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Application of Evolutionary Algorithms in Bayesian 
Multi-objective Reliability-Based Design Optimization 
 

Abstract: Reliability-Based Design Optimization (RBDO) methods 
are well known in engineering design. However, these approaches 
usually require uncertainties to be modelled by statistical distribu-
tions. Hence, samples of uncertainty variables with enough size are 
necessary, so that these variables can be fitted by probabilistic dis-
tributions known as aleatory uncertainty.  

In realistic engineering design, there is a lack of information about 
design variables or parameters and only a reduced set of samples 
are available (e.g. physical tests are very expensive). Therefore, 
design is carried out with incomplete information about input varia-
bles and parameters known as epistemic uncertainty.  

Both types of uncertainties need to be considered in engineering 
design problems. However, epistemic uncertainty cause the relia-
bility of the system or component to be also a random variable. 
Therefore, reliability constraints are imposed with a level of confi-
dence specified by the designer posing a significant computational 
challenge for the design.  

This paper proposes two effective multi-objective evolutionary algo-
rithms to solve problems of design under uncertainty with incom-
plete information. The proposed approaches consider the cost and 
reliability as objective functions. The result is a Pareto front with a 
trade-off between cost and reliability for different levels of confi-
dence. An analytical example and a structural problem are solved 
to show the applicability of the approach and how epistemic uncer-
tainty may affect the results. 

 
1 Introdution 

Design optimization in engineering tries to obtain optimal so-
lutions and reliable products. In order to achieve this result, 
it is necessary to consider the unavoidable variability of pa-
rameters characterizing geometry, loads and mechanical 
properties of a product.  
Early methods in optimal design under uncertainty consider 
that uncertainties are characterized as random variables fol-
lowing probability distributions with known parameters. 
That is, there is such quantity of information about uncertain 
variables and parameters that we can apply a goodness of fit 
test and assign the probability distributions obtained in de-
sign optimization. Two optimal design methods under com-
plete information of uncertainties are: Robust Design Opti-
mization (RDO) and Reliability Based Design Optimization 
(RBDO). 
In a classic RBDO problem, a single objective function is op-
timized subject to reliability constrains. Researchers have 
proposed several methods to solve this type of problems. 
These methods combine an optimization algorithm with reli-
ability analysis methods.  
RBDO methods are classified in three groups: double loop 
methods, single loop methods and decoupled methods. With 

respect to reliability analysis, two kinds of methods can be 
used: approximated methods (e.g. FORM, SORM) and 
Monte Carlo based simulation methods. Simulation methods 
often request prohibitive computational effort while approx-
imate methods demand less computing resources but it is 
well known that FORM and SORM experiment convergence 
difficulties, especially when performance functions are 
highly nonlinear and random variables are not normal.  
Usually, the designer or decision maker is interested in the 
trade-off between cost and reliability. In other cases, two or 
more objectives are optimised subject to reliability con-
straints. These problems are multi-objective optimization 
problems subject to reliability constraints. And the method to 
solve them is named Multi-Objective Reliability Based De-
sign Optimization (MORBDO) [1]. Multi-objective Optimi-
zation Evolutionary Algorithms (MOEAs) such as Non-dom-
inated Sorting Genetic Algorithm (NSGA-II) [2] and Multi-
objective Particle Swarm Optimization (MOPSO) [3] are the 
most frequent MOEAs considered in the literature to solve 
MORBDO problems since these methods can handle con-
straints efficiently [4]. 
Firstly, it is necessary to make a classification of the uncer-
tainties. Subsequently, depending on the type of uncertainty, 
different methods could be applied to determine optimal de-
signs. Researchers have proposed several classifications of 
uncertainty.  This one is well known: 
Aleatory uncertainty or variability: 
It is the inherent uncertainty of a physical variable. Variables 
with random uncertainty are generally described by probabil-
ity distributions. 
Epistemic uncertainty or ignorance:  
This type of uncertainty is due to lack of knowledge about 
the model or about the uncertain variables involved, due to 
lack of data. In practice applications, the only information 
about uncertainties that designer can use is a set of samples 
or an interval. Samples are obtained experimentally through 
tests. For practical or budgetary reasons, it is only possible to 
carry out a small number of tests. Therefore there is not 
enough data available to determine the probabilistic distribu-
tion of the uncertain variables and parameters [5]. 
Recently, researchers have made great efforts in the field of 
quantification of uncertainty, reliability analysis and optimal 
design under uncertainty to deal with problems in which 
there is not enough information on uncertainties and, there-
fore, exact probability distributions cannot be assumed to 
model these uncertainties [6]. 
Probabilistic distributions adjusted with such limited data 
would cause erroneous and unsafe design if were considered 
in a RBDO or MORBDO problem.   
Other authors have proposed other classifications. For exam-
ple, Toft-Christensen and Murotsu [7], described three types 
of uncertainties in the field of structural reliability analysis: 
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physical uncertainty, statistical uncertainty, and simulation 
model uncertainty.  Physical uncertainty is the randomness 
inherent to physical observations, which can be described in 
terms of probability distributions. Statistical uncertainty cor-
responds to the uncertainty caused by lack of statistical infor-
mation or limited sample size and considered epistemic un-
certainty. The uncertainty of the simulation model occurs 
because of errors and idealizations done in the mathematical 
model. The uncertainty of the model can also be considered 
as an epistemic uncertainty. In this work, the uncertainty of 
the simulation model is not considered, and only statistical 
uncertainty is taken account as epistemic uncertainty. Figure 
1 represents different types of uncertainty according to the 
level of information.  
Researchers have proposed different methods to compute op-
timal designs depending on the representation of epistemic 
uncertainty, e.g. [8]. Du et al [9], proposed Possibility Based 
Design Optimization (PBDO). They applied fuzzy sets to 
quantify uncertainties. Epistemic variables are modelled as 
membership functions. Sample size is not considered in un-
certainty quantification and as consequence the approach is 
usually too much conservative.  Optimal design methods 
have also been applied to interval variables [10], [11]. The 
disadvantage of these methods is that the information con-
tained in the samples is not used. Mourelatos and Zhou apply 
Evidence Theory in design optimization and propose Evi-
dence Based Design Optimization [12].  
This paper proposes the use of Bayesian Inference because 
they can deal with different representation of the information 
available. The paper is organised as follows. A short review 
of Bayesian Inference theory in presented in section 2. Sec-
tion 3 describes Bayesian RBDO method. Section 4 studies 
the Bayesian Multi-objective Reliability-Based Design Opti-
mization (Bayesian MORBDO) problem, where two objec-
tive function are optimised: cost and reliability. Two state of 
the art Multi-objective Evolutionary Algorithms (MOEAS) 
are applied to solve Bayesian MORBDO problems: Non-
dominated Sorting Genetic Algorithms (NSGA-II) and 
Multi-objective Particle Swarm Optimization (MOPSO). 
Although NSGA-II has already been applied to solve Bayes-
ian Multi-objective Reliability-Based Design Optimization 
problem [13], the MOPSO algorithm is applied for the first 
time to solve this type of problem according to the authors’ 
knowledge. Section 4 describe two examples to show how 
Bayesian MORBDO works. Finally, section 5 includes the 
conclusions. 

 
Fig 1 Types of uncertainty. 

 
2 Bayesian Inference Methods 

Researches have proposed methods applying Bayesian infer-

ence to solve optimal design problems under epistemic un-
certainty [13], [14]. This section describes how to compute 
the reliability for a probabilistic constraint when there exist 
aleatory and epistemic random variables.  
We can partition the vectors of uncertain variables 𝑋 and pa-
rameters  𝑃 in two sub vectors each one of them. That is, 𝑋 =
[𝑋௧ , 𝑋௦]  and 𝑃 = [𝑃௧ , 𝑃௦]. The vectors 𝑋௧ and 𝑃௧ are aleatory 
variables and parameters whose probability density functions 
(PDFs) are known. In addition, the vectors 𝑋௦ y 𝑃௦ are epis-
temic random variables. Only a reduced set of samples are 
known for these epistemic variables.  
Suppose that we want to compute the reliability for the 𝑗௧  
reliability constraint, that is, 
 

𝑅 = 𝑃𝑟ൣ𝑔(𝑋, 𝑃) > 0൧ 
 
A priori distribution for the reliability of this performance 
function is proposed. If no previous information is available 
about this reliability, non-informative priori can be consid-
ered. Therefore, we assume that reliability 𝑅 follows a uni-
form distribution, 𝑈(0,1).  Then, an updated value for 𝑅 can 
be computed using Bayes’ rule. It is supposed that a set of 
samples is available for epistemic uncertainties. We compute 
the reliability for each sample of epistemic variables and pa-
rameters:  
 

𝑃𝑟ൣ𝑔(𝑋௧ , 𝑃௧) > 0|(𝑋௦, 𝑃௦ )൧  𝑤𝑖𝑡ℎ 𝑘 = 1, . . , 𝑁, 
 
where 𝑁 is the sample size and 𝑔(𝑋, 𝑃) ≤ 0 is the failure 
region. Repeating this computation for the 𝑁 samples avail-
able about the epistemic variables and parameters, we can 
obtain 𝐸(𝑟), the expected number of safety realizations is 
[13]: 

𝐸(𝑟) =  𝑃𝑟ൣ𝑔(𝑋௧ , 𝑃௧) > 0|(𝑋௦, 𝑃௦ )൧

ே

ୀଵ

 

The priori distribution is updated with the information given 
by 𝐸(𝑟) and we obtain a posteriori distribution for the relia-
bility. This posteriori is a Beta distribution with parameters 
𝛼 and 𝛽, where 𝛼 = 𝐸(𝑟) + 1 and 𝛽 = 𝑁 − 𝐸(𝑟) + 1. That 
is:  

𝑅~ 𝐵𝑒𝑡𝑎൫𝑟  , 𝐸(𝑟) + 1, 𝑁 − 𝐸(𝑟) + 1  ൯ 
 
This posteriori distribution can be updated again if more sam-
ples become available. 
The reliability 𝑅 is a beta distribution and not anymore a 
crisp value. The confidence for a design 𝜇𝑿 with respect to 
𝑗௧ reliability constraint is defined as the probability that 𝑅, 
will exceed the target reliability: 
 

𝜁(𝜇𝑿) = 𝑃𝑟 ቂ𝑔(𝑋௧ , 𝑃௧) > 0ห
ఓ𝑿

≥ 𝑅
௧௧

ቃ        𝑗 = 1, . . , 𝐽 

 
Therefore, 𝜁(𝜇𝑿) = 1 − Φ௧ೕ

൫𝑅൯, where  Φ௧ೕ
(∙)  is 

the CDF of 𝑗௧ Beta distribution. Also, the reliability can also 
be written in terms of the confidence: 
  



International Probabilistic Workshop 2019      

3 | P a g e  
 

𝑅(𝜇𝑿) = Φ ೕ

ିଵ ቀ1 − 𝜁(𝜇𝑿)ቁ 

 
And the probability of failure is: 
 

𝑃ೕ
(𝜇𝑿) = 1 − Φ௧ೕ

ିଵ ቀ1 − 𝜁(𝜇𝑿)ቁ 

 
It is important to note that when the sample size is small, it is 
not possible to obtain the design for a required value of reli-
ability for a confidence established by the designer. For ex-
ample, with 𝑁 = 50 and 𝜁 = 0.90, if we suppose that all re-
liability values computed are 1, that is, 𝐸(𝑟) = 50, and 
therefore, 𝛼 = 51 and 𝛽 = 1 and the minimum value of 𝑃ೕ

 

that we can obtain is 0.0441, as is computed below: 
 

𝑃ೕ
= 1 − Φ௧ (ହଵ,ଵ)

ିଵ ቀ1 − 𝜁(𝜇𝑿)ቁ = 0.0441 

 
If we want to determine an optimal design subject to reliabil-
ity constraints for a specified confidence level, we need 
enough sample size. Also, this sample size depends on the 
confidence required by the designer [15]. 
 
3 Bayesian RBDO 

 
Conventional problem in Reliability-Based Design Optimi-
zation (RBDO) consists of computing a design that mini-
mises a cost function subject to reliability constraints. These 
constraints are formulated as component level reliabilities or 
as a system-level reliability. Complete information for the 
uncertainties is considered in conventional RBDO.   
Under insufficient quantity of samples for the epistemic ran-
dom variables, an optimal and reliable design can be com-
puted applying Bayesian inference. This method is named, 
Bayesian RBDO. The formulation of Bayesian RBDO 
method is:   

min
𝐝,𝝁𝑿

 𝐶𝑜𝑠𝑡(𝐝, 𝝁𝑿, 𝝁𝑷) 

𝑠. 𝑡.  𝑃ೕ
(𝜇𝑿) ≤ 𝑃ೕ,ೌೝ        𝑗 = 1. . 𝑛𝑟

ℎ(𝒅) ≥ 0, 𝑘 = 1,2, … , 𝐾

𝐝 ≤ 𝐝 ≤ 𝐝, 𝝁𝑿
 ≤ 𝝁𝑿 ≤ 𝝁𝑿

 

 

where 𝑃 = 𝑃൫𝐺(𝐝, 𝐗, 𝐏 ) ≤ 0൯ and 𝐗 = [𝐗௧ , 𝐗௦]  and 𝐏 =

[𝐏௧ , 𝐏௦] and 𝐺(𝐝, 𝐗, 𝐏 ) ≤ 0 is defined as the failure region. 
𝑛𝑟 is the quantity of reliability constraints. As stated above 
𝑃ೕ

(𝜇𝑿) is computed for each design and depend of the con-

fidence requested by the designer.  

𝑃ೕ
(𝜇𝑿) = 1 − Φ௧ೕ

ିଵ ቀ1 − 𝜁(𝜇𝑿)ቁ 

Methods to solve this problem depend of the methods used 
to solve the optimization and the reliability analysis. When 
the sample size increases the optimum tends to the “exact” 
optimum obtained by RBDO under complete information.  
 
4 Bayesian Multi-objective Reliability-Based Design 

Optimization 
 
In realistic practice, designers and decision makers will pre-
fer to know the various optimal designs for different values 

of probability of failure, for a determined confidence level 
established previously by the designer. Therefore, after set-
ting the level of trust, a set of optimal solutions can be estab-
lished, in which there is a compromise between cost and re-
liability. This front is the solution to a multi-objective 
optimization problem. This helps the selection of a design in 
a more practical way. Thus, the designer can see how much 
the cost increases if more reliable design is required. In the 
same way that in Bayesian RBDO, established a high value 
of confidence, an enormous sample size for the epistemic un-
certainties is required to verify a very low value of probabil-
ity of failure.   
The formulation of the MORBDO problem is:  
 

min
𝐝,𝝁𝑿

 𝐶𝑜𝑠𝑡(𝐝, 𝝁𝑿, 𝝁𝑷) 

min
𝐝,𝝁𝑿

 𝑃ೄ
(𝐝, 𝝁𝑿, 𝑷) 

𝑠. 𝑡.  𝑃௦
 ≤ 𝑃ೄ

< 𝑃௦
௨

ℎ(𝒅) ≥ 0, 𝑘 = 1,2, … , 𝐾

𝐝 ≤ 𝐝 ≤ 𝐝, 𝝁𝑿
 ≤ 𝝁𝑿 ≤ 𝝁𝑿

 

 

 
where, 𝐝,  is the vector of deterministic design variables, 𝝁𝑿 
is the vector of uncertain design variables. 𝑃ೄ

 is the proba-
bility of system failure for a confidence established by the 
designer. 𝝁𝑿

  and 𝝁𝑿
 are lower and upper bounds for the mean 

values of uncertain design variables. 𝑃௦
  and 𝑃௦

௨   are bounds 
for the probability of system failure. All reliability con-
straints are combined in a unique system reliability constraint 
to formulate a bi-objective optimization problem.  
𝑃ೄ

 is computed as: 𝑃ೄ
= 1 − 𝑅ௌ ,  where 𝑅ௌ is the reliability 

of the system. In this work, 𝑅ௌ  has been computed as the 
minimum of the values of the reliabilities of the constraints. 
That is,    

𝑅௦ = min
ୀଵ,..,

𝑅 

where 𝑅, is the reliability of constraint 𝑗௧ and 𝑛𝑟 is the num-
ber of constraints. However, more accurate values can be 
computed considering the configuration of the system (serial, 
parallel, mixed, etc) and taking in account the correlation be-
tween different failure modes [16]. 
The best methods to solve the optimization phase of MOR-
BDO problems are based in multi-objective evolutionary al-
gorithms. Rupesh Srivastava and Kalyanmoy Deb [13] ap-
plied Non-dominated Sorting Genetic Algorithm (NSGAII). 
We have applied other evolutionary algorithm method, 
named Multi-objective Particle Swarm Optimization 
(MOPSO) and compare the results obtained with both meth-
ods. Also, reliability analysis is carried out by FORM by 
computing the reliability index and then estimate the corre-
sponding probability of failure of the constraints. It is well 
known that FORM cannot converge to the most probable 
point in case of non-linear performance function or when ran-
dom variables have non-normally distributed. In order to ad-
dress this point, the implemented algorithms assign large val-
ues to the objective functions when reliability analysis does 
not converge. This strategy prevents that these designs are 
continuously considered by the evolutionary optimization 
tools. 
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Both optimization methods request a large computational ef-
fort. In fact, each population can contain, for example, 100 
individuals or design vectors. For each design vector, it is 
necessary to carry out so many reliability analyses as the 
sample size of epistemic variables. And this is repeated for 
each generation.  
Some strategies have been implemented to reduce this com-
putational cost. The first one is to use FORM in reliability 
analysis. The use of simulation methods would be prohibi-
tively expensive. The second one is to discard a design im-
mediately after that reliability analysis does not converge for 
some vector of the epistemic sample.  
 
 
4.1 Analytical example 
The first numerical example considers only two objectives 
and two design variables that permits a graphical representa-
tion of the Pareto front in the objective function space and the 
Pareto set in the space of design variables. The formulation 
of the Bayesian MORBDO problem is: 
 

min
𝝁𝑿

 𝑓(𝝁𝑿) = 𝜇భ
+ 𝜇మ

min 
𝝁𝑿

 𝑃ௌ
(𝑋ଵ, 𝑋ଶ, 𝑋ଷ)

           
𝑠. 𝑡.     0.0001 ≤ 𝑃௦ ≤ 0.1

𝑠. 𝑡.      0 ≤ 𝜇భ
≤ 10 ;  0 ≤ 𝜇మ

≤ 10
 

 

 
The first objective is the cost function and the second objec-
tive represents the probability of the system failure computed 
as 𝑃ௌ

= 1 − 𝑅ௌ. 𝑅ௌ is the reliability of the system. Lower 

and upper bounds are set as 0.0001 and 0.1 to obtain the op-
timal design and the Pareto front in the range of interest for 
the designer. 
 
The performance functions are defined as:  
 

𝑔ଵ(𝑿) = 𝑋ଵ
ଶ𝑋ଶ𝑋ଷ 20⁄ − 1

𝑔ଶ(𝑿) =
(𝑋ଵ + 𝑋ଶ + 𝑋ଷ − 5)ଶ

30
+

(𝑋ଵ − 𝑋ଶ − 𝑋ଷ − 12)ଶ

120
− 1

𝑔ଷ(𝑿) = 80 (𝑋ଵ
ଶ + 8𝑋ଶ𝑋ଷ + 5)⁄ − 1

 

 
In this example, adapted from [15], there are two aleatory de-
sign variables: 𝑋ଵ and 𝑋ଶ. The third variable, 𝑋ଷ, is a param-
eter with epistemic uncertainty and only a small sample size 
is available. It is not considered a design variable since none 
of its statistical properties is known. The design variables, 𝑋ଵ 
and 𝑋ଶ are distributed according a normal distribution:  

𝑋ଵ~𝑁𝑜𝑟𝑚𝑎𝑙൫𝜇భ
, 𝐶𝑜𝑉 =  0.12൯

𝑋ଶ~𝑁𝑜𝑟𝑚𝑎𝑙൫𝜇మ
, 𝐶𝑜𝑉 =  0.12൯

 

The samples for 𝑋ଷ are randomly generated from a normal 
distribution with 𝑋ଷ~𝑁𝑜𝑟𝑚𝑎𝑙൫𝜇య

= 1.0, 𝜎య
= 0.1൯. 

The problem is solved using the NSGA-II and MOPSO algo-
rithms, respectively. The problem has been solved for differ-
ent sample size of the available information about the epis-
temic uncertainty (𝑖. 𝑒, 𝑁 = 50, 100, 200) and different 
confidence level ൫𝜁 = 0.8, 0.9൯. The population size in 
NSGAII and the swarm size in MOPSO are equal to 100. The 

number of generations or evolutions is also set to 100 for both 
approaches. As reference solution, the MORBDO problem is 
also solved considering complete information.  
Figures 2 and 3 show the Pareto fronts in the space of objec-
tive functions for different samples size as well for the case 
of complete information.  The figures show how the Bayesian 
fronts tends to the front obtained with complete information 
as the number of samples increases. 
The sample size for the epistemic uncertainty𝑋ଷ, constraints 
the minimum value of the probability of system failure that 
one could obtain with a specified confidence. For example, 
for 𝑁 = 200 and with confidence 𝜁 = 0.9,   it is impossible 
to obtain a design with 𝑃ௌ

 below 0.01 even though the lower 

bound of the probability of failure is 0.0001.  
Table 1 shows the minimum values for the probability of sys-
tem failure that can be found applying Bayesian MORBDO 
to the analytical example for various values of sample sizes 
and confidence. These minimum values decrease when sam-
ple size increases. Also, they decrease when confidence de-
creases. We have checked that the lower bound of probability 
of failure is searched if complete information is available 
about probability distribution of uncertain variables. Differ-
ences between NSGA-II and MOPSO results are practically 
negligible.  
 
Table 1. Values of Maximum probability of system failure searchable.  

    Confidence = 0,9     Confidence = 0,8 

Sample Size NSGA-II MOPSO NSGA-II MOPSO 

N = 50 0,044394 0,044466 0,031446 0,031430 

N = 100 0,022820 0,022832 0,016024 0,016044 

N = 200 0,011707 0,011677 0,008210 0,008239 

COMPLETE INF. 0,000158 0,000170 0,000158 0,000170 
 
 

 
Fig 2. Pareto fronts obtained by NSGA-II for the Analytical example for different sam-
ple sizes with confidence 0.9. 

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

5,7 6 6,3 6,6 6,9 7,2 7,5 7,8 8,1

N = 50
N = 100
N = 200
COMPLETE INFORM.

Cost

Pr
ob

ab
ili

ty
  o

f F
ai

lu
re

 o
f t

he
  S

ys
te

m



International Probabilistic Workshop 2019      

5 | P a g e  
 

 
Fig 3. Pareto fronts obtained by MOPSO for the Analytical example for different sam-
ple sizes with confidence 0.9. 
 

4.2 Ten bar truss example 
The second example consider a ten bar truss as shown in fig-
ure 4. The formulation of the Bayesian MORBDO is as fol-
low: 
 

min
𝐝,𝝁𝑿

 𝑉𝑜𝑙𝑢𝑚𝑒(𝐝, 𝝁𝑿, 𝝁𝑷) 

min
𝐝,𝝁𝑿

 𝑃ೄ
(𝐝, 𝝁𝑿, 𝑷) 

𝑠. 𝑡.     0.001 ≤ 𝑃ௌௌ
≤ 0.1  

4 ≤ 𝜇ଡ଼ೕ
≤ 75,   𝑗 = 1,2,3.

    

Two objective functions are considered. The first objective is 
the steel volume of the truss. As the steel density is a con-
stant, to minimise the steel volume is equivalent to minimise 
steel mass. The second objective function represents the 
probability of system failure. Also, bounds are stated for the 
probability of system failure to find design solutions in the 
range of interest. Only one displacement constraint is im-
posed: the vertical displacement of the node 2 must be below 
2 cm.  
 

𝐺ଵ(𝐝, 𝐗, 𝐏) = 1 − ห𝑞ଶ,(𝐝, 𝐗, 𝐏)ห 𝑞⁄  
 
The value of the displacement limit is 𝑞 = 2 𝑐𝑚. 
 

 
Fig 4. Ten bars truss.  

Bars are grouped in three groups. Group 1 contains horizontal 
bars, group 2 contains vertical bars and group 3 contains di-
agonal bars. Bars in the same group have the same cross sec-
tional area. Mean values of these areas are the design varia-
bles of the problem: 𝜇ଡ଼భ

, 𝜇ଡ଼మ
, 𝜇ଡ଼ೕ

. Therefore, three normal 

aleatory design variables are assigned to these areas. Loads  
𝑃ଵ and 𝑃ଶ are random parameters with normal distribution 
and are applied in nodes 1, 2 and 4. Also, the elastic modulus 
𝐸 is an epistemic random parameter and only a limited sam-
ple is available. The sample has been obtained from a normal 
distribution, 𝑁(𝜇 = 21000 𝑘𝑁/𝑐𝑚ଶ, 𝜎 = 210 𝑘𝑁/𝑐𝑚ଶ). 
The uncertain variables and parameters of the problem are 
shown in the Table 2.  
 
Table 2. Random variables in the ten bar truss example. 

Random 
variable Distribution Mean Value CoV (%) or 𝝈𝟐 

𝑋ଵ ≡ 𝐴ଵ 𝑁 𝜇భ
 5% 

𝑋ଶ ≡ 𝐴ଶ 𝑁 𝜇మ
 5% 

𝑋ଷ ≡ 𝐴ଷ 𝑁 𝜇య
 5% 

𝑋ସ ≡ 𝑃ଵ 𝑁 100.0 𝑘𝑁 20 𝑘𝑁 
𝑋ହ ≡ 𝑃ଶ 𝑁 50.0 𝑘𝑁 2.5 𝑘𝑁 

𝐸 Epistemic   
   

 

 
Fig 5. Pareto fronts obtained by NSGAII for the ten bars truss example for different 
sample sizes with confidence 0.9. 
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Fig 6. Pareto fronts obtained by MOPSO for the ten bars truss example for different 
sample sizes with confidence 0.9. 

 
In the example of the structure of 10 bars the same thing hap-
pens as in the analytic case. For small sample sizes and for a 
large value of confidence (0.9), no matter how much the cross 
section increases, there is a limit value of failure probability 
that can be reached. This fact is of great importance for the 
decision maker since it means that a higher cost does not im-
ply greater reliability. The figures 5 and 6 show that Pareto 
fronts become a horizontal line for these limit values of prob-
ability of failure.   
 
5 Conclusions 
Optimal designs under epistemic uncertainty and with a lim-
ited sample size can be obtained adopting Bayesian MOR-
BDO.  These methods allow to obtain different reliable and 
optimum designs for a range of admissible probability of sys-
tem failure. However, these methods have an important dis-
advantage: the large computational effort required.  
Here an approach that allows to reduce significantly the com-
putation cost of the analysis is presented. The reliability of 
the system is updated using Bayes rule and the samples avail-
able for the epistemic parameters. Non-informative priors are 
used. Using these conjugate distributions has a major draw-
back. That is, there is a lower bound in the value of the failure 
probability that a design could reach. This lower bound de-
pends on specified value for the confidence and the sample 
size for epistemic variables.  
Then two state of the art optimisation methods (i.e. NSGA-II 
and MOPSO) have been applied to solve two examples. Both 
methods give similar results and have the same efficiency in 
term of calculation time. The examples presented have 
shown that large sample sizes are required to compute de-
signs that produce reduced values of probability of system 
failure using a predefined level of confidence. Therefore, 
Bayesian RBDO with a target probability of failure less than 
this lower bound will not provide a reliable optimal design.  
Some improvements could be proposed in the Bayesian 
MORBDO field such as implementing a more efficient and 
accurate reliability analysis. Here, the reliability of the sys-

tem has been approximated by the minimum value of the re-
liabilities of the performance functions. However, more ac-
curate results could be computed applying Dilevsen’ bounds.  
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