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Journal Name

Automated Descriptors for High-Throughput Screening
of Peptide Self-Assembly

Raj Kumar Rajaram Baskaran,a Alexander van Teijlingen,a and Tell Tuttle∗a

We present five automated descriptors: Aggregate Detection Index (ADI); Sheet Formation Index
(SFI); Vesicle Formation Index (VFI); Tube Formation Index (TFI); and Fibre Formation Index (FFI),
that have been designed for analysing peptide self-assembly in molecular dynamics simulations. These
descriptors, implemented as Python modules, enhance analytical precision and enable the develop-
ment of screening methods tailored to specific structural targets rather than general aggregation.
Initially tested on the FF dipeptide, the descriptors were validated using a comprehensive dipep-
tide dataset. This approach facilitates the identification of promising self-assembling moieties with
nanoscale properties directly linked to macroscale functions, such as hydrogel formation.

1 Introduction
Peptide self-assembly refers to the spontaneous organisation
of short amino acid sequences1 into ordered nanostructures2

through non-covalent interactions such as hydrogen bonding, π-
π stacking, and hydrophobic effects.3 This behaviour underlies
the design and development of innovative biomaterials for drug
delivery, tissue engineering, and nanotechnology.

The resulting architectures vary in size and dimensionality. At
the nanoscale, the formation of three-dimensional micelles and
vesicles (Figure 1b) enables targeted encapsulation and trans-
port of therapeutic molecules.4 These assemblies provide essen-
tial platforms for building more complex structures, laying the
groundwork for advanced biomaterials with tunable functionali-
ties.

As the size scale increases, one-dimensional fibres (Figure 1c)
and tubes (Figure 1d) emerge, offering robust scaffolds suitable
for cell growth and tissue engineering. Planar two-dimensional
aggregates such as sheets (Figure 1a) and bilayers provide large
surface areas that support cell attachment and proliferation. A
thorough understanding and classification of these structures fa-
cilitates rational design strategies that link molecular properties
to specific architectural outcomes.

Expanding into applied settings, peptide nanostructures have
been incorporated into nanowires, nanotubes, and other con-
structs of interest in sensor technology and biocompatible elec-
tronics.5,6 In biomedical contexts, peptide hydrogels serve as con-

a Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow,
G1 1XL, UK.
∗ E-mail: tell.tuttle@strath.ac.uk
† Supplementary Information available: Molecular dynamics simulations parame-
ters and distribution of measured shapes across the self-assembling dipeptides. See
DOI: 00.0000/00000000.

trolled drug release platforms, where adjustable mechanical and
degradation properties enhance therapeutic efficacy. Continued
research in this direction contributes to refining predictive mod-
els and experimental designs that meet clinical and technological
demands.7

Increased emphasis on automation and computational meth-
ods offers a pathway to more efficient materials discovery. By in-
tegrating structural descriptors with high-throughput screening,
large sets of peptide candidates can be rapidly evaluated, accel-
erating the identification of promising sequences for diverse ap-
plications. The development of automated descriptors of struc-
ture within simulations further enhances this process by enabling
these descriptors to serve as target properties in machine learn-
ing or screening methods. This approach not only strengthens
the connection between molecular design and biomaterial perfor-
mance but also expands the sequence space available for explo-
ration, unlocking new possibilities in the discovery and design of
functional peptides. Ultimately, access to automated classifica-
tion models shortens development cycles and drives innovation
in biomaterials research.

Current descriptors often underestimate the inherent complex-
ity of peptide self-assembly. Static metrics overlook the dy-
namic interplay of non-covalent interactions and fail to repre-
sent mesoscale phenomena, aggregation kinetics, and environ-
mental factors such as solvents, pH, and temperature.8,9 Address-
ing these limitations requires a more comprehensive framework
that links molecular-level events to emerging architectures.

The Aggregation Propensity (AP) score,10 based on shifts in
Solvent Accessible Surface Area (SASA),11 serves as a useful
starting point. However, AP focuses predominantly on early
events and solvent interactions while neglecting the morphologi-
cal intricacies of the aggregates (Figure 2). The resulting shapes
and configurations that directly impact the final properties of the
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(a) Curved sheet: A planar 2D struc-

ture.

(b) Vesicle cross-section: A bilayered,

hollow 3D spherical structure.

(c) Fibre cross-section: A cylindrical

1D structure.

(d) Tube cross-section: A flexible,

hollow 1D structure.

Fig. 1 Snapshots of different self-assembled structures formed by FF dipeptides. The backbone is represented by pink beads, while the side chain is
represented by green beads. Water beads are omitted.

material remain unspecified. This gap underscores the need for
refined descriptors that highlight structural features critical to
guiding subsequent design strategies.

Although complete exploration of the dipeptide and tripeptide
space has been achieved, the challenge grows as the sequences
lengthen and functionalities diversify.10,12 Traditional brute-force
scanning is no longer feasible, prompting the integration of ma-
chine learning methods that efficiently pinpoint promising se-
quences from vast combinatorial landscapes.13,14 The ability to
train algorithms using meaningful structural descriptors expands
the search horizon and streamlines the discovery of peptides tai-
lored for advanced hydrogel formation and beyond.

This work introduces five computational descriptors that cap-
ture essential features of peptide self-assembly, guiding the anal-
ysis beyond initial aggregation trends and toward the full land-
scape of resulting morphologies.15 Each metric is designed for
efficiency and consistency, enabling comparisons across diverse
peptide systems and simulation conditions without relying on
manual inspection.

The descriptors offer standardised, quantitative measurements
that unify data evaluation procedures, improving reproducibility
and interpretability across research efforts. Moreover, we envi-
sion that these descriptors will be critical features in downstream
machine learning approaches aimed at sequence discovery, struc-
tural optimisation, and the targeted synthesis of next-generation
peptide-based biomaterials.

2 Results and Discussion

2.1 Simulation Setup

This study used coarse-grained molecular dynamics (CGMD) sim-
ulations employing the MARTINI 2.1 force field16,17 to investi-
gate the self-assembly behaviour of dipeptides. The MARTINI
force field’s simplified representation of biomolecules, grouping
atoms into larger beads, enables efficient simulations of larger
systems over extended timescales, making it particularly suitable
for studying the self-assembly of large numbers of peptide in or-
der to investigate their higher-order structure formation.

All simulations were conducted using the GROMACS 2020.7
simulation package18 on a high-performance computing cluster.
Each simulation was initialised within a cubic box measuring

21.5 nm × 21.5 nm × 21.5 nm, containing 1,200 randomly dis-
tributed dipeptide molecules explicitly solvated with MARTINI
coarse-grained water. The systems underwent energy minimi-
sation using the steepest descent algorithm, followed by a 1 ns
equilibration under constant volume and temperature (NVT) con-
ditions and an additional 1 ns equilibration under constant pres-
sure and temperature (NPT) conditions. All CGMD simulations
were carried out with a time step of 25 fs, employing periodic
boundary conditions in all directions.

Temperature was maintained at 303 K using the velocity-
rescale thermostat19 with a coupling constant of 1.0 ps. The
pressure was coupled isotropically at 1 bar using the Berendsen
barostat20 with a coupling constant of 12 ps. Checkpointing was
performed every 5,000 steps to ensure computational efficiency
and data integrity. All simulation parameters adhered to standard
MARTINI protocol guidelines.16,17

Initially, we conducted simulations of all 400 dipeptide systems
for 6 million steps with a time step of 25 fs, resulting in a total
simulation time of 150 ns. The MARTINI coarse-grained model
accelerates dynamics by a factor of 4 compared to atomistic sim-
ulations. Therefore, our formal simulation time of 150 ns corre-
sponds to an effective time of 600 ns. All times reported in this
paper refer to this effective timescale. Among the 400 dipeptides
in the sequence space, 29 fell within the mid AP range (1.1–1.9,
Table 1) and 30 within the high AP range (2–3.7, Table 2). We
then selected these 59 dipeptides for further analysis, running
simulations for 60 million steps (1.5 µs), corresponding to an
equivalent duration of 6.5 µs.

AP Score Dipeptides
1.1 FC, FD, FH, HF, HS, HT, HW, KD,

RD, RF, SY, WH, WK, WR, YC
1.2 KF, RW, SH, YS
1.3 KW
1.6 MW, WM, WY
1.7 YW
1.9 FM, MF, PW, WL, YF

Table 1 Dipeptides with mid AP scores.
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(a) GV (AP=0.9) not aggregating (b) KF (AP=1.2) forms small aggre-

gates and sheets

(c) FL (AP=3.0) forms a single large

aggregate

(d) FF (AP=3.5) forms a complex

structure

Fig. 2 Dipeptides with different AP scores showing varying levels of aggregation.

AP Score Dipeptides
2.0 WP
2.1 FP, LW, PF
2.2 CW, FT, FY, TF
2.3 VW
2.4 CF, SF, TW, VF, WC, WV
2.5 FS, FV, WT
2.6 IW, WI
2.7 LF
2.9 FI, WS
3.0 FL
3.1 IF, SW
3.2 WW
3.3 WF
3.5 FF
3.7 FW

Table 2 Dipeptides with high AP scores.

2.2 Implementation of Shape Descriptors

The FF dipeptide system was selected for validating the descrip-
tors due to its extensively documented capacity to self-assemble
into a variety of nanostructures, as illustrated in Figure 1.21 The
five descriptors are implemented as Python modules within a
Conda environment. Scientific libraries such as MDAnalysis22

were utilised for loading trajectories, while libraries such as scikit-
learn23, SciPy24, NumPy25, and Pandas26 were used for mathe-
matical calculations. Visualisation modules such as Matplotlib27

and Seaborn28 were used for generating plots. Through rigorous
geometric, topological, and density-based analyses, these descrip-
tors were designed to capture a broad range of molecular assem-
blies, including aggregates, sheets, vesicles, tubes, and fibres.

Each descriptor provides distinct insights into the self-assembly
process of FF dipeptides. The initial stages are characterised by
significant reorganization, with various shapes forming and disso-
ciating dynamically. To highlight this behaviour, the plots include
a marked transient region. Together, these descriptors compre-
hensively classify and quantify the diverse morphologies observed
in FF dipeptide self-assembly.

2.2.1 Aggregate Detection Index (ADI)

Unlike traditional methods that use fixed cutoff distances, ADI
employs adaptive cutoff distances derived from the Radial Distri-
bution Function (RDF).29 By identifying the first minimum after
the first peak in the RDF, ADI calculates a cutoff value specific to
the peptide environment, enhancing the detection of transient or
weak interactions.

The RDF g(r) is calculated as:

g(r) =
1

ρN

〈
N

∑
i=1

∑
j ̸=i

δ (r− ri j)

〉
(1)

where ρ is the number density, N is the number of particles, and
ri j is the distance between particles i and j.

The adaptive cutoff distance dcutoff is determined by finding the
first minimum in the RDF g(r) after the first peak:

dcutoff = min
{

r | g(r) = min(g(r)) for r > rpeak
}

(2)

where rpeak is the position of the first peak in the RDF.
The ADI workflow begins with preprocessing the simulation

trajectory to account for periodic boundary conditions and en-
sure accurate spatial relationships. This involves unwrapping and
centring the peptide beads within the simulation box to enable
precise and reliable shape calculations. The RDF between pep-
tide beads is computed over a specified distance range, providing
a detailed profile of inter-peptide distances. The adaptive cut-
off distance obtained from the RDF is then utilised to construct
an adjacency matrix, indicating contacts between peptides when
their separation is below the cutoff.

The adjacency matrix A is constructed as follows:

Ai j =

{
1 if di j ≤ dcutoff

0 otherwise
(3)

where di j is the distance between peptide i and peptide j.
Graph theory is applied to identify and characterize aggregates

within the peptide system. Peptides are represented as nodes and
their interactions as edges in a graph. Connected components are
efficiently detected using algorithms from the NetworkX library.30

This graph-based approach allows for the flexible identification
of clusters of varying sizes and complexities, accommodating dy-
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namic changes in the system’s topology over time. Consequently,
ADI enables the detection of both small oligomers and larger ag-
gregates, providing a comprehensive overview of the aggregation
landscape.

The size of each aggregate is determined by the number of
nodes in each connected component. To analyse the persistence
of aggregates, we define a contact persistence criterion. A con-
tact between two peptides is considered persistent if it exists for
at least Pmin frames. The persistence of an aggregate is then cal-
culated as the fraction of frames in which the aggregate exists.

Fig. 3 Aggregate Detection Index (ADI) results for FF dipeptides, show-
casing assembly evolution.

Figure 3 provides a comprehensive visualization of ADI results,
highlighting the dynamic evolution of self-assembly patterns in
the FF dipeptide system. Over the time course of the simula-
tion, smaller aggregates consolidate into larger aggregates as ev-
idenced by the increase in the average number of dipeptides per
aggregate and concomitant decrease in the number of aggregates
identified.

2.2.2 Sheet Formation Index (SFI)

The Sheet Formation Index (SFI) is a comprehensive metric used
to quantify the formation and stability of sheet structures in pep-
tide simulations. The SFI leverages several advanced computa-
tional techniques to provide a detailed analysis of both planar
and curved sheet structures. Below, we describe the theoretical
background and the formulas used for each descriptor.

For planar sheets, the SFI leverages the Radial Distribution
Function (RDF) to analyze the spatial distribution of peptide
beads. By examining the RDF, the SFI determines characteris-
tic peaks corresponding to the regular spacing of peptides in a
flat sheet conformation. This method allows for the accurate de-
tection of planar sheets by identifying regions where the RDF in-
dicates a consistent and repeating pattern of inter-peptide dis-
tances, which are indicative of stable, flat sheet structures.

To identify curved sheets, the SFI employs quadratic fitting
techniques. This approach involves fitting a quadratic surface to
the spatial coordinates of peptide beads, thereby capturing the
inherent curvature of non-planar aggregates. The quadratic fit
quantifies the degree of curvature, enabling the differentiation be-
tween flat and curved sheets. By assessing the root mean square
deviation (RMSD) of peptide positions from the fitted quadratic
surface, the SFI can effectively classify aggregates as either pla-
nar or curved, providing a nuanced understanding of the sheet

morphologies present in the system.
The quadratic surface is fitted using the equation:

z = ax2 +by2 + cxy+dx+ ey+ f (4)

where x, y, and z are the coordinates of the peptide beads, and a,
b, c, d, e, and f are the fitting parameters.

The RMSD from the quadratic surface is calculated as:

RMSD =

√√√√ 1
N

N

∑
i=1

(zi − zfit,i)
2 (5)

where zi are the actual z-coordinates and zfit,i are the fitted z-
coordinates.

SFI also utilizes computational topology, specifically through
the calculation of the Euler characteristic. The Euler characteristic
serves as a topological invariant that quantifies the connectivity of
a structure, allowing the SFI to distinguish between single-layer
and multilayered sheet formations. By computing the Euler char-
acteristic for each detected sheet structure, the SFI can assess the
complexity of the aggregate, identifying whether a sheet is com-
posed of a single layer of peptides or multiple interacting layers.
This topological analysis complements the geometric assessments
provided by the RDF and quadratic fitting, enhancing the robust-
ness and accuracy of sheet detection.

The Euler characteristic χ is calculated as:

χ =V −E +F (6)

where V is the number of vertices, E is the number of edges, and
F is the number of faces in the structure.

Fig. 4 Sheet Formation Index (SFI) results for FF dipeptides, showcasing
planar and curved sheet formation.

The potential development, variation, and evolution of sheets
on the nanoscale is a key feature in the FF dipeptide self-assembly
pathway. A detailed visualization of the SFI results is provided in
Figure 4, illustrating the progression of planar and curved sheet
structures in the FF dipeptide system. Initially, there is a high
occurrence of smaller sheet structures, which are rapidly reorga-
nized. This transient phase is highlighted in the plot.

2.2.3 Vesicle Formation Index (VFI)

The Vesicle Formation Index (VFI) is a comprehensive metric used
to quantify the formation and stability of vesicles in peptide simu-
lations. The VFI leverages several advanced computational tech-
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niques to provide a detailed analysis of vesicle structures. Below,
we describe the theoretical background and the formulas used for
each descriptor.

VFI employs radial density profiling (RDP) to distinguish hol-
low vesicles from solid aggregates by analyzing the distribution
of peptide beads relative to the aggregate’s center of mass. A sig-
nificant density gap detected by the RDP indicates the presence
of a hollow core, characteristic of vesicles.

The radial density ρ(r) is calculated as:

ρ(r) =
1

V (r) ∑
i

miδ (r− ri) (7)

where V (r) is the volume of the spherical shell at distance r, mi

is the mass of the i-th particle, and ri is the distance of the i-th
particle from the center of mass.

To further characterize vesicle morphology, VFI utilizes surface
mesh generation to calculate surface area and volume, enabling
the assessment of sphericity and the detection of structural devi-
ations from ideal vesicle shapes.

The sphericity Ψ is calculated using the formula:

Ψ =
π1/3(6V )2/3

A
(8)

where V is the volume enclosed by the convex hull and A is the
surface area of the convex hull.

Internal void analysis is performed using voxelization and
flood-fill algorithms31, which quantify the size and presence of
internal cavities, thereby providing precise measures of vesicle
integrity.

The hollowness ratio H is calculated as:

H =
Vtotal −Voccupied

Vtotal
(9)

where Vtotal is the total volume of the vesicle and Voccupied is the
volume occupied by the particles.

Additionally, asphericity and acylindricity derived from the gy-
ration tensor of the aggregates are used to capture the geometric
complexity of vesicles. These descriptors offer insights into the
overall shape and symmetry, facilitating the differentiation be-
tween perfectly spherical vesicles and those exhibiting irregular
or partially collapsed structures.

Asphericity ∆ is defined as:

∆ =
λ1 − 1

2 (λ2 +λ3)

λ1 +λ2 +λ3
(10)

where λ1, λ2, and λ3 are the eigenvalues of the gyration tensor,
with λ1 ≥ λ2 ≥ λ3.

Acylindricity Ac is defined as:

Ac =
λ2 −λ3

λ1 +λ2 +λ3
(11)

Following the development of sheet-like structures, FF contin-
ues to evolve and the sheets wrap up to form vesicle structures.
This is highlighted in Figure 5, which shows the VFI results. The
initial transient region is shorter compared to sheets; however,

Fig. 5 Vesicle Formation Index (VFI) results for FF dipeptides, empha-
sizing vesicle formation and hollow core analysis.

vesicles dominate the later stages of the simulation, indicating
their metastable state.

2.2.4 Fibre Formation Index (FFI)

The Fibre Formation Index (FFI) is a comprehensive metric used
to quantify the formation and stability of fibre structures in pep-
tide simulations. The FFI leverages several advanced computa-
tional techniques to provide a detailed analysis of fibre structures.
Below, we describe the theoretical background and the formulas
used for each descriptor.

By utilizing moments of inertia32, the FFI classifies the three-
dimensional geometry of aggregates, determining properties such
as elongation and linearity that are characteristic of fibre struc-
tures. This geometric classification enables the differentiation of
elongated, linear assemblies from more compact or irregular ag-
gregate forms.

The moments of inertia I are calculated using the inertia tensor
I:

I = ∑
i

mi (ri · riI− ri ⊗ ri) (12)

where mi is the mass of the i-th particle, ri is the position vector of
the i-th particle relative to the center of mass, and I is the identity
matrix.

The shape ratios are then calculated from the eigenvalues
λ1,λ2,λ3 of the inertia tensor:

Shape Ratio 1 =
λ3

λ2
(13)

Shape Ratio 2 =
λ2

λ1
(14)

where λ1 ≤ λ2 ≤ λ3.
Orientation distribution analysis within the FFI framework pro-

vides insights into the alignment of peptides along the principal
axis of the fibre. This analysis assesses the degree of internal or-
dering, which is essential for understanding the mechanical prop-
erties and stability of the fibres.

The orientation of each peptide is represented by a vector vi.
The alignment of these vectors with the principal axis p is quan-
tified using the cosine of the angle θi between vi and p:

cos(θi) =
vi ·p

∥vi∥∥p∥
(15)
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The mean and standard deviation of the angles θi are then cal-
culated to assess the alignment.

Additionally, cross-sectional profiling examines the uniformity
and consistency of the fibre’s structure along its length, iden-
tifying variations that may indicate deviations from ideal fibre
morphologies. By incorporating shape anisotropy metrics derived
from the gyration tensor, the FFI also captures the geometric com-
plexity and symmetry of fibre assemblies.

The cross-sectional area A at a position z along the fibre is cal-
culated using the convex hull of the projected positions onto the
plane perpendicular to the principal axis:

A(z) = ConvexHull({ri ·p = z}) (16)

Fig. 6 Fibre Formation Index (FFI) results for FF dipeptides, detailing
elongated and linear assembly behaviour.

Figure 6 displays the FFI results, detailing the formation of
elongated, linear assemblies and characterizing their structural
progression in the FF dipeptide system. As expected, their occur-
rence is limited in the case of FF, which is well-known to form
nanotubes.

2.2.5 Tube Formation Index (TFI)

The Tube Formation Index (TFI) is a comprehensive metric used
to quantify the formation and stability of tube structures in pep-
tide simulations. The TFI leverages several advanced computa-
tional techniques to provide a detailed analysis of tube structures.
Below, we describe the theoretical background and the formulas
used for each descriptor.

TFI employs cylindrical harmonic analysis to transform peptide
positions into cylindrical coordinates, facilitating the detection of
both straight and curved tubular structures. This transformation
allows for the accurate identification of the principal axis of the
tube and the assessment of its geometric properties.

The cylindrical coordinates (r,θ ,z) are calculated as:

ri =
√

x2
i + y2

i (17)

θi = arctan2(yi,xi) (18)

zi = zi (19)

where (xi,yi,zi) are the Cartesian coordinates of the i-th particle.
To effectively capture variations in tube structure, TFI imple-

ments segment-based analysis. The segment-based analysis in-
volves dividing the tube into segments of length L and performing

cylindrical harmonic analysis on each segment. By dividing the
tube into smaller segments, TFI can accommodate local irregular-
ities and curvature, ensuring the detection of long, curved tubes
and identifying deviations from ideal cylindrical shapes. This lo-
calized approach enhances the ability to recognize complex tube
morphologies that may arise during peptide self-assembly.

TFI utilizes Radial Density Profiling (RDP) to verify the hollow-
ness of detected tube structures. By calculating the distribution of
peptide beads relative to the central axis of the tube, TFI identi-
fies density gaps indicative of hollow cores, distinguishing vesicu-
lar tubes from solid cylindrical aggregates. This analysis provides
critical insights into the internal geometry of the tubes, enabling
the differentiation between various aggregate types.

TFI also incorporates shape anisotropy analysis using the gy-
ration tensor to compute asphericity and acylindricity. These de-
scriptors offer insights into the overall shape and symmetry, facil-
itating the differentiation between perfectly cylindrical tubes and
those exhibiting irregular or partially collapsed structures.

Fig. 7 Tube Formation Index (TFI) results for FF dipeptides, capturing
cylindrical structures with internal hollowness.

Figure 7 illustrates TFI results, showcasing the emergence of
cylindrical structures in the FF dipeptide system. Initially, there
is low confidence in the detection due to rapid reorganization
and false positives caused by elongated vesicles; however, dur-
ing the later stages, only one tube is observed, alternating with
fibres and vesicles. While it is well known that FF forms tubes,
the interplay between fibres, vesicles, and tubes observed in the
latter stages of the simulation highlights the truly dynamic na-
ture of the nanostructure. Compression of a tube at some stage
can result in its reclassification as a fibre, while an expansion of a
tube may lead to its reclassification as a vesicle. Similarly, in the
final snapshots of the simulation (Figure 2d) the wrapping of the
tube-like structure into a doughnut shape can again result in the
classification of the structure as a vesicle. These observations un-
derscore the inherent relationship between these structures and
the degree of subjectivity involved in their classification. How-
ever, while thresholds can be defined to ensure the average struc-
ture aligns with visual classifications or to report only a dominant
structure, we have allowed structures to be classified under mul-
tiple shapes if they meet the criteria. This approach ensures we
capture transient structures that may occur simultaneously along
the assembly pathway, providing a more comprehensive under-
standing of the system’s dynamics.
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2.3 Assembly Pathway

In addition to analysing the individual structural descriptors, it is
possible to plot the individual shapes that occur along the self-
assembly pathway. Figure 8 illustrates the evolution of FF self-
assembly over the simulation time, highlighting the dynamic re-
organization of different structures before achieving stabilisation.
This progression underscores the intricate self-assembly mecha-
nisms that can lead to a variety of morphologies, such as aggre-
gates, sheets, vesicles, and tubes.

Fig. 8 Validation of descriptors on candidate FF, indicative of complex
reorganization of different shapes before stabilizing. Inset (a) shows the
evolution map, while inset (b) highlights the dominant structure in each
frame.

Following the successful validation using the FF dipeptide, we
extended our analysis to include all 59 dipeptide candidates to
evaluate their self-assembly behaviours. Among these candidates,
several exhibited significant reordering dynamics. Figure 9 dis-
plays the WI dipeptide, which achieved an AP score of 2.6. WI
has an initial period of rapid reorganization, however, after 750
ns there is a clear stabilization of the system, with a dominant
vesicle structure being formed.

Fig. 9 Reordering dynamics of candidate WI, achieving an AP score of
2.6, indicative of rapid self-organization into structured assemblies. Dot-
ted grey lines denote the regions undergoing reordering. Inset (a) shows
the evolution map, while inset (b) highlights the dominant structure in
each frame.

Conversely, other candidates demonstrated early stabilization
with minimal reorganization. Figure 10 shows RF dipeptide with
a lower AP score, reflecting its tendency to quickly reach a stable
configuration without extensive structural changes. These con-
trasting behaviours highlight the diversity in self-assembly mech-
anisms among the candidates, providing valuable insights for se-
lecting optimal dipeptides for specific nanostructure applications.

Fig. 10 Reordering dynamics of candidate RF, exhibiting early stabiliza-
tion with a lower AP score, indicative of minimal further reorganization.
Inset (a) shows the evolution map, while inset (b) highlights the domi-
nant structure in each frame.

2.4 High-Throughput Screening
The descriptors developed are capable of tracking the evolution
of nanostructures throughout the self-assembly pathway, provid-
ing invaluable insights into peptide self-assembly. The ultimate
objective is to utilize these descriptors to predict the final self-
assembled structure from a simulation, enabling the targeting of
specific architectures as a design property. To this end, we have
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applied these descriptors to the mid- and high-AP score dipep-
tides identified during the initial screen. The final frames of each
simulation were categorized into one of four shapes: sheet, vesi-
cle, fibre, and tube, with a fifth classification of ‘undetermined’ if
no clear shape could be evaluated.

Table 3 presents the distribution output, illustrating the nor-
malized occurrence of different shapes among the 59 candidates.
This provides valuable insights into the prevalence of various
structural formations and can aid in feature selection, enabling
the identification of specific shapes as desirable targets for diverse
applications.

Shape Distribution Dipeptides
V(99%), S(1%) IF, FI, FL, FY, FT, FW,

SF, CW, PF, WT, WW,
LW, FF, FS, VW, FV,
WC, WF, WS, WI, WV,
LF, TW, IW, FP, SW,
WP, TF, YW, SH, MW,
WL, WY, YS, SY

V(98%), S(2%) VF, CF, HS, YF, PW
V(98%), T(2%), S(1%) KF
V(97%), S(3%) FM
S(100%) MF
V(97%), T(3%), S(1%) RF, FH
V(96%), T(3%), S(1%) FD, RD
V(4%), T(3%), S(96%) WM
V(95%), T(4%), S(1%) HF, FC, KD, RW
V(94%), T(5%), S(1%) HT, HW
V(93%), T(6%), S(1%) KW, WH, WK
V(92%), T(8%) WR
V(84%), T(16%), S(1%) YC

Table 3 Dipeptide distribution by shapes: Vesicles (V), Tubes (T), and
Sheets (S). This distribution is calculated by the average of shapes over
the last 100 frames. The final snapshot of each dipeptide simulation is
added to the Supplementary Information (SI).

2.5 Limitations
The descriptor hyperparameters (such as the minimum tube size
and RDF range) used in this study have been selected to reflect
the force field, type of molecule and methods of simulations we
are performing and may need to be changed in future studies
where different, possibly all-atom, force fields are used. Param-
eters such as the minimum fibre length and asphericity thresh-
old require careful calibration when applied to higher sequence
spaces and larger systems. While the current framework is adapt-
able to larger peptides, empirical validation for these extended
sequences remains to be conducted in future studies.

Currently the Python modules developed are utilising only a
singleCPU core, which hampers the processing of thousands of
frames. Implementing parallel processing would substantially re-
duce analysis time. The calculation of RDF across all frames is
time-consuming, with average RDF cutoff distances ranging be-
tween 6.2 Å to 6.6 Å. In smaller systems, a static cutoff of 4.5 Å
is effective, reducing computational load without compromising
accuracy.

3 Conclusion
This study successfully introduced and validated five automated
descriptors for analyzing peptide self-assembly in molecular dy-
namics simulations. These descriptors demonstrated robust per-
formance in characterizing diverse morphologies, including ag-
gregates, sheets, vesicles, tubes, and fibers, and facilitated high-
throughput screening of dipeptide systems. By addressing exist-
ing limitations in computational analysis, this approach advances
the discovery of peptide-based biomaterials, offering a scalable
and efficient framework for future applications in drug delivery,
tissue engineering, and beyond.

In addition, we have demonstrated the ability to apply these de-
scriptors to follow the assembly pathway of nanostructures during
extended MD simulations. This capability was showcased in the
case of FF, where a variety of structures are formed throughout
the assembly mechanism, as well as in rapidly forming structures
like RF, which adhere to a single shape class. Furthermore, we
have shown that these descriptors can not only track the entire
assembly evolution but also quantify the amount of sheet, vesicle,
fiber, and tube characteristics in the final snapshot of the simula-
tion.

Our ultimate goal is to leverage these descriptors in machine
learning methods to target specific molecular nanostructures, en-
abling the design of macroscale functional materials such as soft
materials, gels, and emulsions. By characterizing and measuring
the development of nanostructures, this work represents a signif-
icant step toward the development of an efficient machine learn-
ing search algorithm to discover novel peptide-based supramolec-
ular gels.
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