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Fig. 1. Space-time covariance and analytic eigenvalu
directional information through the inclusion expli
parahermitian matrix that satisfies RP(z) = (R(1⁄z*)
an analytic paraunitary matrix Q(z) such that Q−1(z)
M. An algorithm to compute the analytic EVD with
dimension M.
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In order to extract the analytic eigenvalues from a parahermitianmatrix, the computational cost of the current state-of-
the-art method grows factorially with the matrix dimension. Even though the approach offers benefits such as proven
convergence, it has been found impractical to operate on matrices with a spatial dimension great than four. Evaluated
in the discrete Fourier transform (DFT) domain, the computational bottleneck of this method is a maximum likelihood
sequence (MLS) estimation, which probes a set of paths of likely associations across DFT bins, and only retains the best
of these. In this paper, we investigate an algorithm that remains covered by the existingmethod's proof of convergence
but results in a significant reduction in computation cost by trading the number of retained paths against the DFT
length. We motivate this, and also introduce an enhanced initialisation point for the MLS estimation. We illustrate
the benefits of scalable analytic extraction algorithm in a number of simulations.
Video to this article can be found online at https://doi.org/10.1016/
j.sctalk.2025.100434.
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e decomposition. For multichannel broadband array data x[n] ∈ ℂM, the space-time covariance matrix [1,2] retains
cit lag component τvia R[τ] = E(x[n]xH [n − τ]) with E(.) the expectation operator [3]. Its z -transform R(z) is a
)H = R(z) and admits an analytic eigenvalue decomposition [4–7] R(z) = Q(z)Λ(z)QP(z). The EVD factors consist of
= QP(z), and the diagonal matrix Λ(z) = diag(λ1 (z),…, λM (z)) holding the analytic eigenvalues λm (z), m = 1, …,
proven convergence has been suggested in [8,9], but the eigenvalue extraction scales poorly with the spatial
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Fig. 2.Example for analytic vs bin-wise eigenvalues. In (a), three analytic eigenvalues are shownwith an evaluation inK=8 sample points. In (b), a bin-wise EVD yields three
ordered eigenvalues in every bin; however, through evaluating a DFT, the spectral coherence is lost, and the association of sample points across bins is no longer clear. If the
association is made w.r.t. spectrally majorised sample points, then spectrally majorised eigenvalues as obtained by time-domain poplynomial EVD algorithm such as in
[2,10,11] result. These eigenvalues will converge towards piece-wise analytic functions which can only be approximated by polynomial factor of significantly higher
order than may be necessary for the analytic counterparts.

Fig. 3. Extraction of correct association across bins. The analytic eigenvalue extraction approach in [8] works iteratively. Starting with bin index k=0, and retaining possible
paths for associations of bins, in its kth iteration, it checks all possible new combinations of including the eigenvalues in the kth bin. The combinations are checked whether
they allow a sufficiently smooth interpolation by measuring the power in the pth derivative of a Dirichlet interpolation [8,12] through the sample points in a path. Only a
number of Np best paths are retained. The proposed approach [13] applies two modifications: (I) by increasing the DFT length K, the eigenvalues behave smoother from
bin to bin, and it is possible to reduce the number of retained paths; (II) the iteration starts at bin where the eigenvalues maximally separate; thus, w.r.t. Fig. 2, the bins
are circularly left-shifted by one position.

Fig. 4. Ensemble results for the comparison of the proposed approach with [8] for M=4. The proposed approach and the method in [8] are applied to an ensemble of
parahermitian matrices of spatial dimension M = 4, and over various order to the ground truth eigenvalues. In all cases, both methods are able to extract the correct
eigenvalues close to machine precision, but differ on the computational complexity that this takes. For the method in [8], the results are plotted blue — the cost over the
order of the eigenvalues shows granularity, with a jump in complexity whenever the DFT length is increase by a power of two. The main cost of the algorithm in [8] is
due to the MLS estimation. For the proposed approach, we show two different trade-offs, with only Np=2 or Np=4 paths retained. With fewer paths, the algorithm will po-
tentially require a slightly higher DFT length.
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Fig. 5. Ensemble results for scalability. For reference, the figure retains the ensemble results for [8] withM=4, but also compares the cost if the proposedmethods for might
spatial dimensions. ForM=7, the complexity is still comparable to the benchmark of [8] for onlyM=4.Onlywhen proceeding toM=8will the complexity of the proposed
approach [13] exceed that of the original algorithm in [8].
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