approximately 49◦ and 120◦ evapo-
rating in the SS mode. They found that a theoretical model
based on the diffusion-limited evaporation of a spherical-cap
droplet overpredicted the experimentally measured lifetimes
of large droplets (with volumes of 30 µl) more significantly
than those of small droplets (with volumes of less than 8 µl),
suggesting that the effect of gravity-induced shape change is
to decrease the lifetime of a sessile droplet. More recently,
Tonini and Cossali [75,76] used the diffusion-limited model to
calculate the total evaporative flux from a sessile droplet rel-
ative to that of the total evaporative flux from a droplet in the
absence of gravity, i.e., a spherical-cap droplet, with the same
volume and contact angle for increasing values of the Bond
number. They found that the effect of increasing the value of
the Bond number (i.e., increasing the relative strength of
gravity) is to increase the evaporative flux for droplets with
contact angles less than π/2 (i.e., in hydrophilic situations)
but to first decrease and then increase it for droplets with
contact angles greater than π/2 (i.e., in hydrophobic situa-
tions). Subsequently, Tonini and Cossali [77] extended this
investigation to pendant droplets and found that for droplets
with contact angles less than π/2, the minimum value of the
total evaporative flux is obtained for pendant droplets, but
for droplets with contact angles greater than π/2, the mini-
mum value of the total evaporative flux is obtained for sessile
droplets. In addition, for a fixed value of the Bond number,
the total evaporative flux relative to that from a spherical-
cap droplet decreases as the contact angle increases for
sessile droplets, but increases with the contact angle for pen-
dant droplets. They did not, however, use any of these results
to calculate the effect of gravity-induced shape change on the
evolution of the droplet. Indeed, no one has yet performed a
comprehensive study of the effect of gravity-induced shape
change on the evaporation of sessile and pendant droplets on
a horizontal substrate. This is the aim of the present work.
Specifically, in Sec. II we formulate a mathematical model
describing the diffusion-limited evaporation of a thin droplet
of arbitrary volume. In Sec. III we summarize the key results
about the shape of sessile and pendant droplets. In Sec. IV
we obtain theoretical predictions for the evolution, and hence
the lifetime, of sessile and pendant droplets evaporating in
the two extreme modes of evaporation. In Secs. V and VI we
extend the investigation to two mixed modes of evaporation,
specifically to the SS and SJ modes, respectively. Finally, in
Sec. VII we summarize our findings and indicate possible
directions for future work. In the Appendix we validate the
present approach by comparing the asymptotic solution for
the evaporative flux from a thin droplet with the numerical
solution for a nonthin droplet.
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FIG. 1. Sketch of an evaporating thin axisymmetric (a) sessile and (b) pendant droplet with contact radius R̂(t̂ ), contact angle θ̂ (t̂ ), and
free-surface profile ẑ = ĥ(r̂, t̂ ) on a horizontal substrate in the presence of gravity ĝ. The arrows indicate the local evaporative flux Ĵ (r̂, t̂ ).

II. PROBLEM FORMULATION

Consider a thin axisymmetric sessile or pendant droplet on
a horizontal substrate undergoing quasistatic diffusion-limited
evaporation in the presence of gravity ĝ. We refer the de-
scription to cylindrical polar coordinates (r̂, ϕ̂, ẑ), with Oẑ
along the axis of the droplet, perpendicular to the substrate at
ẑ = 0, pointing upward or downward for a sessile or a pendant
droplet, respectively, as sketched in Fig. 1. The contact radius,
contact angle, volume, and free-surface profile of the droplet
are denoted by R̂ = R̂(t̂ ), θ̂ = θ̂ (t̂ ), V̂ = V̂ (t̂ ), and ĥ = ĥ(r̂, t̂ ),
respectively, where t̂ denotes time. The initial values of R̂, θ̂ ,
and V̂ at t̂ = 0 are denoted by R̂0, θ̂0, and V̂0, respectively, and
the lifetime of the droplet (i.e., the time it takes for the droplet
to entirely evaporate) when it evaporates in the CR, CA, SS,
and SJ modes is denoted by t̂CR, t̂CA, t̂SS, and t̂SJ, respectively.

A. The hydrostatic problem

We consider situations in which the droplet is thin and
surface tension is sufficiently strong that the free surface of
the droplet evolves quasistatically, but, unlike in most of the
previous studies of evaporating droplets, in which the volume
of the droplet is sufficiently large that gravity has an effect on
its shape. More specifically, we consider situations in which
both the initial contact angle of the droplet, θ̂0 � 1, and the
capillary number, Ca = μ̂Û/(θ̂3

0 σ̂ ) � 1, are small, but the
characteristic radial length scale of the droplet, denoted by L̂,
is the capillary length, �̂ = (σ̂ /(ρ̂ĝ))1/2, where σ̂ and ρ̂ are the
constant surface tension and density of the fluid, and ĝ = |ĝ| is
the magnitude of acceleration due to gravity, i.e., in which the
Bond number, Bo = (L̂/�̂)2 = 1, is unity. Although formally
only valid in the asymptotic limit of small contact angle, in
practice, theoretical predictions for thin evaporating droplets
have been found to be in good agreement with experimental
results for droplets with contact angles up to around π/2 (see,
for example, Dunn et al. [78] and Wray et al. [79,80]).

The pressure in the droplet, denoted by p̂ = p̂(r̂, ẑ, t̂ ),
satisfies

∇̂ p̂ = ∓ρ̂ĝez, (1)

where ez denotes the unit vector in the z direction and the
upper and lower signs correspond to a sessile and a pendant
droplet, respectively, subject to the Young-Laplace equation at
the free surface of the droplet, which for a thin droplet takes

the form

p̂ − p̂a = − σ̂

r̂

∂

∂ r̂

(
r̂
∂ ĥ

∂ r̂

)
at ẑ = ĥ. (2)

Solving Eq. (1) subject to Eq. (2) yields the solution for the
pressure p̂,

p̂ = p̂a − σ̂

r̂

∂

∂ r̂

(
r̂
∂ ĥ

∂ r̂

)
± ρ̂ĝ(ĥ − ẑ), (3)

and hence the governing equation for the free-surface
profile ĥ,

∂

∂ r̂

[
σ̂

r̂

∂

∂ r̂

(
r̂
∂ ĥ

∂ r̂

)
∓ ρ̂ĝĥ

]
= 0. (4)

B. The evaporative problem

According to the basic diffusion-limited model for the
evaporation of a thin droplet (see, for example, Murisic and
Kondic [55] and Wilson and D’Ambrosio [13]), the quasistatic
concentration of vapor in the atmosphere, denoted by ĉ =
ĉ(r̂, ẑ, t̂ ), satisfies Laplace’s equation,

∇̂2ĉ = 0 in ẑ > 0, (5)

subject to the usual boundary and far-field conditions

ĉ = ĉsat on ẑ = 0 for 0 � r̂ � R̂, (6)

∂ ĉ

∂ ẑ
= 0 on ẑ = 0 for r̂ > R̂, (7)

ĉ → ĉ∞ as r̂2 + ẑ2 → ∞, (8)

where ĉsat is the constant saturation concentration and ĉ∞ =
Hĉsat is the constant ambient concentration, where H (0 �
H � 1) is the relative humidity of the atmosphere. Larson
[4] gives a detailed discussion of the parameter regimes in
which the diffusion-limited model is expected to apply and,
in particular, discusses the competition between diffusive and
convective mass transfer effects in the atmosphere. Note that
the basic diffusion-limited model used here is not, as is some-
times erroneously claimed, isothermal. However, within this
model the thermal problems for the temperature distributions
in the droplet, the substrate, and the atmosphere are decoupled
from the evaporative problem, and so the thermal properties of
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the system have no effect on the evolution or lifetime of the
droplet. The basic diffusion-limited model has been extended
by various authors to include a variety of additional physical
effects, including coupling the thermal and evaporative prob-
lems by accounting for the temperature dependence of the
saturation concentration (see, for example, Dunn et al. [81],
Sefiane et al. [82], Ait Saada et al. [83], and Schofield et al.
[84]), but, for simplicity and clarity, we restrict our attention
to the basic model in the present work.

The local evaporative mass flux from the free surface of the
droplet, denoted by Ĵ = Ĵ (r̂, t̂ ), is given by

Ĵ = −D̂
∂ ĉ

∂ ẑ
on ẑ = 0 for 0 � r̂ � R̂, (9)

where D̂ is the constant diffusivity of vapor in the atmosphere.
Note that, because the droplet is thin, both Eq. (6) and Eq. (9)
are evaluated on ẑ = 0 rather than on ẑ = ĥ.

Integrating Ĵ over the free surface of the droplet gives
the total evaporative mass flux from the droplet, denoted by
F̂ = F̂ (t̂ ), namely,

F̂ = 2π

∫ R̂

0
Ĵ (r̂, t̂ ) r̂ dr̂, (10)

and the droplet evolves according to the global mass-
conservation condition,

ρ̂
dV̂

dt̂
= −F̂ . (11)

C. The nondimensional problem

We nondimensionalize and scale the variables appropri-
ately for a thin droplet (see, for example, Wilson and Duffy
[24]) according to

r̂ = �̂r, ẑ = θ̂0�̂z, R̂ = �̂R, θ̂ = θ̂0θ, ĥ = θ̂0�̂h,

(12)

V̂ = θ̂0�̂
3V, p̂ − p̂a = σ̂ θ̂0

�̂
p, t̂ = ρ̂θ̂0�̂

2

D̂(ĉsat − ĉ∞)
t,

for the droplet and

r̂ = �̂r, ẑ = �̂z̃, ĉ = ĉ∞ + (ĉsat − ĉ∞)c,
(13)

Ĵ = D̂(ĉsat − ĉ∞)

�̂
J, F̂ = D̂(ĉsat − ĉ∞)�̂F,

for the atmosphere.
Using Eqs. (12) the governing equation for the nondimen-

sional free-surface profile h given by Eq. (4) becomes

∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)
∓ h

]
= 0, (14)

subject to the contact-line conditions

h = 0,
∂h

∂r
= −θ at r = R, (15)

and the regularity condition

∂h

∂r
= 0 at r = 0. (16)

The nondimensional volume of the droplet, V = V (t ), is
given by

V = 2π

∫ R

0
h(r, t ) r dr. (17)

Using Eqs. (13), the problem for the nondimensional con-
centration of vapor in the atmosphere, c = c(r, z, t ), given
by Eqs. (5)–(8) with Eqs. (9)–(11), becomes that of solving
Laplace’s equation ∇2c = 0 in the half-space z̃ > 0 subject
to c = 1 on z̃ = 0 for 0 � r � R, ∂c/∂ z̃ = 0 on z̃ = 0 for
r > R, and c → 0 as r2 + z̃2 → ∞. The exact solution of this
problem is well known, and leads to the familiar expression
for J , namely,

J = 2

π (R2 − r2)1/2
, (18)

which is singular (but integrable) at the contact line of the
droplet at r = R (see, for example, Wilson and Duffy [24]).
Hence, the corresponding expression for F is

F = 4R. (19)

Note that, the expressions for J and hence F given by
Eqs. (18) and (19), but not the expressions for h and hence
V given by Eqs. (14) and (17), coincide exactly with the
corresponding expressions for a small droplet in which gravity
plays no role (see, for example, Wilson and Duffy [24]), and
that, in general, c and, hence, J and F depend on t parametri-
cally via their dependence on R. Furthermore, also note that,
because the droplet is thin, it is only its contact radius R,
and not any other aspect of its shape h, that appears in the
evaporative problem, and hence in the expression for F given
in Eq. (19). However, as we show in Secs. IV–VI, gravity-
induced shape change can cause quantitative differences in the
evolution of sessile and pendant droplets compared to that of
a zero-gravity droplet.

Substituting Eq. (19) into the nondimensional version of
the global mass-conservation condition (11) yields the gov-
erning equation describing the evolution of the droplet,

dV

dt
= −4R. (20)

In general, Eq. (20) relates the rates of change of R and θ ,
but is not by itself sufficient to determine their evolutions.
To do this it is necessary to provide additional information
about R and/or θ by, for example, specifying the mode in
which the droplet is evaporating. This is what we will do in
Secs. IV–VI. However, before doing this we summarize the
key results about the shape of sessile and pendant droplets in
Sec. III.

III. THE SHAPE OF THE DROPLET

A. A sessile droplet

For a sessile droplet, solving Eq. (14) subject to Eqs. (15)
and (16) yields the free-surface profile h,

h = θ [I0(R) − I0(r)]

I1(R)
, (21)

where In denotes a modified Bessel function of the first kind
of order n. In particular, the height at the middle of the droplet
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(a) (b)

FIG. 2. Plots of the scaled free-surface profile h/θ of a sessile droplet as a function of r for (a) V/θ = 10, 20, . . . , 100 and (b) V/θ =
100, 200, . . . , 1000. The arrows indicate the direction of increasing V/θ .

(which, as we will see, is also the maximum height of the
droplet), denoted by hm = hm(t ) = h(0, t ), is given by

hm = θ [I0(R) − 1]

I1(R)
, (22)

and, using Eq. (17), the volume of the droplet V is given by

V = πθR2I2(R)

I1(R)
. (23)

The initial values of R, θ , hm, and V are given by

R = R0, θ = 1, hm = hm0 = I0(R0) − 1

I1(R0)
,

V = V0 = πR2
0I2(R0)

I1(R0)
. (24)

In principle, any one of the three initial values R0, hm0, and
V0 may be prescribed, with the other two determined from
Eqs. (24), but in the present work we choose to prescribe the
initial volume V0, which is typically the easiest to control in a
physical experiment.

Figure 2 shows plots of the scaled free-surface profile of a
sessile droplet h/θ given by Eq. (21) for a range of values
of the scaled volume V/θ given by Eq. (23). In particular,
Fig. 2 shows that, as expected, the droplet widens and flattens
as its volume increases. Figure 3 shows plots of the scaled
maximum height at the middle of the droplet hm/θ given by
Eq. (22) and the contact radius R given implicitly by Eq.
(23) as functions of the scaled volume V/θ . In particular,
Fig. 3(a) shows, perhaps somewhat unexpectedly, that hm/θ

is nonmonotonic in V/θ , increasing from zero at V/θ = 0 to a
maximum value hm/θ = hm,max/θ � 1.081 at V/θ � 73.175,
corresponding to R � 5.586, and then decreasing to unity in
the limit V/θ → ∞. However, this nonmonotonic behavior of
hm/θ as a function of V/θ is in agreement with the numerical
results of Padday [85] for a nonthin sessile droplet, and has
also been found by Aussillous and Quéré [86] for liquid mar-
bles (i.e., perfectly nonwetting droplets) and is mentioned by
Finn (see Sec. 3.5 of [87]). On the other hand, Fig. 3(b) shows
that R is monotonic in V/θ , increasing from zero at V/θ = 0
to infinity in the limit V/θ → ∞.

In the limit of small contact radius, R → 0+, corresponding
to the limit of small scaled volume, V/θ → 0+, the droplet
becomes narrow and shallow according to

h

θ
= R2 − r2

2R
− (R2 − r2)2

32R
+ O

(
(R2 − r2)3

R

)
→ 0+,

(25)

hm

θ
= R

2
− R3

32
+ O(R5) → 0+, (26)

V

θ
= πR3

4
− πR5

96
+ O(R7) → 0+. (27)

In particular, at leading order in this limit, Eqs. (25)–(27)
reduce to the familiar “paraboloidal cap” solution for a small
droplet, namely,

h

θ
= R2 − r2

2R
,

hm

θ
= R

2
,

V

θ
= πR3

4
. (28)

Note that this is, of course, also the solution for a droplet of
arbitrary volume in the absence of (or in the neglect of) the
effect of gravity, and so, in order to avoid any confusion which
might be caused by subsequently discussing a small droplet
of arbitrary volume, henceforth we refer to this solution as a
“zero-gravity droplet.”

On the other hand, in the limit of large contact radius,
R → ∞, corresponding to the limit of large scaled volume,
V/θ → ∞, surface-tension effects become negligible away
from the contact line, and the droplet becomes wide and flat
away from the contact line according to

h

θ
∼ 1 −

√
R

r
e−(R−r), (29)

hm

θ
= 1 + 1

2R
+ O

(
1

R2

)
→ 1+, (30)

V

θ
= πR2 − 3πR

2
+ O(1) → ∞. (31)

In particular, at leading order in this limit, Eqs. (29)–(31)
reduce to the familiar “gravity pancake” or “puddle” solution
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(a) (b)

FIG. 3. Plots of (a) the scaled maximum height at the middle of a sessile droplet, hm/θ , and (b) the contact radius R of the droplet
as functions of the scaled volume V/θ . The dot and the dashed line in (a) correspond to the maximum value hm/θ = hm,max/θ � 1.081 at
V/θ � 73.175, and the limiting value hm/θ = 1 as V/θ → ∞, respectively.

for a large sessile droplet, namely,

h

θ
≡ 1,

hm

θ
= 1,

V

θ
= πR2. (32)

B. A pendant droplet

For a pendant droplet, solving Eq. (14) subject to Eqs. (15)
and (16) yields

h = θ [J0(r) − J0(R)]

J1(R)
, (33)

where Jn denotes a Bessel function of the first kind of order n,
and hence

hm = θ [1 − J0(R)]

J1(R)
(34)

and

V = πθR2J2(R)

J1(R)
. (35)

Unlike for a sessile droplet, for a pendant droplet there are
infinitely many branches of solutions for h; however, only
the first branch corresponds to physically relevant solutions
satisfying h � 0 for 0 � r � R. The initial values of R, θ , hm,
and V are given by

R = R0, θ = 1, hm = hm0 = 1 − J0(R0)

J1(R0)
,

V = V0 = πR2
0J2(R0)

J1(R0)
. (36)

Figure 4 shows plots of the scaled free-surface profile of a
pendant droplet h/θ given by Eq. (33) for a range of values
of the scaled volume V/θ given by Eq. (35). In particular,
Fig. 4 shows that, unlike for a sessile droplet, the droplet
widens to a finite limiting width and deepens as its volume
increases. Figure 5 shows plots of the scaled maximum height
at the middle of the droplet, hm/θ , given by Eq. (34) and the
contact radius R given implicitly by Eq. (35) as functions of
the scaled volume V/θ . In particular, Fig. 5 shows that, unlike
for a sessile droplet, both hm/θ and R are monotonic in V/θ ,

with hm increasing from zero at V/θ = 0 to infinity in the limit
V/θ → ∞ and R increasing from zero at V/θ = 0 to a max-
imum value of R = Rmax � 3.832, corresponding to the first
zero of J1(R), in the limit V/θ → ∞. Moreover, comparison
of Eqs. (23), (28), and (35) shows that the contact radius of
a sessile droplet is always greater than that of a zero-gravity
droplet with the same scaled volume, which in turn is always
greater than that of a pendant droplet with the same scaled
volume.

In the limit of small contact radius, R → 0+, corresponding
to the limit of small scaled volume, V/θ → 0+, the droplet
becomes narrow and shallow according to

h

θ
= R2 − r2

2R
+ (R2 − r2)2

32R
+ O

(
(R2 − r2)3

R

)
→ 0+,

(37)

hm

θ
= R

2
+ R3

32
+ O(R5) → 0+, (38)

V

θ
= πR3

4
+ πR5

96
+ O(R7) → 0+, (39)

which, as for a sessile droplet, at leading order reduce to the
solution for a zero-gravity droplet given by Eq. (28), but differ
from the corresponding expressions for a sessile droplet given
by Eqs. (25)–(27) at higher order.

On the other hand, in the limit of maximum contact radius,
R → R−

max, corresponding to the limit of large scaled volume,
V/θ → ∞, the droplet approaches a finite width and becomes
deep according to

h

θ
∼ J0(r) − J0(Rmax)

J2(Rmax)(Rmax − R)
, (40)

hm

θ
∼ 1 − J0(Rmax)

J2(Rmax)(Rmax − R)
→ ∞, (41)

V

θ
∼ πR2

max

Rmax − R
→ ∞. (42)

In particular, Eqs. (40)–(42) show that, unlike for a sessile
droplet, for a pendant droplet the assumption that the droplet
is thin eventually fails in the limit V/θ → ∞. Hence, unlike

045107-6



EFFECT OF GRAVITY-INDUCED SHAPE CHANGE … PHYSICAL REVIEW E 111, 045107 (2025)

(a) (b)

FIG. 4. Plots of the scaled free-surface profile h/θ of a pendant droplet as a function of r for (a) V/θ = 10, 20, . . . , 100 and (b) V/θ =
100, 200, . . . , 1000. The arrows indicate the direction of increasing V/θ . Note that the vertical scales in (a) and (b) differ by an order of
magnitude.

for a sessile droplet, for a pendant droplet the solution of
the evaporative problem for a thin droplet described in Sec.
II C will also eventually fail in the limit V/θ → ∞. In the
Appendix we validate the present approach by comparing
the asymptotic solution for the evaporative flux from a thin
droplet with the numerical solution for a nonthin droplet, and
show that the asymptotic solution provides a good approxima-
tion for a range of values of V/θ for both sessile and pendant
droplets.

IV. EVAPORATION IN THE EXTREME MODES

A. Evaporation in the CR mode

For a droplet evaporating in the CR mode, i.e., with R ≡
R0 and θ = θ (t ), the global mass-conservation equation (20)
becomes

∂V

∂θ

dθ

dt
= −4R0. (43)

Solving Eq. (43) yields the general (implicit) solution for the
evolution of the droplet, namely,

t = V (R0, 1) − V (R0, θ )

4R0
, (44)

where, here and subsequently, we express the volume V =
V (t ) = V (R, θ ) as a function of the contact radius R and the
contact angle θ of the droplet. Setting θ = 0 in Eq. (44) yields
the general (explicit) expression for the lifetime of a droplet
evaporating in the CR mode, namely,

tCR = V (R0, 1)

4R0
. (45)

For a sessile droplet, substituting the expression for V from
Eq. (23) into Eqs. (44) and (45) yields

R ≡ R0, θ = 1 − 4I1(R0)

πR0I2(R0)
t, (46)

(a) (b)

FIG. 5. Plots of (a) the scaled maximum height at the middle of a pendant droplet, hm/θ , and (b) the contact radius R of the droplet as
functions of the scaled volume V/θ . The dashed line in (b) corresponds to the limiting value R = Rmax � 3.832 as V/θ → ∞.
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(a) (b)

(c) (d)

FIG. 6. Evolutions of (a) R, (b) θ , (c) hm, and (d) V for a sessile (solid line), a zero-gravity (dotted line), and a pendant (dashed line) droplet
evaporating in the CR mode when V0 = 10. The squares in (a) correspond to t = tCR = tCR,s, tCR,0, and tCR,p.

and

tCR = tCR,s = πR0I2(R0)

4I1(R0)
. (47)

For a pendant droplet, the corresponding expressions are

R ≡ R0, θ = 1 − 4J1(R0)

πR0J2(R0)
t, (48)

and

tCR = tCR,p = πR0J2(R0)

4J1(R0)
. (49)

Both here and for the other modes considered subse-
quently, the corresponding expressions for a zero-gravity
droplet are recovered at leading order in the limit R0 → 0+
(see, for example, Wilson and Duffy [24] and Table II of
Wilson and D’Ambrosio [13]).

Figure 6 (included primarily for comparison with the cor-
responding results for other modes) shows the evolutions of R,
θ , hm, and V for a sessile, a zero-gravity, and a pendant droplet
all with the same initial volume V0 = 10 evaporating in the
CR mode, and illustrates that θ , hm, and V are all linearly
decreasing functions of t .

In the limit of an initially small droplet, V0 ∼ πR3
0/4 →

0+, corresponding to the limit R0 → 0+, the evolution of θ

and the lifetime tCR are given by

θ = 1 − 16

πR2
0

(
1 ± R2

0

24

)
t + O

(
R4

0

)
(50)

and

tCR = tCR,0

(
1 ∓ R2

0

24

)
+ O

(
R6

0

) → 0+,

where tCR,0 = πR2
0

16
, (51)

where, again, the upper and the lower signs correspond to
a sessile and a pendant droplet, respectively, i.e., tCR,0 =
O(V 2/3

0 ). In particular, at leading order in this limit we recover
the well-known expressions for the evolution of a zero-gravity
droplet in the CR mode, namely,

θ = 1 − t

tCR,0
,

V

V0
= 1 − t

tCR,0
. (52)

In the limit of an initially large sessile droplet, V0 ∼
πR2

0 → ∞, corresponding to the limit R0 → ∞, the evolution
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FIG. 7. Plot of the lifetime of a droplet evaporating in the CR
mode, tCR, as a function of the initial volume V0 for a sessile (solid
line), a zero-gravity (dotted line), and a pendant (dashed line) droplet.

of θ and the lifetime tCR,s are given by

θ ∼ 1 − 4

πR0
t (53)

and

tCR,s ∼ πR0

4
→ ∞, (54)

i.e., tCR,s = O(V 1/2
0 ).

On the other hand, in the limit of an initially large pen-
dant droplet, V0 ∼ πR2

max/(Rmax − R0) → ∞, corresponding
to the limit R0 → R−

max, the evolution of θ and the lifetime
tCR,p are given by

θ ∼ 1 − 4(Rmax − R0)

πRmax
t (55)

and

tCR,p ∼ πRmax

4(Rmax − R0)
→ ∞, (56)

i.e., tCR,p = O(V0).
Figure 7 shows a plot of tCR as a function of V0, and

illustrates that tCR is a monotonically increasing function of
V0 that satisfies tCR = O(V 2/3

0 ) → 0+ as V0 → 0+ and tCR,s =
O(V 1/2

0 ), tCR,0 = O(V 2/3
0 ), and tCR,p = O(V0) → ∞ as V0 →

∞ for a sessile, a zero-gravity, and a pendant droplet, respec-
tively. Figure 7 also illustrates that a sessile droplet always
evaporates faster, and hence has a shorter lifetime, than a zero-
gravity droplet with the same initial volume, which in turn
always evaporates faster, and hence has a shorter lifetime, than
a pendant droplet with the same initial volume. This behavior
can be understood by recalling that R0 is a monotonically
increasing function of V0, that the contact radius of a sessile
droplet is always greater than that of a zero-gravity droplet
with the same initial volume, which in turn is always greater
than that of a pendant droplet with the same initial volume,
and that the total evaporative flux from a droplet F given by
Eq. (19) is proportional to R0. Note that the observation that F
is always larger for a sessile droplet than for a pendant droplet
with the same volume is consistent with the numerical results
of Tonini and Cossali [77] for nonthin droplets with contact
angles less than or equal to π/2 mentioned in Sec. I.

B. Evaporation in the CA mode

For a droplet evaporating in the CA mode, i.e., with R =
R(t ) and θ ≡ 1, the global mass-conservation equation (20)
becomes

∂V

∂R

dR

dt
= −4R. (57)

Solving Eq. (57) using integration by parts yields the general
(implicit) solution for the evolution of the droplet, namely,

t = V (R0, 1)

4R0
− V (R, 1)

4R
+

∫ R0

R

V (R̃, 1)

4R̃2
dR̃. (58)

Taking the limit R → 0+ in Eq. (58) yields the general (ex-
plicit) expression for the lifetime of a droplet evaporating in
the CA mode, namely,

tCA = V (R0, 1)

4R0
+

∫ R0

0

V (R̃, 1)

4R̃2
dR̃. (59)

For a sessile droplet, substituting the expression for V from
Eq. (23) into Eqs. (58) and (59) and evaluating the integrals
yields

t = π

4

[
R0I2(R0)

I1(R0)
− RI2(R)

I1(R)
− ln

(
R0I1(R)

RI1(R0)

)]
, θ ≡ 1,

(60)
and

tCA = tCA,s = π

4

[
R0I2(R0)

I1(R0)
− ln

(
R0

2I1(R0)

)]
. (61)

For a pendant droplet, the corresponding expressions are

t = π

4

[
R0J2(R0)

J1(R0)
− RJ2(R)

J1(R)
+ ln

(
R0J1(R)

RJ1(R0)

)]
, θ ≡ 1,

(62)
and

tCA = tCA,p = π

4

[
R0J2(R0)

J1(R0)
+ ln

(
R0

2J1(R0)

)]
. (63)

Note the different sign of the logarithmic terms in Eqs. (62)
and (63) compared to that of the corresponding terms in Eqs.
(60) and (61) for the sessile case.

Figure 8 shows the evolutions of R, θ , hm, and V for
a sessile, a zero-gravity, and a pendant droplet all with the
same initial volume V0 = 10 evaporating in the CA mode,
and shows that, at least for this value of V0, R, hm, and V
are all nonlinearly decreasing functions of t . However, unlike
for the CR mode, in which this behavior occurs for sessile,
zero-gravity, and pendant droplets for all values of V0, for
the CA mode, the nonmonotonic variation of hm/θ with V0

described in Sec. III A and shown in Fig. 3(a) means that
for a sessile droplet with V0 > 73.175, corresponding to R0 >

5.586, hm (but not R or V ) is a nonmonotonic function of t
which increases to hm = hm,max before eventually decreasing
to hm = 0 at t = tCA,s. This behavior is illustrated in Fig. 9,
which shows the evolution of hm for a range of values of V0

satisfying V0 > 73.175.
In the limit of an initially small droplet, R0 → 0+, the

evolution of R and the lifetime tCA are given by

t = 3π

32

[
R2

0 − R2 ∓ 5
(
R4

0 − R4
)

144

]
+ O

(
R6

0

)
(64)
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(a) (b)

(c) (d)

FIG. 8. Evolutions of (a) R, (b) θ , (c) hm, and (d) V for a sessile (solid line), a zero-gravity (dotted line), and a pendant (dashed line) droplet
evaporating in the CA mode when V0 = 10. The squares in (b) correspond to t = tCA = tCA,s, tCA,0, and tCA,p.

and

tCA = tCA,0

(
1 ∓ 5R2

0

144

)
+ O

(
R6

0

) → 0+,

where tCA,0 = 3πR2
0

32
. (65)

FIG. 9. Evolution of hm for a sessile droplet evaporating in the
CA mode when V0 = 200, 400, . . . , 1000 (>73.175). The arrow in-
dicates the direction of increasing V0.

In particular, at leading order in this limit we recover the well-
known expressions for the evolution of a zero-gravity droplet
in the CA mode, namely,(

R

R0

)2

= 1 − t

tCA,0
and

(
V

V0

)2/3

= 1 − t

tCA,0
, (66)

which, since the square of the contact radius (and hence the
square of the contact diameter) and the volume raised to the
2/3 power are linear in t , are sometimes referred to as the “d2

law” and the “2/3 law”, respectively (see, for example, Wilson
and D’Ambrosio [13]). Moreover, comparing the expressions
for tCR,0 and tCA,0 recovers the well-known result that tCA,0 =
3tCR,0/2 → 0+, with the factor of 3/2 reflecting the fact that
for a zero-gravity droplet the average value of R, and hence
the average value of F , in the CA mode is two-thirds of that
in the CR mode.

In the limit of an initially large sessile droplet, R0 → ∞,
the evolution of R and the lifetime tCA,s are given by

t ∼ π

4

[
2R0 − RI2(R)

I1(R)
− ln

((
2πR3

0

)1/2
I1(R)

R

)]
(67)

and

tCA,s ∼ π

4

[
2R0 − 1

2
ln

(
πR3

0

2

)]
→ ∞. (68)
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In particular, at leading order in this limit we obtain

R

R0
∼ 1 − 2t

πR0
and

(
V

V0

)1/2

∼ 1 − 2t

πR0
, (69)

which, since the contact radius (and hence the contact diame-
ter) and the square root of the volume are linear in t , we term
the “d law” and the “1/2 law,” respectively, by analogy with
the corresponding results for a zero-gravity droplet given by
Eqs. (66). Moreover, comparing Eqs. (54) and (68) reveals that
tCA,s ∼ πR0/2 ∼ 2tCR,s → ∞, with the factor of 2 reflecting
the fact that the average value of R, and hence the average
value of F , in the CA mode is half of that in the CR mode at
leading order in this limit.

On the other hand, in the limit of an initially large pendant
droplet, R0 → R−

max, the evolution of R and the lifetime tCA,p

are given by

t ∼ π

4

[
Rmax

Rmax − R0
− RJ2(R)

J1(R)

+ ln

(
RmaxJ1(R)

RJ2(Rmax)(Rmax − R0)

)]
(70)

and

tCA,p ∼ π

4

[
Rmax

Rmax − R0
+ ln

(
Rmax

2J2(Rmax)(Rmax − R0)

)]

→ ∞. (71)

In particular, at leading order in this limit we obtain

R

R0
∼ 1 and

V

V0
∼ 1 − 4(Rmax − R0)t

πRmax
, (72)

i.e., R and V (but not, of course, θ ) behave as if the droplet
was evaporating in the CR mode. Moreover, comparing Eqs.
(56) and (71) reveals that tCA,p ∼ πRmax/(4(Rmax − R0)) ∼
tCR,p → ∞, with the equality reflecting the fact that the life-
times of the extreme modes coincide at leading order in this
limit.

The expressions for the evolution of the volume of a droplet
evaporating in the CA mode given by Eqs. (66), (69), and (72)
are all of the form (

V

V0

)m

= 1 − t

tCA
(73)

with different values of the exponent m, and rearranging Eq.
(73) yields

m =
ln

(
1 − t

tCA

)
ln

(
V
V0

) . (74)

Figure 10 shows plots of the instantaneous value of m given
by Eq. (74) evaluated at t = tCA/2 (the corresponding plots for
other choices of t are very similar) as a function of ln(V0) for
a sessile and a pendant droplet evaporating in the CA mode.
In particular, Fig. 10 illustrates how for a sessile droplet the
evolution of the droplet transitions from the 2/3 law [Eq.
(66)] to the 1/2 law [Eq. (69)] as V0 increases, and how for
a pendant droplet it transitions from the 2/3 law [Eq. (66)] to
that of a droplet evaporating in the CR mode [Eq. (72)] as V0

increases. Specifically, Fig. 10 shows how m decreases from

FIG. 10. Plot of the instantaneous value of the exponent m given
by Eq. (74) evaluated at t = tCA/2 as a function of ln(V0) for a sessile
(solid line) and a pendant (dashed line) droplet evaporating in the CA
mode. The dotted lines correspond to the limiting values m = 1/2
and m = 1 as V0 → ∞.

m = 2/3 for a zero-gravity droplet toward the limiting value
m = 1/2 for a large sessile droplet, and how it increases from
m = 2/3 toward the limiting value m = 1 for a large pendant
droplet.

Figure 11 shows a plot of tCA as a function of V0, and
illustrates that tCA has qualitatively the same behavior as tCR

shown in Fig. 7 and described in Sec. IV A. Furthermore,
comparing Eqs. (45) and (59) reveals that the lifetime of a
droplet evaporating in the CA mode is always longer than
that of the same droplet evaporating in the CR mode, i.e.,
tCR < tCA for the same value of V0. This behavior, which
is well known for a zero-gravity droplet, is readily under-
stood by recalling that whereas R ≡ R0 is constant in the CR
mode, R � R0 is a decreasing function of t in the CA mode,
and that the total evaporative flux F given by Eq. (10) is
proportional to R.

V. EVAPORATION IN THE SS MODE

As described in Sec. I, the SS mode consists of a CR
phase, which ends when θ = θ∗, where θ∗ (0 � θ∗ � 1) is
the critical receding contact angle, followed by a CA phase,
which ends when R = 0.

FIG. 11. Plot of the lifetime of a droplet evaporating in the CA
mode, tCA, as a function of the initial volume V0 for a sessile (solid
line), a zero-gravity (dotted line), and a pendant (dashed line) droplet.
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During the CR phase, the evolution of the droplet is gov-
erned by Eq. (43) and hence is given by Eq. (44) for 0 � t �
t∗, where t∗ (0 � t∗ � tSS) is the critical time at which the
CR phase ends and the CA phase begins. Setting θ = θ∗ in
Eq. (44) yields

t∗ = V (R0, 1) − V (R0, θ
∗)

4R0
. (75)

Thereafter, during the CA phase, the evolution of the droplet
is governed by Eq. (57) and hence, using Eq. (75), is given
implicitly by

t = V (R0, 1)

4R0
− V (R, θ∗)

4R
+

∫ R0

R

V (R̃, θ∗)

4R̃2
dR̃. (76)

Taking the limit R → 0+ in Eq. (76) yields the lifetime of a
droplet evaporating in the SS mode, namely,

tSS = V (R0, 1)

4R0
+

∫ R0

0

V (R̃, θ∗)

4R̃2
dR̃. (77)

In the special cases θ∗ = 0 and θ∗ = 1 the SS mode reduces
to the CR mode and the CA mode, respectively.

For a sessile droplet, the evolution of the droplet is given
by Eq. (46) for 0 � t � t∗ and

t = π

4

[
R0I2(R0)

I1(R0)
− θ∗RI2(R)

I1(R)
− θ∗ ln

(
R0I1(R)

RI1(R0)

)]
,

θ ≡ θ∗ (78)

for t∗ � t � tSS, where

t∗ = t∗
s = π (1 − θ∗)R0I2(R0)

4I1(R0)
(79)

and

tSS = tSS,s = π

4

[
R0I2(R0)

I1(R0)
− θ∗ ln

(
R0

2I1(R0)

)]
. (80)

For a pendant droplet, the evolution of the droplet is given
by Eq. (48) for 0 � t � t∗ and

t = π

4

[
R0J2(R0)

J1(R0)
− θ∗RJ2(R)

J1(R)
+ θ∗ ln

(
R0J1(R)

RJ1(R0)

)]
,

θ ≡ θ∗ (81)

for t∗ � t � tSS, where

t∗ = t∗
p = π (1 − θ∗)R0J2(R0)

4J1(R0)
(82)

and

tSS = tSS,p = π

4

[
R0J2(R0)

J1(R0)
+ θ∗ ln

(
R0

2J1(R0)

)]
. (83)

Again, note the different sign of the logarithmic terms in Eqs.
(81) and (83) compared to that of the corresponding terms in
Eqs. (78) and (80) for the sessile case.

Figures 12 and 13 show plots of the free-surface profile
h as a function of r at various times when V0 = 10, and the
evolutions of R, θ , hm, and V for a range of values of V0 for a
sessile and a pendant droplet, respectively, evaporating in the
SS mode when θ∗ = 1/2. In particular, these figures show that
the behavior in this mode inherits the appropriate behaviors of
the extreme modes described in Sec. IV in the corresponding

phases. For example, Fig. 12(d) shows that hm is a linearly de-
creasing function of t in the CR phase, but is a nonmonotonic
function of t in the CA phase when V0 > 73.175, correspond-
ing to R0 > 5.586.

In the limit of an initially small droplet, R0 → 0+, the
evolutions of R and θ are given by Eq. (50) for 0 � t � t∗
and by

t = π

32

[
(2 + θ∗)R2

0 − 3θ∗R2 ∓ (4 + θ∗)R4
0 − 5θ∗R4

48

]

+ O
(
R6

0

)
(84)

for t∗ � t � tSS, where

t∗ = t∗
0

(
1 ∓ R2

0

24

)
+ O

(
R6

0

) → 0+,

where t∗
0 = π (1 − θ∗)R2

0

16
, (85)

and the lifetime tSS is given by

tSS = tSS,0

[
1 ∓ (4 + θ∗)R2

0

48(2 + θ∗)

]
+ O

(
R6

0

) → 0+,

where tSS,0 = π (2 + θ∗)R2
0

32
. (86)

In particular, comparing the expressions for tCR,0, t∗
0 , and

tSS,0 reveals that t∗
0 = (1 − θ∗)tCR,0 → 0+ and tSS,0 = (2 +

θ∗)tCR,0/2 → 0+.
In the limit of an initially large sessile droplet, R0 → ∞,

the evolutions of R and θ are given by Eq. (53) for 0 � t � t∗
s

and by

t ∼ π

4

[
(1 + θ∗)R0 − θ∗RI2(R)

I1(R)

− θ∗ ln

((
2πR3

0

)1/2
I1(R)

R

)]
(87)

for t∗
s � t � tSS,s, where

t∗
s ∼ π (1 − θ∗)R0

4
→ ∞, (88)

and the lifetime tSS,s is given by

tSS,s ∼ π

4

[
(1 + θ∗)R0 − θ∗

2
ln

(
πR3

0

2

)]
→ ∞. (89)

In particular, comparing Eqs. (54), (88), and (89) reveals
that t∗

s ∼ (1 − θ∗)tCR,s → ∞ and tSS,s ∼ (1 + θ∗)tCR,s → ∞
at leading order in this limit.

On the other hand, in the limit of an initially large pendant
droplet, R0 → R−

max, the evolutions of R and θ are given by
Eq. (55) for 0 � t � t∗

p and by

t ∼ π

4

[
Rmax

Rmax − R0
− θ∗RJ2(R)

J1(R)

+ θ∗ ln

(
RmaxJ1(R)

RJ2(Rmax)(Rmax − R0)

)]
(90)
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(a)

(b) (c)

(d) (e)

FIG. 12. Plot of (a) the free-surface profile h as a function of r at times t = 0, t∗
s /2, t∗

s , 2(tSS,s − t∗
s )/5, 3(tSS,s − t∗

s )/4, 29(tSS,s − t∗
s )/30

when V0 = 10, and the evolutions of (b) R, (c) θ , (d) hm, and (e) V when V0 = 10, 20, . . . , 100 for a sessile droplet evaporating in the SS mode
when θ∗ = 1/2. The dashed line in (a) corresponds to h at t = t∗

s , the circles in (b)–(e) correspond to t = t∗
s , and the squares in (c) correspond

to t = tSS,s. The arrow in (a) indicates the direction of increasing t .

for t∗
p � t � tSS,p, where

t∗
p ∼ π (1 − θ∗)Rmax

4(Rmax − R0)
→ ∞, (91)

and the lifetime tSS,p is given by

tSS,p ∼ π

4

[
Rmax

Rmax − R0
+θ∗ln

(
Rmax

2J2(Rmax)(Rmax − R0)

)]

→ ∞. (92)

In particular, comparing Eqs. (56), (71), (91), and (92) reveals
that t∗

p ∼ (1 − θ∗)tCR,p → ∞ and tSS,p ∼ tCR,p ∼ tCA,p → ∞
at leading order in this limit.

Figure 14 shows a plot of tSS as a function of V0, and
illustrates not only that tSS has qualitatively the same behavior
as tCR and tCA, but also that the lifetime of a droplet evaporat-
ing in the SS mode is a monotonically increasing function of
θ∗, i.e. tSS increases from tSS = tCR when θ∗ = 0 to tSS = tCA
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(a)

(b) (c)

(d) (e)

FIG. 13. Plot of (a) the free-surface profile h as a function of r at times t = 0, t∗
p /2, t∗

p , 2(tSS,p − t∗
p )/5, 3(tSS,p − t∗

p )/4, 29(tSS,p − t∗
p )/30

when V0 = 10, and the evolutions of (b) R, (c) θ , (d) hm, and (e) V when V0 = 10, 20, . . . , 100 for a pendant droplet evaporating in the SS mode
when θ∗ = 1/2. The dashed line in (a) corresponds to h at t = t∗

p , the circles in (b)–(e) correspond to t = t∗
p , and the squares in (c) correspond

to t = tSS,p. The arrow in (a) indicates the direction of increasing t .

when θ∗ = 1, and satisfies tCR � tSS � tCA for the same value
of V0.

VI. EVAPORATION IN THE SJ MODE

As described in Sec. I, the SJ mode consists of a (the-
oretically infinite) series of CR phases, separated by short

(theoretically instantaneous) jump phases in which the contact
line rapidly recedes and the contact angle rapidly increases
from θmin to θmax, where θmin and θmax (0 � θmin � θmax � 1)
are the critical depinning and pinning contact angles, respec-
tively. We denote the constant value of the contact radius
during the nth CR phase by R = Rn and the time at which
the nth jump phase occurs by t = tn for n = 1, 2, 3, . . ., and
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FIG. 14. Plot of the lifetime of a droplet evaporating in the SS
mode tSS as a function of V0 for a sessile and a pendant droplet
when θ∗ = 1/4, 1/2, 3/4 (solid lines). The dotted and dashed lines
correspond to θ∗ = 0 (i.e., the CR mode) and θ∗ = 1 (i.e., the CA
mode), respectively. The corresponding curves for a zero-gravity
droplet (which lie between those for a sessile and a pendant droplet
of the same initial volume) are omitted for clarity.

so the nth CR phase begins at t = tn−1 and ends at t = tn, at
which time the nth jump phase, in which R jumps instanta-
neously down from R = Rn to R = Rn+1 (� Rn) and θ jumps
instantaneously up from θ = θmin to θ = θmax (� θmin), oc-
curs. The first CR phase begins with R = R1 = R0 and θ = 1
at t = t0 = 0.

During the nth (n = 2, 3, 4, . . .) CR phase the evolution of
the droplet is governed by Eq. (43) with Rn in place of R0 and
hence is given by

R ≡ Rn, t = tn−1 + V (Rn, θmax) − V (Rn, θ )

4Rn
(93)

for tn−1 < t < tn. Setting θ = θmin in Eq. (93) yields

tn = tn−1 + V (Rn, θmax) − V (Rn, θmin)

4Rn
. (94)

The behavior is the same during the first CR phase, except
with θmax replaced by 1. Mass is conserved during the nth (n =
1, 2, 3, . . .) jump phase, and so

V (Rn, θmin) = V (Rn+1, θmax) (95)

at t = tn. The lifetime of a droplet evaporating in the SJ mode
is given by

tSJ = lim
n→∞ tn. (96)

In the special case θmin = 0 and in the limit θmin → θ−
max →

1− the SJ mode reduces to the CR mode and the CA mode,
respectively.

For a sessile droplet, the evolution of the droplet during the
nth (n = 2, 3, 4, . . .) CR phase is given by

R ≡ Rn, θ = θmax − 4I1(Rn)

πRnI2(Rn)
(t − tn−1,s ) (97)

for tn−1,s < t < tn,s, where

tn = tn,s = tn−1,s + (θmax − θmin)
πRnI2(Rn)

4I1(Rn)
, (98)

i.e.,

tn,s = π

4

[
(1 − θmin)

R0I2(R0)

I1(R0)
+ (θmax − θmin)

n∑
k=2

RkI2(Rk )

I1(Rk )

]
.

(99)

The condition that mass is conserved during the nth (n =
1, 2, 3, . . .) jump phase [Eq. (95)] yields

θminR2
nI2(Rn)

I1(Rn)
= θmaxR2

n+1I2(Rn+1)

I1(Rn+1)
, (100)

and hence

R2
n+1I2(Rn+1)

I1(Rn+1)
= θmin

θmax

R2
nI2(Rn)

I1(Rn)
=

(
θmin

θmax

)n R2
0I2(R0)

I1(R0)
.

(101)

Taking the limit n → ∞ in Eq. (99) yields

tSJ = tSJ,s = π

4

[
(1 − θmin)

R0I2(R0)

I1(R0)
.

+ (θmax − θmin)
∞∑

k=2

RkI2(Rk )

I1(Rk )

]
, (102)

where Rk for k = 2, 3, 4, . . . are given implicitly in terms of
θmax, θmin, and R0 by Eq. (101).

For a pendant droplet, the evolution of the droplet during
the nth (n = 2, 3, 4, . . .) CR phase is given by

R ≡ Rn, θ = θmax − 4J1(Rn)

πRnJ2(Rn)
(t − tn−1,p) (103)

for tn−1,p < t < tn,p, where

tn = tn,p = tn−1,p + (θmax − θmin)
πRnJ2(Rn)

4J1(Rn)
, (104)

i.e.,

tn,p = π

4

[
(1 − θmin)

R0J2(R0)

J1(R0)
+ (θmax− θmin)

n∑
k=2

RkJ2(Rk )

J1(Rk )

]
.

(105)

The condition that mass is conserved during the nth (n =
1, 2, 3, . . .) jump phase [Eq. (95)] yields

θminR2
nJ2(Rn)

J1(Rn)
= θmaxR2

n+1J2(Rn+1)

J1(Rn+1)
, (106)

and hence

R2
n+1J2(Rn+1)

J1(Rn+1)
= θmin

θmax

R2
nJ2(Rn)

J1(Rn)
=

(
θmin

θmax

)n R2
0J2(R0)

J1(R0)
.

(107)

Taking the limit n → ∞ in Eq. (105) yields

tSJ = tSJ,p = π

4

[
(1 − θmin)

R0J2(R0)

J1(R0)

+ (θmax − θmin)
∞∑

k=2

RkJ2(Rk )

J1(Rk )

]
, (108)
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(a)

(b) (c)

(d) (e)

FIG. 15. Plot of (a) the free-surface profile h as a function of r at t = tn,s for n = 1, 2, 3, . . . and the evolutions of (b) R, (c) θ , (d) hm,
and (e) V when V0 = 10 for a sessile droplet evaporating in the SJ mode when θmin = 1/2 and θmax = 1. The solid and dash-dotted lines in
(a) correspond to h at t = tn−1,s and at t = tn,s, respectively, the dotted and dashed lines in (b)–(e) correspond to θmin = 0 (i.e., the CR mode)
and the limit θmin → θ−

max = 1− (i.e., the CA mode), respectively, and the dots in (e) correspond to t = tn,s. The arrow in (a) indicates the
direction of increasing t .

where Rk for k = 2, 3, 4, . . . are given implicitly in terms of
θmax, θmin, and R0 by Eq. (107).

Figures 15 and 16 show plots of the free-surface pro-
file h as a function of r at t = tn for n = 1, 2, 3, . . ., and
the evolutions of R, θ , hm, and V when V0 = 10 for a
sessile and a pendant droplet, respectively, evaporating in
the SJ mode when θmin = 1/2 and θmax = 1. In particular,

these figures illustrate that R = Rn is constant and θ , hm,
and V are linearly decreasing functions of t during each
CR phase, and that R jumps down discontinuously and θ

and hm jump up discontinuously, but V is continuous, dur-
ing each jump phase. They also illustrate how an infinite
number of CR and jump phases combine to give the finite
lifetime tSJ.
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(a)

(b) (c)

(d) (e)

FIG. 16. Plot of (a) the free-surface profile h as a function of r at t = tn,p for n = 1, 2, 3, . . . and the evolutions of (b) R, (c) θ , (d) hm,
and (e) V when V0 = 10 for a pendant droplet evaporating in the SJ mode when θmin = 1/2 and θmax = 1. The solid and dash-dotted lines in
(a) correspond to h at t = tn−1,p and at t = tn,p, respectively, the dotted and dashed lines in (b)–(e) correspond to θmin = 0 (i.e., the CR mode)
and the limit θmin → θ−

max = 1− (i.e., the CA mode), respectively, and the dots in (e) correspond to t = tn,p. The arrow in (a) indicates the
direction of increasing t .

In the limit of an initially small droplet, R0 → 0+,
the evolutions of R and θ during the nth CR phase are
given by

R ≡ Rn ∼
(

θmin

θmax

)(n−1)/3

R0, θ ∼ θmax − 16

πR2
n

(t − tn−1,0)

(109)

for tn−1,0 < t < tn,0, where

tn ∼ tn,0

= πR2
0

16

⎧⎨
⎩1 − θmax + (θmax − θmin)

[
1 − (

θmin
θmax

)2n/3]
[
1 − (

θmin
θmax

)2/3]
⎫⎬
⎭,

(110)
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and the lifetime tSJ is given by

tSJ ∼ tSJ,0 = πR2
0

16

[
1 − θmax + (θmax − θmin)

θ
2/3
max

θ
2/3
max − θ

2/3
min

]

→ 0+. (111)

In the limit of an initially large sessile droplet, R0 → ∞,
the evolutions of R and θ during the nth CR phase are
given by

R ≡ Rn ∼
(

θmin

θmax

)(n−1)/2

R0, θ ∼ θmax − 4

πRn
(t − tn−1,s)

(112)

for tn−1,s < t < tn,s, where

tn,s ∼ πR0

4

⎧⎨
⎩1 − θmax + (θmax − θmin)

[
1 − (

θmin
θmax

)n/2]
[
1 − (

θmin
θmax

)1/2]
⎫⎬
⎭,

(113)

and the lifetime tSJ,s is given by

tSJ,s ∼ πR0

4

[
1 − θmax + (θmax − θmin)

θ
1/2
max

θ
1/2
max − θ

1/2
min

]
→ ∞.

(114)

On the other hand, in the limit of an initially large pendant
droplet, R0 → R−

max, the evolutions of R and θ during the nth
CR phase are given by

R ≡ Rn ∼ Rmax −
(

θmax

θmin

)n−1

(Rmax − R0),

θ ∼ θmax − 4(Rmax − Rn)

πRmax
(t − tn−1,p) (115)

for tn−1,p < t < tn,p, where

tn,p ∼ πRmax

4(Rmax − R0)

[
1 − θmax

(
θmin

θmax

)n]
, (116)

and the lifetime tSJ,p is given by

tSJ,p ∼ πRmax

4(Rmax − R0)
→ ∞, (117)

which is independent of θmin and θmax. In particular, compar-
ing Eqs. (56), (71), (92), and (117) reveals that tSJ,p ∼ tCR,p ∼
tCA,p ∼ tSS,p → ∞ at leading order in this limit.

Figure 17 shows a plot of tSJ as a function of V0, and
illustrates not only that tSJ has qualitatively the same behavior
as the lifetimes of the other three modes described previously,
but also that the lifetime of a droplet evaporating in the SJ
mode is a monotonically increasing function of θmin for a fixed
value of θmax, and that when θmax = 1 it increases from tSJ =
tCR when θmin = 0 to tSJ = tCA in the limit θmin → θ−

max = 1−,
and satisfies tCR � tSJ � tCA for the same value of V0.

VII. CONCLUSIONS

In the present work we performed a comprehensive study
of the effect of gravity-induced shape change on the diffusion-
limited evaporation of thin sessile and pendant droplets on

FIG. 17. Plot of the lifetime of a droplet evaporating in the SJ
mode, tSJ, as a function of V0 for a sessile and a pendant droplet
when θmin = 1/4, 1/2, 3/4 and θmax = 1 (solid lines). The dotted
and dashed lines correspond to θmin = 0 (i.e., the CR mode) and
the limit θmin → θ−

max = 1− (i.e., the CA mode), respectively. The
corresponding curves for a zero-gravity droplet (which lie between
those for a sessile and a pendant droplet of the same initial volume)
are omitted for clarity.

a horizontal substrate. Specifically, we obtained theoretical
predictions for the evolution, and hence the lifetime, of sessile
and pendant droplets evaporating in four modes of evapora-
tion, namely, the CR, CA, SS, and SJ modes. In particular, we
showed that gravity-induced shape change can cause quan-
titative differences in the evolution of sessile and pendant
droplets compared to that of a zero-gravity droplet. For exam-
ple, whereas sessile and pendant droplets evaporating in the
CR mode evolve in qualitatively the same manner as a zero-
gravity droplet, i.e., their contact angles θ , and hence their
volumes V , decrease linearly in t , the evolution of droplets
evaporating in the CA mode is more complicated. Specifically,
while a zero-gravity droplet evaporating in the CA mode
evolves according to the well-known d2 and 2/3 laws given
by Eq. (66), an initially large sessile droplet evolves according
to qualitatively different d and 1/2 laws given by Eq. (69),
and an initially large pendant droplet evolves with the contact
radius R and the volume V (but not, of course, the contact
angle θ ) behaving as if the droplet was evaporating in the CR
mode according to Eq. (72). We also found, perhaps somewhat
unexpectedly, and unlike for a droplet evaporating in the CR
mode and for zero-gravity and pendant droplets evaporating
in the CA mode, that the maximum height of a sessile droplet
evaporating in the CA mode is a nonmonotonic function of
t when V0 > 73.175, corresponding to R0 > 5.586. Further-
more, we found that, consistent with the results of Kadhim
et al. [46] for sessile droplets evaporating in the SS mode
mentioned in Sec. I, for all four modes of evaporation a sessile
droplet always evaporates faster, and hence has a shorter life-
time, than a zero-gravity droplet with the same initial volume,
which in turn always evaporates faster, and hence has a shorter
lifetime, than a pendant droplet with the same initial volume.
This behavior can be understood by recalling that the contact
radius of a sessile droplet is always greater than that of a
zero-gravity droplet with the same initial volume, which in
turn is always greater than that of a pendant droplet with
the same initial volume, and that the total evaporative flux
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from a droplet F is proportional to R. We also showed that
for all four modes of evaporation the lifetime of a droplet
is a monotonically increasing function of the initial volume
of the droplet that becomes short like O(V 2/3

0 ) → 0+ in the
limit of an initially small droplet, V0 → 0+, and becomes
long like O(V 1/2

0 ), O(V 2/3
0 ), and O(V0) → ∞ for a sessile, a

zero-gravity, and a pendant droplet, respectively, in the limit
of an initially large droplet, V0 → ∞. In addition, we found
that the lifetime of a droplet evaporating in the CA mode is
always longer than that of the same droplet evaporating in the
CR mode, and that the lifetime of a droplet evaporating in the
SS mode with critical receding contact angle θ∗ (0 � θ∗ � 1)
and the lifetime of a droplet evaporating in the SJ mode with
critical depinning and pinning contact angles θmin and θmax

(0 � θmin � θmax = 1) both always lie between the lifetimes
of the same droplet evaporating in the extreme modes, i.e.,
tCR � tSS, tSJ � tCA for the same value of V0.

It should, of course, be noted that in the present work we
have focused on just one of the ways in which gravity can
influence the evaporation of a sessile droplet, and in practice
others ways can be equally or more important. In particular,
larger droplets are likely to generate more buoyancy-driven
convection in the atmosphere than smaller ones (see, for
example, Larson [4]), which could quantitatively or even
qualitatively change their behavior from that predicted by the
present work.

In the Appendix, we validated the present approach by
comparing the asymptotic solution for the evaporative flux
from a thin droplet described in Sec. II C with the numerical
solution for a nonthin droplet. However, for a nonthin droplet
the situation is more complicated (for example, for a zero-
gravity droplet, Picknett and Bexon [17] showed that t̂CA <

t̂CR for sufficiently large values of θ̂0, and Stauber et al. [22,23]
showed that t̂SS does not always lie between t̂CR and t̂CA for
π/2 < θ̂0 < π ), and so a full description of the evolution
of a nonthin droplet including the effect of gravity-induced
shape change remains an open problem. It would also be of
interest to use the present approach to investigate the effect of
gravity on two closely related problems mentioned in Sec. I,

namely, the evaporation of a droplet on an inclined substrate
and the deposition onto the substrate from an evaporating
particle-laden droplet.
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APPENDIX: THE EVAPORATIVE FLUX
FROM A NONTHIN DROPLET

In this appendix, we validate the present approach by com-
paring the asymptotic solution for the evaporative flux from a
thin droplet described in Sec. II C with the numerical solution
for a nonthin droplet.

Nondimensionalizing the variables appropriately for a non-
thin droplet according to

r̂ = �̂r, ẑ = �̂z̃, R̂ = �̂R, ĥ = �̂h̃, V̂ = �̂3Ṽ ,

p̂ − p̂a = σ̂

�̂
p̃, t̂ = ρ̂�̂2

D̂(ĉsat − ĉ∞)
t̃ (A1)

(a) (b)

FIG. 18. Plots of the scaled local evaporative flux JR as a function of the scaled radial coordinate r/R for (a) a sessile droplet with θ = 2π/9
and (b) a pendant droplet with θ = π/36 showing the leading-order asymptotic solution for a thin droplet given by Eq. (18) (dashed lines)
and the numerical solution for a nonthin droplet (solid lines) for V/θ = 1, 5, 10, 20, 40, 60, 80, and 100. The arrows indicate the direction of
increasing V/θ .
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for the droplet and Eq. (13) again for the atmosphere, the gov-
erning equation for the nondimensional free-surface profile h̃
of a nonthin droplet is

∂

∂r

⎡
⎢⎢⎢⎣ 1(

1 +
(

∂ h̃
∂r

)2
)3/2

∂2h̃

∂r2
+ 1

r

(
1 +

(
∂ h̃
∂r

)2
)1/2

∂ h̃

∂r
∓ h̃

⎤
⎥⎥⎥⎦

= 0, (A2)

and so the hydrostatic problem for a nonthin droplet is ob-
tained by replacing Eq. (14) with Eqs. (A2) and (15) with the
contact-line conditions

h̃ = 0,
∂ h̃

∂r
= − tan θ at r = R. (A3)

The evaporative problem for a nonthin droplet is the same as
that for a thin droplet described in Sec. II C, except that the
condition c = 1 on z = 0 is replaced by c = 1 on the free
surface of the droplet, the expression J = −∂c/∂z on z = 0
for 0 � r � R is replaced by J = −∂c/∂ñ on the free surface
of the droplet, where ñ is the unit outward normal to the
free-surface profile, and F is given in terms of the integral
of J over the free surface of the droplet, with the additional
complication that the free-surface profile h̃ becomes multival-
ued for sufficiently large pendant droplets (see, for example,
Padday and Pitt [88] and Kumar et al. [89]).

The hydrostatic and evaporative problems were solved
using Mathematica and COMSOL Multiphysics 5.5a, respec-
tively. Specifically, the hydrostatic problem was solved in
Mathematica using NDSolve. The free-surface profile of the
droplet h̃ was then imported into the geometry section of
COMSOL as an interpolating function, and the evaporative
problem was solved in COMSOL to determine the concentration
of vapor in the atmosphere, c, and hence the local and total
evaporative fluxes, J and F .

Figure 18 shows plots of the scaled local evaporative flux
JR as a function of the scaled radial coordinate r/R for a
sessile [Fig. 18(a)] and a pendant [Fig. 18(b)] droplet showing
the leading-order asymptotic solution for a thin droplet given
by Eq. (18) (dashed lines) and the numerical solution for a
nonthin droplet (solid lines) for a range of values of V/θ .
In particular, Fig. 18(a) shows that, since, as described in
Sec. III A, a sessile droplet becomes wider (and hence thinner)
as V/θ increases, the asymptotic solution for a thin droplet
provides an increasingly more accurate approximation as V/θ

increases. On the other hand, Fig. 18(b) shows that, since, as
described in Sec. III B, a pendant droplet becomes deeper (and
hence thicker) as V/θ increases, the asymptotic solution for a
thin droplet provides an increasingly less accurate approxima-
tion as V/θ increases.

FIG. 19. Plot of the total evaporative flux F as a function of the
scaled volume V/θ . The upper solid line and the circles show the
leading-order asymptotic solution for a thin droplet given by Eq. (19)
and the numerical solution for a nonthin droplet for a sessile droplet
with θ = 2π/9, while the lower solid line and the squares show
the corresponding solutions for a pendant droplet with θ = π/36.
The dotted and dashed lines show the solutions for a nonthin droplet
in the absence of the effect of gravity (i.e., for the corresponding
spherical-cap droplet) for θ = 2π/9 and θ = π/36, respectively.

Figure 19 shows a plot of the total evaporative flux F as a
function of the scaled volume V/θ . The upper solid line and
the circles show the leading-order asymptotic solution for a
thin droplet given by Eq. (19) and the numerical solution for
a nonthin droplet for a sessile droplet with θ = 2π/9, while
the lower solid line and the squares show the corresponding
solutions for a pendant droplet with θ = π/36. In particular,
Fig. 19 shows that, despite the differences between the asymp-
totic and numerical solutions for the local evaporative flux for
a pendant droplet evident in Fig. 18(b), the asymptotic solu-
tion for the total evaporative flux for a thin droplet given by
Eq. (19) provides a good approximation (specifically, accurate
to less than 1% for the sessile droplet and to less than 3% for
the pendant droplet for the values shown in the figure) to the
key quantity driving the evolution of the droplet for a range of
values of V/θ for both sessile and pendant droplets. However,
as mentioned earlier, the free-surface profile h̃ of a pendant
droplet becomes multivalued for sufficiently large values of
V/θ , and so, unlike for sessile droplets, the present approach
will eventually fail for sufficiently large pendant droplets.
Figure 19 also includes dotted and dashed lines showing the
corresponding solutions for a nonthin droplet in the absence of
the effect of gravity (i.e., for the corresponding spherical-cap
droplet) (see, for example, Wilson and D’Ambrosio [13]), and
illustrates that the common approach of ignoring the effect
of gravity leads to increasingly inaccurate predictions for the
total evaporative flux from both sessile and pendant droplets
as V/θ increases.
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