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Quantum simulations of Hubbard models with ultracold atoms rely on the exceptional control of
coherent motion provided by optical lattices. Here we demonstrate enhanced tunability using an optical
superlattice in a fermionic quantum gas microscope, evidenced by long-lived coherent double-well
oscillations, next-nearest-neighbor quantum walks in a staggered configuration, and correlated quantum
walks of two particles initiated through a resonant pair-breaking mechanism. We furthermore demonstrate
tunable spin couplings through local offsets and engineer a spin ladder with ferromagnetic and anti-
ferromagnetic couplings along the rungs and legs, respectively. Our Letter underscores the high potential of
optical superlattices for engineering, simulating, and detecting strongly correlated many-body quantum
states, with direct applications ranging from the study of mixed-dimensional systems to fermionic quantum
computing.
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Introduction—Ultracold atoms confined in optical latti-
ces have proven to be an exceptionally fruitful approach for
exploring, understanding, and engineering quantum many-
body phases [1]. During recent years, significant progress
has been made in quantum simulations of Hubbard models,
especially with quantum gas microscopes [2], which
resolve individual particles of a degenerate quantum gas
at each lattice site and allow manipulation of the quantum
system with local control [3–11]. Lattices beyond the
simple square geometry allow one to engineer different
band structures [12–16], explore strongly correlated mag-
netic phases [17], simulate artificial magnetic fields and
topology [18–21], prepare out-of-equilibrium states [22],
implement quantum gates [23–27], induce frustration
[28–30], and improve detection [31,32].
An optical superlattice consists of two (or more) super-

imposed optical lattices with commensurate lattice con-
stants. Several types of implementations have been
demonstrated in the context of quantum simulation: folded
lattices [33], single-wavelength lattices [13], and bichro-
matic lattices [17,22,31,34–36]. A major challenge of

such experimental platforms lies in achieving minimal
phase noise for enhanced quantum coherence while main-
taining a high degree of tunability for state engineering and
dynamics. While state-of-the-art platforms have reported
superlattice phase stability as low as 10 mrad [32,36], and
even sub-mrad in tunable honeycomb lattices [37], practical
implementations of exotic many-body physics in super-
lattice experimental platforms have been limited so far.
Here, we demonstrate enhanced state preparation, dyna-

mics, and quantum simulation of the Fermi-Hubbard model
with a bichromatic superlattice. We demonstrate a suffi-
ciently high degree of control for novel applications,
ranging from studying exotic Hubbard models to engineer-
ing building blocks of fermionic quantum computation. In
particular, we implement double-well (DW) oscillations
with substantial coherence times, strongly correlated quan-
tum walks revealing direct control over nearest-neighbor
(NN) and next-nearest-neighbor (NNN) coupling, and
Fermi-Hubbard ladders with full control over spin super-
exchange—including the inversion of its sign.
Description of the system—Our quantum simulator

realizes the spin-1=2 repulsive Fermi-Hubbard model using
ultracold 6Li loaded in two-dimensional optical super-
lattices generated from the interference of laser beams at
532 and 1064 nm under an angle of 26.7° [see Fig. 1(a)].
Our single-source bichromatic design ensures that the
relative phase φ is robust to short-term drifts (see the
End Matter for details regarding the implementation).
The total potential Vðx; yÞ imprinted to the atoms takes
the form
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Vðx; yÞ ¼ Vxcos2½πx=ax þ φ� þ Vx;Lsin2½πx=ð2axÞ�
þ Vysin2½πy=ay�; ð1Þ

where ax ¼ 1.15ð1Þ μm and ay ¼ 1.11ð1Þ μm are the
lattice constants, Vx and Vy are the short lattice depths
along x and y, Vx;L is the long lattice depth along x, and φ is
the relative phase. In the following, the lattice depths are
expressed in units of their respective recoil energy ER

i ¼
h2=8ma2i (i ¼ x, y) for the short lattices and ER

x;L ¼ ER
x =4

for the long lattice, with h the Planck’s constant and m the
mass of a single atom.
The unit cell of the system contains two lattice sites, and

the potential landscape within a unit cell varies continu-
ously upon varying the phase φ. Staggered potentials with
an energy offset on the even (odd) sites for φ < 0 (φ > 0)
can thus be engineered, while a balanced configuration is
obtained for φ ¼ 0 [Fig. 1(c)]. The atomic ensemble is well
described by the single-band Fermi-Hubbard model, with
Hamiltonian

Ĥ ¼
X

hiji;σ

�
−tijĉ

†
i;σ ĉj;σ þ H:c:

�þ U
X

i

n̂i;↑n̂i;↓ þ
X

i;σ

Δin̂i;σ;

ð2Þ

where hiji are NN sites, σ ¼ ↑;↓ is the spin state, ĉ†i;σ is
the fermionic creation operator for spin σ at site i, tij is the
tunnel coupling between sites i and j, n̂i;σ ¼ ĉ†i;σ ĉi;σ is the
atom number operator at site i for spin σ, U > 0 is the on-
site interaction energy, and Δi is a site-dependent energy
offset. In this Letter, tij ¼ ty if i and j are NN along y, and

tij ¼ tð1Þx (tð2Þx ) for i and j NN along x within a unit cell

(between unit cells). The tunneling energies tij and offsets
Δi are controlled by the lattice potential from Eq. (1), and
the interaction energy between the two spin states, encoded
by the lowest two hyperfine states of 6Li, is set using the
broad Feshbach resonance around 830 G. In the following,
we describe single- and two-particle experiments involving
engineered potentials such as isolated DWs and staggered
configurations. Unless otherwise stated, we prepare a filling
with an ensemble of both singly and doubly occupied
isolated systems, on which single- and two-particle effects
are identified via postselection, effectively exploring near-
ground-state physics [45].
We measure the atomic density distribution with single-

site resolution by performing fluorescence imaging
[Fig. 1(b)]. We calibrate and characterize the lattice phase
control of our apparatus by loading a balanced mixture of
both spin states in the superlattice at different phases φ. The
lattice depths are chosen in order to engineer a system
of quasi-isolated DWs, with tunneling amplitudes in the

balanced configuration tð1Þx =h ¼ 510ð73Þ Hz and tð2Þx =h ¼
13ð1Þ Hz (see the End Matter). We measure the normalized
imbalance I ¼ ðhn̂oi − hn̂eiÞ=ðhn̂oi þ hn̂eiÞ [Figs. 1(d)
and. 1(e)], where hn̂eðoÞi is the average atomic density
on even (odd) sites. When considering DWs populated with
a single atom [Fig. 1(d)], the symmetric phase φ ¼ 0 is
identified as the phase for which a balanced system (I ¼ 0)
is engineered. As the phase changes, only the lowest well is
populated in each unit cell, resulting in a strong shift in the
imbalance toward jĪ j ¼ 0.985ð2Þ in the large tilt regime

50 mrad ≤ jφj ≤ 300 mrad [4.3ð6Þ ≤ jΔ=tð1Þx j ≤ 23ð4Þ].
When considering DWs populated with two atoms, a

fully imbalanced configuration is reached only for a tilt that
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FIG. 1. Experimental setup. (a) The superlattice is engineered by superimposing optical lattices generated from the interference of
laser beams at 532 and 1064 nm under an angle. In this Letter, only the short lattice (532 nm) is used in the y direction. (b) Exemplary
site-resolved fluorescence pictures of atoms for different relative phases φ. (c) Lattice potential for the phases shown in (b), with the unit
cell marked by the black rectangle. (d),(e) Imbalance I of the system in the case of (d) one atom or (e) two atoms per unit cell. The error
bars in this figure, as in all other figures, are derived from a bootstrap procedure and are smaller here than the data points. The lines are
obtained from the ground state of a two-site Fermi-Hubbard model with parameters t, U, and Δ (see the main text) obtained from
ab initioWannier function calculations with (solid lines) and without (dashed lines) accounting for the finite ramp time of our detection
procedure [38].
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overcomes the interaction energy, jΔij > U. Thus, we
observe a balanced configuration I ¼ 0 over a region
jφj ≲ φc, with φc ≈ 170 mrad in our system where
U=h ≈ 7.7 kHz, while a fully imbalanced configuration
is reached for jφj≳ φc. In Figs. 1(d) and 1(e), the data are
well matched by a ground-state calculation of a two-site
Fermi-Hubbard model without free parameters.
Double-well oscillations—We highlight the single-par-

ticle control of our system by conducting DW oscillations.
The system is initialized in a fully imbalanced configura-
tion at φ ¼ −400 mrad, here with about one atom per
double well on average. Quenching the relative phase to
φ ¼ 0 at time τ ¼ 0 leads to an oscillation of the pop-
ulations of the two sites in the double well [see Fig. 2(a)]. In
our data analysis, we postselect on DWs containing exactly
one detected atom.
The evolution is well captured by a resonant two-level

oscillation with dephasing hn̂LðτÞi¼ ½1þ cosðωτÞe−τ=τd �=2.
The extracted frequency ω ¼ 2π × 1.261ð1Þ kHz is in good
agreement with the expected frequency ωth ¼ 2tð1Þx ℏ−1 ¼
2π × 1.36ð20Þ kHz calculated from the lattice depths (see
the End Matter). Our apparatus furthermore allows one to
probe DW oscillations locally, revealing spatial inhomo-
geneities in the oscillation frequency [Fig. 2(b)], which can
be attributed to the inhomogeneities of the underlying

lattice potential [38]. The decay time τd ¼ 27ð3Þ ms ¼
33ð4Þ × 2π=ω is found to be consistent with residual
tunneling between neighboring DWs [Fig. 2(c)] owing
to the finite depths of our lattices. Moreover, we find that
this residual tunneling is the dominant source of decohe-
rence compared to spatial inhomogeneities across the
system and phase fluctuations (see the End Matter and
the Supplemental Material [38]).
When the two-level system defined by the DW is inter-

preted as an orbital qubit [32], the quality of the oscillations
directly indicates the fidelity of single-qubit operations.
Specifically, we directly measure a π-pulse fidelity Pexp

π ¼
1 − hn̂Lðτ ¼ π=ωÞi ¼ 0.988þ0.007

−0.009 [the orange point in
Figs. 2(a) and 2(c)] by averaging over 22 DWs in the
center of our system [the black rectangle in Fig. 2(b)].
Using the fit to the data, which takes into account
dephasing and postselection (see above), we find that
Pπ ¼ 0.991ð1Þ. When taking into account the detection-
induced errors associated with the motion and loss of
particles during imaging, this fidelity increases to Pπ ¼
0.993ð1Þ [38]. Because our primary source of decoherence
is associated with inter-DW coupling, we expect the fidelity
to improve if larger long lattice depths are achieved—in
practice, we estimate Pπ > 0.999 for reasonable depths
Vx;L ≳ 70 ER

x;L.
Quantum walks—We study larger-scale dynamics of our

system via quantum walks in one dimension carried out in
a standard (Vx;L ¼ 0) and in a staggered ðVx;L > 0;

φ ¼ π=2; tð1Þx ¼ tð2Þx ¼ tÞ lattice potential. The system is
initialized by populating a single column of atoms along y
in a frozen configuration, and the dynamics along x is
initiated at τ ¼ 0 by abruptly quenching the short and long
lattices along x to lower depths (see the End Matter). The
average atomic density hn̂iðτÞi is then reconstructed as a
function of space and time.
Figure 3(a) shows the dynamics of a single atom in a

standard lattice. We postselect the experimental data on
rows populated with one atom (

P
i n̂i ¼ 1), and we recover

the expected dynamics from quantum walks [38]. The time
axis is given in units of tunneling times ðt̃=ℏÞ−1, where t̃ is
an effective tunneling amplitude which, for standard
lattices, is equal to the NN tunneling energy t̃ ¼ t ¼
h × 96ð11Þ Hz (see the End Matter). In a staggered
potential [Fig. 3(b)], with t=h ¼ 320ð25Þ Hz and an energy
offset at neighboring sites Δ=h ¼ 1.36ð7Þ kHz, NN tun-
neling is almost completely suppressed. NNN sites, how-
ever, remain degenerate in energy, resulting in a nonzero
effective coupling t̃ ¼ t0 þ t2=Δ. Here, t0=h ¼ −12ð2Þ Hz
is the direct tunneling process between the NNN sites,
and t2=Δ ¼ h × 76ð13Þ Hz is a perturbative coupling that
depends on the virtual population of the intermediate (NN)
site [38]. In such a staggered configuration, the quantum
walk is constrained to the sublattice that contains the initial
state. Even in these slower dynamics, we observe coherent
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FIG. 2. Double-well oscillations. (a) Population evolution
hn̂LðτÞi on the left site of the DWs as a function of time τ after
the quench (τ ¼ 0) from an imbalanced situation (φ < 0) to a
symmetric double well (φ ¼ 0). The orange point is used to
evaluate our experimental π-pulse fidelity (see the text). (b) Local
DW oscillation frequency. The black rectangle indicates the 22
DWs considered in (a). (c) Coherence of the measured oscil-
lations (blue points) compared to different decoherence models
(see the text).

PHYSICAL REVIEW LETTERS 134, 053402 (2025)

053402-3



evolution up to almost ten sites before the expansion slows
down due to large-scale inhomogeneities of our lattices
inherent to the Gaussian envelope of the laser beams [38].
Interaction effects are revealed by postselecting data with

two atoms per row (
P

i n̂i ¼ 2) and total spin 0, effectively
considering dynamics with the initial state being a repul-
sively bound state [34,46,47], i.e., a doubly occupied site.
In the staggered lattice considered here, the motion of
the doublon is generally fully suppressed, as an NNN
coupling would be a fourth order process in the tunneling
energy [38]. However, a resonant pair-breaking process can
be found by tuning the NN energy offset to be close to half
the interaction energy, Δ ¼ U=2: the doublon at position
i ¼ 0 becomes degenerate with the state corresponding to
one atom in each of the neighboring sites i ¼ �1, allowing
a breaking of the bound pair. We show in Fig. 3(c) a
quantum walk in this configuration, depicting population in
sites i ¼ �1 in the early dynamics, as a consequence of this
pair-breaking process. Subsequent dynamics appears to be
similar to the one in Fig. 3(b), with a nonzero population
on the sublattice that contains sites i ¼ �1. We probe
correlations of the initially bound pair by evaluating the
correlation map Γij ¼ hĉ†i ĉ†j ĉjĉii ¼ hn̂in̂ji − hn̂iiδij, with
δij the Kronecker delta. In Fig. 3(d), we show Γij for two
evolution times τt̃=ℏ ≈ 1 and τt̃=ℏ ≈ 3.5, revealing nonzero
correlations between two atoms distant up to 12 sites for the
latter. The agreement with theory is excellent [38], indicat-
ing that the quantum coherence of the evolution is main-
tained over a long time.
To highlight the striking difference between singly

and doubly occupied initial states, we consider in Fig. 3(e)

the extension of the atomic density distribution hjxji ¼P
i piðτÞjxij, with piðτÞ ¼ hn̂iðτÞi=

P
ihn̂iðτÞi, for a fixed

time τ ¼ 4 ms (tτ=ℏ ≈ 8), as a function of the staggering
energy offset Δ=U. For a singly occupied initial state (gray
circles), we measure a localization of the distribution when
increasing Δ, following the reduction of the effective
tunneling energy t̃. For a doubly occupied initial state
(orange squares), we observe a sharp resonance around
Δ=U ≈ 0.5, corresponding to the pair-breaking situation of
Fig. 3(c), while the distribution remains localized for most
other staggering offsets (examples are given in the inset).
At Δ ¼ 0, the extension of the atomic distribution is that of
a bound pair in a standard lattice [47].
Engineering ferromagnetic couplings—While a stag-

gered configuration allows tunneling to be suppressed,
magnetic correlations are predicted to remain, except in the
resonant configuration Δ ≈U for which a nonvanishing
doublon population is expected [24,48]. Away from this
resonant condition, NN spin interactions are expected to be
described by a perturbative superexchange coupling J
which changes sign for Δ > U (see the End Matter),

JðΔÞ ¼ 4t2=U
1 − ðΔ=UÞ2 : ð3Þ

We explore this effect by loading an ensemble of
ladders of length L ¼ 11 with hn̂i ≈ 0.93 atoms per site,
with Hubbard parameters tx=h ¼ 342ð49Þ Hz (ty=h ¼
163ð20Þ Hz) along the rungs (legs) and U=h ¼
4.96ð12Þ kHz at φ ¼ 0 (see the End Matter). The loading
procedure [Fig. 4(a)] relies on first freezing the system

-8 -4 0 4 8

Position i (site)

0

1

2

3

0

1

-12 -8 -4 0 4 8 12

Position i (site)

0

1

2

3

0

1

-12 -8 -4 0 4 8 12

Position i (site)

0

1

2

3

0

2

-8 0 8
Site i

-8

0

8

S
it
e
j

Experiment

-8 0 8
Site i

Theory

0

1
ij

-8 0 8
Site i

-8

0

8

S
it
e
j

-8 0 8
Site i

0.0

0.3
ij

0.0 0.5 1.0

U

0

1

2

3

-4 0 4
10

5

0

T
im

e
(m

s
)

U

-4 0 4

Position (site)

0

2

(a) (b) (c) (d) (e)

FIG. 3. Quantum walks on a superlattice. (a),(b) Symmetrized density distributions hn̂iðτÞi for a state localized at i ¼ 0 at τ ¼ 0 in the
case of (a) a standard lattice and (b) a staggered superlattice at φ ¼ π=2. In (a), the particle delocalizes on a timescale given by the NN
tunneling energy t̃ ¼ t ¼ h × 96ð11Þ Hz. In (b), direct NN coupling is suppressed, but NNN processes remain resonant with an effective
coupling t̃ ¼ t2=Δþ t0 ¼ h × 64ð11Þ Hz (see the main text). (c) A superlattice initialized with a doublon features a resonant pair-
breaking process upon tilting at Δ ¼ U=2, where the doublon is coupled to a delocalized state of two singly occupied neighbors. At
longer times, the distribution behaves similarly to (b), with t̃ ¼ t2=ð−ΔÞ þ t0 ¼ h × 52ð9Þ Hz. The dashed lines in (a)–(c) indicate the
expected scaling behavior x ∼ 2t̃τ=ℏ of the quantum walk expansion. (d) Correlation maps Γij ¼ hĉ†i ĉ†j ĉjĉii of the experimental data
and from numerical simulations. (e) Spatial extension of the density distribution after a fixed time τ ¼ 4 ms (τt=ℏ ≈ 8, with t the bare
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where the resonant condition is not met showcase the absence of delocalization.
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along x [steps (i) and (ii)] before applying the tilt with a
variable superlattice phase φ [steps (iii) and (iv)] in order to
prevent atoms from exclusively populating the lower leg in
the regime of strong tilts Δ > U. This procedure is very
similar to the one used in our recent work [10,49] to
engineer mixed-dimensional (mixD) systems. We evaluate
the normalized spin-spin correlations,

CðrÞ ¼ 1

N r

X

i;j
i−j¼r

hŜzi Ŝzji − hŜzi ihŜzji
σðŜzi ÞσðŜzjÞ

; ð4Þ

with σ2ðŜzjÞ ¼ hðŜzi Þ2i − hŜzi i2 the on-site spin fluctuations
and N r a normalization constant counting the number of
pairs of sites of size r. We show in Fig. 4(b) the NN spin
correlations Cðjrj ¼ 1Þ as a function of tilt Δ. The inset
indicates the doublon density hn̂i↑n̂i↓i, showing that an
excess of doublons are created only in the vicinity of
Δ ≈U. The symmetrized spin correlation maps CðrÞ are
given in Fig. 4(c).
At Δ ¼ 0, the NN spin correlations are close to −0.2,

with an asymmetry between the x and y directions due to
the anisotropy of the superexchange coupling (Jx=Jy ≈ 4).
As Δ increases, Jx increases while Jy remains unchanged,
resulting in an increase in the magnitude of the spin
correlations along x and a slight decrease along y account-
ing for the redistribution of the correlations. The highest
correlations are reached around Δ=U ≈ 0.5, in a regime
where the rung tunneling is suppressed, while the doublon
density remains low. Quite generally, for Δ < U, we
observe the characteristic checkerboard antiferromagnetic
pattern, with strong rung singlets along x in the large Jx
regime [Fig. 4(c)].

As Δ approaches U, we observe vanishing spin corre-
lations in all directions, concomitant to the peak in the
doublon density. When one tilts above the interaction
energy Δ > U, Jx changes sign, as expected from Eq. (3).
In this regime, we observe positive spin-spin correlations
along x, signaling ferromagnetic coupling along the rungs
of the ladders, while antiferromagnetic ordering remains
along y. The spin correlation map, which no longer features
a checkerboard pattern, furthermore displays enhanced
correlations along y due to the lack of competition in the
spin ordering, as expected from the hybrid spin coupling
engineered here.
The experimental data are compared to finite-

temperature exact diagonalization of the Fermi-Hubbard
model of Eq. (2) on a system of size 2 × 4 at half
filling [38]. Our experimental results are qualitatively well
reproduced by the numerical simulations [the solid lines in
Fig. 4(b)], in which the different regimes realized in the
experiment are identified: enhanced antiferromagnetic rung
correlations for 0 < Δ < U, vanishing correlations around
Δ ≈U, and ferromagnetic rung correlations for Δ > U.
The quantitative differences, especially for rung correla-
tions around Δ=U ≈ 0.5, are attributed to the finite size and
finite doping effects of the numerical simulations [38]. Our
simulations also suggest that the prepared states remain
close to the equilibrium states of an effective mixD t − J
model without a drastic increase in temperature [38,49].
Conclusion—The different experiments conducted in

this Letter, ranging from single-particle to many-body
physics, illustrate how superlattices can be used in the
context of quantum simulation using ultracold atoms. Our
DW results can be extended to collisional gates [50,51] with
the prospect of fermionic quantum computation [52–55],
while the pair-breaking mechanism and correlated quantum
walk regime [34,47,56] that we have demonstrated finds
an application in the simulation of lattice gauge theories
[57–59] and engineered quantum many-body systems [60].
We have shown how a superlattice can be used to control and
modify the coupling strengths of the Hubbard Hamiltonian.
Engineering ferromagnetic correlations in a many-body
system at equilibrium, in particular, goes beyond previous
work in DWs [24,61] and opens avenues for exploring
symmetry-protected topological states [9].
Our Letter highlights the potential for the simulation of a

broader range of real or theoretically interesting artificial
materials. Specifically, our platform is well suited to explor-
ing systems with mixed dimensionality [10,49,62–64],
which appears to be crucial for novel types of unconven-
tional superconductivity [65,66]. Superlattices and DW
oscillations can reveal coherent pairing and superconducting
order in quantum simulations of such systems [67].
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correlation maps illustrating the sign inversion of the spin
coupling along x.
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End Matter

Superlattice phase control and stability—The
superlattice potential results from the superposition of
two shallow-angle optical lattices produced from laser
light at 532 and 1064 nm for the short and long lattices,
respectively [Fig. 1(a)]. Each lattice is generated by the
interference of two laser beams—the two arms of the
lattice—with a difference in path length of about
L ≈ 40 cm. A change in the frequency of the laser field
translates into a phase shift of the interference pattern as
a consequence of this delay line. When the short lattice
frequency is changed from f ¼ f0 ¼ c=ð532 nmÞ to
f ¼ f0 þ Δf, with c the speed of light, the phase of the
lattice potential changes by φ ¼ LπΔf=c [see Eq. (1)].
Experimentally, the frequency shift is induced by
acousto-optic deflectors in a manner similar to that
in [31]. In our setup, this method allows the relative
phase φ to be tuned by ∼1.3π, which is enough to go
from a fully balanced configuration to a fully staggered
configuration.
In the design process of the optical lattices, special care

has been put into thermally and mechanically isolating the
optical setup for splitting and recombining the lattice arms.
The optical elements, in particular, are glued on a glass

material with a low thermal expansion coefficient and
placed in an evacuated box. The independent propagation
in air of each arm is limited to about 10 cm. Additional
details can be found in [68].
We evaluate the absolute phase stability of the setup

through repeated measurements over several days. The
absolute lattice phase, i.e., the absolute position of the
lattice grid with respect to the acquisition camera, is
inferred for each experimental realization. The results
are given in Fig. 5(a) and illustrate the outstanding stability
of our setup, featuring sub-lattice-site fluctuations over a
period of more than two days.
The relative phase stability is inferred by performing

repeated imbalance measurements [see Fig. 1(d)] in the
balanced configuration (φ ¼ 0). The average imbalance I
is evaluated for each repetition and represented vs time in
Fig. 5(b). Fluctuations of the imbalance around I ¼ 0 are
attributed to the shot-to-shot fluctuation of the relative
superlattice phase. In particular, we measure a standard

deviation of the imbalance
ffiffiffiffiffiffiffiffiffi
ΔI2

p
¼ 0.167, corresponding

to phase fluctuations
ffiffiffiffiffiffiffiffiffi
Δφ2

p
≈ 4.5 mrad according to the

relation between imbalance and phase experimentally
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measured in Fig. 1 (thus already accounting for the effects
of the freezing ramps). Note that these fluctuations are only
slightly larger than what is expected from the shot noiseffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔI2

shot

p
¼ 1=

ffiffiffiffi
N

p
associated with the finite number of

double wells considered here (N ¼ 66). We also measure
long-term drifts on timescales of several hours (inset). Over
the course of data acquisition, these drifts are regularly
compensated to ensure proper preparation of the system.

Experimental sequences—All our sequences start with
a 2D degenerate Fermi gas with a balanced mixture of
both spin states, loaded into a single fringe of a vertical

lattice with lattice constant az ¼ 3 μm. In-plane confine-
ment is ensured by a repulsive potential shaped by a
digital micromirror device (DMD). The atomic density is
controlled by varying the total atom number and the size
of the in-plane confinement.
The atoms are then loaded into optical lattices, with the

configurations varying depending on the specific experi-
ment being performed. For the experiments presented in
Figs. 2 and 3, the experimental procedure involves some
dynamics initiated by quenching the superlattice relative
phase or depth to a specified value (see below for details).
For every sequence, the final step consists of freezing
the atomic distribution by ramping up the short lattices to
Vi ≈ 43 ER

i (i ¼ x, y) in 1.5 ms before performing a spin-
resolved fluorescence image of the system [31].
We give in Table I the lattice parameters for each of the

measurements presented in this Letter. Additional informa-
tion on the sequences are given below. More details on the
calculation of the Hubbard parameters, can be found in the
Supplemental Material [38].
Identification of the balanced configuration (Fig. 1):

Before ramping up the lattice potentials, the relative phase
φ is set to the value at which the measurement is performed.
Vy and Vx;L are then ramped up in 50 ms to their final value
(see Table I), thus making a lattice with lattice constants
2ax and ay. After 5 ms of holding, Vx is ramped up to its
final value in 50 ms, splitting each lattice site along the x
direction in two. Freezing is performed after 2 ms of
holding in the final configuration.
Double-well oscillations (Fig. 2): The relative phase φ is

initialized to be far from the balanced configuration around
−400 mrad. Vx;L is ramped up first in 200 ms to its final
value (see Table I), making 1D tubes separated by 2ax
along the x direction. After 20 ms of holding, both Vx and

(a)

(b)

FIG. 5. Absolute and relative phase stability (a) Absolute phase
measured over the course of more than two days. (b) Relative
phase stability, inferred from the repetitive measurement of the
average imbalance in the system over a few hours. Inset: shot-to-
shot fluctuations extracted from the subtraction of long-term
drifts and evaluated by a rolling average over a period of 20 min
(solid orange line).

TABLE I. Summary of experimental parameters. A range of parameters indicates that the parameter was varied during data
acquisition. A blank cell indicates irrelevant parameters: the interaction strength for single-particle experiments and the relative phase
when the long lattice is off.

Parameters Unit Figure 1 Figure 2 Figure 3(a) Figure 3(b) Figure 3(c) Figure 3(e) Figure 4

Vx ER
x 11.0(5) 10.0(5) 11.0(5) 6.0(3) 6.0(3) 6.0(3) 11.0(5)

Vx;L ER
x;L 31(1) 31(1) 0.0 1.00(5) 1.9(1) [0, 4] 23(1)

Vy ER
y 40(2) 40(2) 40(2) 40(2) 40(2) 40(2) 9.0(5)

φ mrad ½−400; 400� 0 π=2 π=2 π=2 [0, 240]
as aB 1293 973 973 1293

tð1Þx =h Hz 510(73), 604(97)a 675(101) 97(13) 320(25) 323(25) 334(27)b 342(49), 349(51)c

tð2Þx =h Hz 13(1), 19(2)a 14(1) 96(11) 320(25) 323(25) 334(27)b 22(2), 24(2)c

ty=h Hz < 1 < 1 < 1 < 1 < 1 < 1 163(20)
t0=h Hz < 1 < 1 < 1 12(2) 14(2) 16(3)b < 1
U=h kHz 7.53(16), 7.84(15)a 4.83(1) 4.88(10)b 4.96(12), 5.04(11)c

Δ=h kHz 0, 16.7(5)a 2.58(14) 5.43(27)b 0, 7.66(32)c

aValues for φ ¼ 0 and 400 mrad, respectively.
bValues for Vx;L ¼ 4.0ð2Þ ER

x;L.cValues for φ ¼ 0 and 240 mrad, respectively.
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Vy are ramped up to their final values in 200 ms. Such a
procedure allows, on average, one atom per double well to
be loaded, assuming that the overall density is well set and
the interaction strength is large enough. The lattice depths
are held at these values for 20 ms before freezing. The
double-well oscillations are triggered by quenching the
relative phase φ to the balanced configuration in 45 μs at a
time τ∈ ð0 ms; 20 ms� before freezing. The freezing pro-
cedure, in this case, also involves quenching φ back to the
initial phase. The data point at τ ¼ 0 ms is taken without
quench.
Quantum walks (Fig. 3): For each of the quantum walk

experiments, a tailored DMD potential restricts the system
size to a single row of lattice sites along y, which is
identified as position x ¼ 0. Vy and Vx;L are ramped up
together in 200 ms to about 40 ER

y and 31 ER
x;L, thus making

a single 1D array of atoms. Only then is the short lattice
turned on, as Vx is ramped up to 40 ER

x in 200 ms. This
two-step procedure facilitates initial state preparation, as
loading a single array of atoms in the long lattice is easier
than directly loading the short lattice. The relative phase
is always initialized beforehand to the configuration with
maximum contrast (φ ¼ π=2), which ensures that all the
population of a single long lattice site is transferred to a
single short lattice site upon ramping up Vx. The system is
held frozen for 9 ms before Vx;L is ramped down to its final
value (see Table I) in 20 ms. The dynamics is triggered by
quenching Vx to its final value in 1 ms. The end of the
quench ramp marks the beginning of the evolution of
duration τ before freezing, and the data at τ ¼ 0 ms are
acquired without quench.
Ferromagnetic ladders (Fig. 4): The relative phase is

initialized in the balanced configuration φ ¼ 0. Then, all
the lattices are ramped up in 250 ms, going through
configurations (i) and (ii) in Fig. 4(a). The intermediate
lattice depths after step (ii) are Vx ≈ 30 ER

x , Vx;L ¼
23ð1Þ ER

x;L, and Vy ≈ 7 ER
y . The tilt is applied by quenching

the relative phase φ to its final value in 0.5 ms. The short
lattices are then ramped to their final value (see Table I) in
45 ms. Freezing is performed after 0.5 ms in this final
configuration.

Superexchange in tilted double wells—The DW
Hamiltonian in the presence of a tilt Δ reads

ĤDW ¼ −t
�
ĉ†L;↑ĉR;↑ þ ĉ†L;↓ĉR;↓ þ ĉ†R;↑ĉL;↑ þ ĉ†R;↓ĉL;↓

�

þU
�
n̂L;↑n̂L;↓ þ n̂R;↑n̂R;↓

�þ Δ
�
n̂R;↑ þ n̂R;↓

�
:

We consider here the case of two atoms in total with
opposite spins that are well described by the Fock basis
j↑;↓i; j↓;↑i; j↓↑; 0i; j0;↓↑i. In the limit U ≫ Δ; t, the
energy spectrum separates into two manifolds, with low-
lying states Es ¼ fj↑;↓i; j↓;↑ig (singly occupied sites)
forming the ground-state manifold, and higher energy
states Ed ¼ fj↓↑; 0i; j0;↓↑ig (the presence of doubly
occupied sites). Although ĤDW does not directly couple
the two states within Es, a second-order perturbation
calculation leads to an effective coupling within this
manifold [69,70] described by an effective Hamiltonian
Ĥeff

DW ¼ JŜL · ŜR, where J ¼ 2t2=ðU − ΔÞ þ 2t2=ðU þ ΔÞ
is the superexchange coupling (3). Such an effect is well
understood by considering that both states of Es are
coupled by the virtual population of Ed, with energies
U − Δ and U þ Δ. This situation is illustrated in Fig. 6(a).
In the case where Δ > U but Δ −U ≫ t, such that Es

remains well separated in energy from Ed, the expression
remains valid, even though Es does not constitute a ground-
statemanifoldanymore.ThissituationisillustratedinFig.6(b).

(a) (b)

FIG. 6. Inversion of spin superexchange (a) Energy manifolds
for Δ ≪ U. (b) Energy manifolds for Δ > U. In both cases,
degenerate states with single occupancies (j↑;↓i and j↓;↑i) are
perturbatively coupled by virtual population of states with double
occupancies (j↑↓; 0i and j0;↓↑i).
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