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A B S T R A C T

β-diketiminate (or NacNac) ligands are a widely used ligand class in the stabilisation of metal complexes across
the periodic table, in part due to the ease of variability of the ligand steric and electronic effects either at the
β-carbon atom or the N-Ar group. Functionalisation of the γ-carbon position is not typically observed however
and examples of such complexes are scarce in the literature. Herein, we report on the synthesis and character-
isation of alkali metal NacNac complexes which contain such γ-carbon functionalisation in the form of a methyl
group. Deprotonation of the β-diketimine proligand Me3DipNacNacH 1 (Me3DipNacNacH = (CH3)C(C(CH3)
NDip)2H, Dip = 2,6-iPr2-C6H3) by various alkali metal bases yielded the corresponding alkali metal complexes
Me3DipNacNacAM (where AM = Li 2, Na 3, K 4, Rb 5, Cs 6) which have been fully characterised by 1H and 13C
{1H} NMR spectroscopy, while 3 and 4 have been structurally characterised by single-crystal X-ray diffraction.
The solid-state structures obtained illustrate the varied range of coordination modes accessible to such group 1
metal complexes.

1. Introduction

Since their first reported use in the 1960s as stabilising ligands for
homoleptic M(II) complexes (M = Co, Ni, Cu) [1–3], the β-diketiminate
ligand class (also known as ‘NacNac’ due to their resemblance to the
common ‘acac’ ligand) has been at the forefront in the stabilisation of
low oxidation/coordination state metal complexes. [4,5] The relatively
simplistic and high yielding synthesis of these monoanionic N,N’-
chelating ligands, coupled with the ease of tuneability of the ligand
steric and electronic factors [4], has facilitated the isolation of landmark
metal complexes across the periodic table e.g. Jones and Stasch’s mag-
nesium(I) dimer I [6], Roesky’s aluminium(I) II [7], Driess’ silylene III
[8] etc. (Fig. 1).

Functionalisation of the ligand system is most commonly achieved
by modification of either the N-aryl groups or the R groups on the ligand
backbone (Fig. 2). While typically regarded as spectator ligands, on
occasion they have been observed to engage in unwanted side-reactivity
due to the nucleophilic γ-carbon and the typically acidic R1 groups on
the β-carbon of the ligand backbone [9].

Although many variants have found extensive use in organometallic
chemistry, the most commonly used N-Ar group is the 2,6-

diisopropylphenyl (Dip) functional group [10], due to the increased
steric protection it provides to the resulting metal centre. This particular
NacNac (labelled as DipNacNacH (HC(C(CH3)NDip)2H, Dip = 2,6-iPr2-
C6H3)) does not typically include additional substitution at the γ-carbon
position i.e., anything greater in size than a proton. Functionalisation of
this γ-carbon i.e., with a methyl group to yield Me3DipNacNacH 1 (Me3D-
ipNacNacH = (CH3)C(C(CH3)NDip)2H, Dip = 2,6-iPr2-C6H3) requires an
additional synthetic step beyond the standard condensation route and
has seen limited use as a result. Reported metal complexes of γ-carbon
functionalised NacNac ligands are limited to Co [11], Pt [12,13], Al [14]
and Fe. [15–20] In particular, the Holland group have found extensive
use for these ligands in Fe chemistry e.g., to yield the bis-nitride Fe
complex via reduction of dinitrogen, which upon treatment with acid
produces ammonia. [15] To extend the chemistry of γ-carbon func-
tionalised NacNac ligands, we herein describe the synthesis and isola-
tion of a series of new alkali metal complexes via deprotonation of
Me3DipNacNacH 1 with a range of alkali metal bases.
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2. Results and discussion

2.1. Synthesis and NMR spectroscopic analysis

Alkali metal salts of β-diketiminates are commonly used in main
group chemistry due to their ease of synthesis and their ability to
participate in salt-metathesis with a range of main group elements. [21]
n-Butyllithium (n-BuLi), being the most commonly available strong al-
kali metal base, is regularly used to initiate the proligand deprotonation
step to yield the desired lithium complex, which depending on the
required reaction conditions can be carried out in either hydrocarbon or
polar solvents at low temperatures (− 78 ◦C). As expected, this method
proved successful in the synthesis of Me3DipNacNacLi 2, whereby addi-
tion of n-BuLi to a cooled hexane solution of Me3DipNacNacH followed by
stirring at RT overnight precipitates 2 as a colourless powder in a yield of
52 % (Scheme 1). Subsequent analysis by 1H NMR spectroscopy shows
clean conversion of the β-diketimine proligand to the desired product
indicated by the disappearance of the N–H resonance at δ 13.9 ppm.
Analysis by 7Li NMR spectroscopy also shows the presence of one
lithium environment exhibiting a resonance at δ 0.76 ppm (cf. δ =

− 1.90 ppm for DipNacNacLi10).
Initial attempts to extend this to sodium using sodium bis(trime-

thylsilyl)amide (NaHMDS) required heating of the sample for an
extended period, resulting in only approximately 50 % conversion after
six days at 60 ◦C as judged by 1H NMR spectroscopy (Scheme 2).
Repeating using n-butylsodium (n-BuNa) in place of NaHMDS and

following the reaction by 1H NMR spectroscopy indicates approximately
60 % conversion to the desired sodium complex Me3DipNacNacNa 3 after
only 20 min at RT, while almost quantitative conversion is observed
after three hours. Scale-up attempts in toluene afforded 3 as a yellow
crystalline solid in good yields (63 %) after work-up. The 1H and 13C
{1H} NMR spectrum of 3 is consistent with the proposed structural
formulation.

Similar extended reaction times and elevated temperatures were
required for the synthesis of the potassium derivative via deprotonation
of the ligand using potassium bis(trimethylsilyl)amide (KHMDS) – after
five days of heating benzene‑d6 solutions of 1 and KHMDS to 60 ◦C
almost quantitative conversion to Me3DipNacNacK 4 is obtained as judged
by 1H NMR spectroscopy. Subsequent attempts to synthesise 4 using
KCH2SiMe3 required milder conditions and afforded almost quantitative
formation of 4 after 16 h at RT (Scheme 2).

The rubidium derivative Me3DipNacNacRb 5 was subsequently

Fig. 1. Reported β-diketiminate stabilised low-oxidation state metal complexes (Dip = 2,6-diisopropylphenyl).

Fig. 2. Common Ar and R group variation in β-diketiminate ligands.

Scheme 1. Synthesis of Me3DipNacNacLi 2.

Scheme 2. Synthesis of Me3DipNacNacNa 3 and Me3DipNacNacK 4.
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synthesised in analogous fashion to 4 using the corresponding
RbCH2SiMe3 base, affording 5 in low yields (22 %) as a yellow crys-
talline solid, while Me3DipNacNacCs 6 could be prepared via the reaction
of caesium bis(trimethylsilyl)amide (CsHMDS) with 1 at ambient tem-
perature in toluene overnight, in yields of 50% (Scheme 3). Both 5 and 6
were fully characterised by 1H and 13C{1H} NMR spectroscopy and are
consistent with the expected structures of both.

No apparent trends were observed in the 1H NMR spectra across the
series of alkalimetal complexes2–6. The spectra obtained display similar
chemical environments to the respective (DipNacNac)M equivalent com-
plexes e.g. 2 exhibits a multiplet in its 1H NMR spectrum at δ 1.12–1.17
ppm for the Dip isopropyl CH3 environment while (DipNacNac)Li exhibits
the same environment between δ 1.12 and 1.16 ppm. In our experience,
the Me3DipNacNacM complexes show higher solubility in hydrocarbon
solvents compared with the equivalent DipNacNacM species.

2.2. Crystal structures

The molecular structures of 3 and 4 have been crystallographically
characterised and show noticeably differing ligand–metal bonding
modes. Me3DipNacNacNa.C7H8 3 crystallises as a monomeric species with

two full molecules in the asymmetric unit, Z′ = 2 (Fig. 3). Both sodium
atoms are solvated by a single toluene molecule, exhibiting an asym-
metric η6 coordination mode and Na–C bond lengths ranging from
2.745(5) Å to 3.197(4) Å. Na–N bond lengths are consistent with pre-
viously reported NacNac sodium complexes (CSD-2079713 and CSD-
2290068) [22,23] (Na2–N3: 2.267(3), Na2–N4: 2.264(3)), while the
N–C (1.325(4) Å and 1.329(4) Å) and C–C (1.427(4) Å and 1.413(4) Å)
bond lengths within the ligand are indicative of a delocalised system.

The molecular structure of Me3DipNacNacK 4 shows it to be a poly-
meric species (Fig. 4), similar to that of previously reported ArNacNacK
complexes. In the case of 4 however, the polymerisation is not solely
achieved via η-coordination to the ligand aryl groups as is typically
observed, but also through rotation of the NacNac ligand resulting in
two different potassium environments. The first of these exhibits coor-
dination to a nitrogen atom on two different NacNac ligands along with
minor interactions with the ipso-carbon atom on the adjacent dip group.
The second potassium centre is similarly bound to the other nitrogen
atom on each of the NacNac ligands and shows additional coordination
to both ipso- and ortho-carbon atoms on adjacent dip groups.

While the ligand system is twisted, the N–C (1.326(3) Å) and C–C
(1.419(3) Å and 1.421(3) Å) bond lengths suggest a somewhat delo-
calised system similar to that present in 3. The observed K-N bond
lengths are consistent with those in previously reported NacNac potas-
sium complexes. [24–27] This ligand rotation has previously been noted
in related phosphorus complexes of 1. [28].

3. Conclusions

In summary, a series of alkali metal complexes of the β-diketimine
proligand Me3DipNacNacH 1 have been synthesised by deprotonation
using strong alkali metal bases e.g. n-butyllithium and n-butylsodium.
Conversion of the proligand using AM-HMDS (AM = Na, K, Cs) bases
typically required longer reaction times and/or elevated temperatures.
Complexes 2–6 could be characterised by solution state NMR spectros-
copy, while the solid-state structures of 3 and 4 were determined by X-
ray crystallography. The structures of 3 and 4 show the unique range of
coordination modes e.g. solvent/ligand arene interactions that can be
accessed by such group 1 metal complexes. While pro-ligand 1 has been
well established in Fe chemistry, its use in main group chemistry is still
in its infancy. As such, the alkali metal complexes presented herein may
aid the wider community to further explore and develop its potential
applications.

4. Experimental

4.1. General methods and instruments

All alkali metal compounds described herein are highly air and
moisture sensitive. As such all experimental work was carried out using
standard Schlenk and glovebox techniques under a dry argon or dini-
trogen atmosphere. Toluene, hexane and THF were collected from an
Innovative Technology Solvent Purification System and stored over
activated molecular sieves. Deuterated benzene was purchased from
Sigma-Aldrich and stored over activated molecular sieves under argon.
n-BuLi and sodium bis(trimethylsilyl)amide were purchased from
Sigma-Aldrich and used as received. n-butylsodium [29], KCH2SiMe3,
RbCH2SiMe3 [30], potassium bis(trimethylsilyl)amide [31] and caesium
bis(trimethylsilyl)amide [32] were synthesised according to literature
procedures. Me3DipNacNacH 1 was synthesised using a modified litera-
ture method [15].

1H, 13C{1H} and 7Li NMR spectra were recorded on a Bruker AV3-
400 spectrometer in deuterated benzene, operating at 400.4 MHz
(1H), 100.7 MHz (13C{1H}) and 155.5 MHz (7Li), and were measured at
298 K. Chemical shifts were referenced to the residual 1H or 13C{1H}
solvent resonances or LiCl standard respectively. All chemical shifts are
reported in ppm.

Scheme 3. Synthesis of Me3DipNacNacRb 5 and Me3DipNacNacCs 6.

Fig. 3. Thermal ellipsoid plot (50 % probability level) of one of the crystallo-
graphically unique molecules of 3.C7H8. Hydrogen atoms and minor disordered
parts are omitted for clarity. Na-aryl interactions shown as dashed bonds.
Selected bond lengths (Å) and angles (◦): Molecule 1: Na1–N1 2.295(3),
Na1–N2 2.279(3), Na1–C34 2.963(18), Na1–C35 2.912(7), Na1–C36 2.851
(6), Na1–C37 2.947(5); N1–C4 1.325(4), N2–C2 1.329(4), C2–C3 1.427(4),
C3–C4 1.413(4); N1–Na1–N2 75.80(9); Molecule 2: Na2–N3 2.267(3),
Na2–N4 2.264(3), Na2–C70 2.896(4), Na2–C71 2.745(5), Na2–C72 2.811
(5), Na2–C73 3.030(5); N3–C41 1.322(4), N4–C39 1.320(4), C39–C40
1.424(4), C40–C41 1.423(5); N3–Na2–N4 77.21(10).
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Single crystal diffraction data for 3.C7H8 and 4 are reported in
crystallographic information files (CIF) accompanying this document
and deposited with the CCDC as deposition numbers 2409482 and
2409483. Full details on data collection, reduction and refinement can
be found in the individual CIFs. For 3.C7H8, a toluene ring of one unique
molecule and two i-Pr groups of the other unique molecule were
modelled as disordered. Appropriate constraints and restraints were
applied to ensure that the displacement and geometric parameters of
these groups approximated to normal behaviour.

4.2. Synthesis of 2–6

4.2.1. Me3DipNacNacLi (2)
Me3DipNacNacH 1 (200 mg, 0.46 mmol) was dissolved in hexane (10

mL) and cooled to − 80 ◦C. To this was added n-BuLi (0.35 mL, 0.55
mmol, 1.2 equiv.) dropwise and the solution was stirred for 30 min. This
was then warmed to RT and subsequently stirred overnight. The
resulting white precipitate was isolated by filtration and dried in vacuo
to yield 2 as a white powder. Concentration of the filtrate to ca. 5mL and
storage at − 30 ◦C for one day afforded a second crop of 2. Repeated
attempts to produce single crystals of 2 suitable for x-ray crystallo-
graphic analysis were unsuccessful. Yield = 105 mg (52 %).

1H NMR: δ = 1.12–1.17 (m, 24H, Ar-CH(CH3)2), 1.93 (s, 6H, NC
(CH3)), 2.12 (s, 3H, NC(CH3)C(CH3)), 3.09 (sept, J = 6.9 Hz, 4H, Ar-CH
(CH3)2), 7.12–7.19 (m, 6H, Ar-H).

13C{1H} NMR: δ = 18.9 (NC(CH3)C(CH3)), 22.2 (NC(CH3)), 24.1
(Ar–CH(CH3)2), 24.2 (Ar–CH(CH3)2), 28.2 (Ar–CH(CH3)2), 123.0
(Ar–C), 123.5 (Ar–C), 140.9 (Ar–C), 149.9 (Ar–C), 163.4 (NC(CH3)).
The expected resonance for the backbone γ-carbon could not be
observed.

7Li NMR: δ = 0.76 (Me3DipNacNacLi).

4.2.2. Me3DipNacNacNa (3)
To a J. Youngs flask was added Me3DipNacNacH 1 (100 mg, 0.23

mmol) and n-BuNa (24 mg, 0.300 mmol, 1.3 equiv.). Toluene (10 mL)
was then added at RT and the resulting yellow solution was allowed to
stir overnight. The solution was then concentrated in vacuo to approxi-
mately 5 mL and stored at − 30 ◦C for two days to afford 3 as a yellow
crystalline solid. Crystals suitable for X-ray crystallographic analysis
were grown from a concentrated toluene solution of 3. Yield = 63 mg
(63 %).

1H NMR: δ = 1.09 (d, J = 6.9 Hz, 12H, Ar–CH(CH3)2), 1.20 (d, J =
6.9 Hz, 12H, Ar–CH(CH3)2), 1.96 (s, 6H, NC(CH3)), 2.21 (s, 3H, NC
(CH3)C(CH3)), 3.20 (sept, J= 6.9 Hz, 4H, Ar–CH(CH3)2), 7.03–7.07 (m,

2H, Ar–H), 7.14–7.17 (m, 4H, Ar–H).
13C{1H} NMR: δ = 19.2 (NC(CH3)C(CH3)), 22.2 (NC(CH3)), 24.2

(Ar–CH(CH3)2), 24.4 (Ar–CH(CH3)2), 27.8 (Ar–CH(CH3)2), 91.1 (NC
(CH3)C(CH3)), 121.3 (Ar–C), 123.5 (Ar–C), 139.8 (Ar–C), 150.9
(Ar–C), 162.0 (NC(CH3)).

4.2.3. Me3DipNacNacK (4)
To a J. Youngs flask was added Me3DipNacNacH 1 (100 mg, 0.23

mmol) and KCH2SiMe3 (35 mg, 0.277 mmol, 1.2 equiv.). Toluene (10
mL) was then added at RT and the resulting red/orange solution was
allowed to stir overnight. The solution was then concentrated in vacuo to
approximately 5 mL and stored at − 30 ◦C for two days to afford 4 as an
orange crystalline solid. Crystals suitable for X-ray crystallographic
analysis were grown from a concentrated benzene/hexane solution of 4.
Yield = 72 mg (72 %).

1H NMR: δ = 1.03 (d, J = 6.9 Hz, 12H, Ar–CH(CH3)2), 1.23 (d, J =
6.9 Hz, 12H, Ar–CH(CH3)2), 2.03 (s, 6H, NC(CH3)), 2.30 (s, 3H, NC
(CH3)C(CH3)), 3.30 (sept, J= 6.9 Hz, 4H, Ar–CH(CH3)2), 6.98–7.02 (m,
2H, Ar–H), 7.13 (s, 2H, Ar–H), 7.15–7.16 (m, 4H, Ar–H).

13C{1H} NMR: δ = 18.9 (NC(CH3)C(CH3)), 22.4 (NC(CH3)), 24.2
(Ar–CH(CH3)2), 24.3 (Ar–CH(CH3)2), 27.6 (Ar–CH(CH3)2), 120.5
(Ar–C), 123.8 (Ar–C), 139.4 (Ar–C), 150.9 (Ar–C), 159.8 (NC(CH3)).
The expected resonance for the backbone γ-carbon could not be
observed.

4.2.4. Me3DipNacNacRb (5)
To a J. Youngs flask was added Me3DipNacNacH 1 (50 mg, 0.115

mmol) and RbCH2SiMe3 (24 mg, 0.138 mmol, 1.2 equiv.). Toluene (10
mL) was then added at RT and the resulting red/orange solution was
allowed to stir overnight. The solution was then concentrated in vacuo to
approximately 3 mL and stored at − 30 ◦C for three days to afford 5 as a
yellow/orange solid. Repeated attempts to produce single crystals of 5
suitable for X-ray crystallographic analysis were unsuccessful. Yield =

13 mg (22 %).
1H NMR: δ = 1.06 (d, J= 6.9 Hz, 12H, Ar-CH(CH3)2), 1.22 (d, J= 6.9

Hz, 12H, Ar-CH(CH3)2), 2.06 (s, 6H, NC(CH3)), 2.33 (s, 3H, NC(CH3)C
(CH3)), 3.26 (sept, J = 6.9 Hz, 4H, Ar-CH(CH3)2), 6.98–7.14 (m, 4H, Ar-
H).

13C{1H} NMR: δ = 19.4 (NC(CH3)C(CH3)), 22.6 (NC(CH3)), 24.1 (Ar-
CH(CH3)2), 24.2 (Ar-CH(CH3)2), 27.7 (Ar-CH(CH3)2), 92.8 (NC(CH3)C
(CH3)), 120.7 (Ar-C), 123.8 (Ar-C),139.5 (Ar-C), 151.4 (Ar-C), 160.9
(NC(CH3)).

Fig. 4. Thermal ellipsoid plot (50 % probability level) of 4. Hydrogen atoms and co-crystallised benzene molecule omitted for clarity. K-aryl interactions shown as
dashed bonds. Selected bond lengths (Å) and angles (◦): K1–N1 2.638(2), K2–N2 2.7131(19), N1–C2 1.326(3), N2–C4 1.326(3), C2–C3 1.419(3), C3–C4 1.421
(3); N1–K1–N1 150.53(10), N2–K2–N2 180(8).
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4.2.5. Me3DipNacNacCs (6)
To a J. Youngs flask was added Me3DipNacNacH (50 mg, 0.115 mmol)

and Cs(HMDS) (40 mg, 0.138 mmol, 1.2 equiv.). Toluene (10 mL) was
then added at RT and the resulting red/orange solution was allowed to
stir overnight. The solution was then concentrated in vacuo to approxi-
mately 1 mL and stored at − 30 ◦C for three days to afford 6 as a dark
orange solid. Repeated attempts to produce single crystals of 6 suitable
for X-ray crystallographic analysis were unsuccessful. Yield= 33 mg (50
%).

1H NMR: δ = 1.07 (d, J = 6.9 Hz, 12H, Ar–CH(CH3)2), 1.22 (d, J =
6.9 Hz, 12H, Ar–CH(CH3)2), 2.09 (s, 6H, NC(CH3)), 2.38 (s, 3H, NC
(CH3)C(CH3)), 3.25 (sept, J= 6.9 Hz, 4H, Ar–CH(CH3)2), 6.98–7.14 (m,
4H, Ar–H).

13C{1H} NMR: δ = 20.4 (NC(CH3)C(CH3)), 23.0 (NC(CH3)), 24.2
(Ar–CH(CH3)2), 24.3 (Ar–CH(CH3)2), 27.7 (Ar–CH(CH3)2), 94.4 (NC
(CH3)C(CH3)), 120.7 (Ar–C), 123.8 (Ar–C), 139.7 (Ar–C), 151.7
(Ar–C), 161.0 (NC(CH3)).
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