
Surface Enhanced Raman Scattering for
Biomolecular Sensing in Human Healthcare
Monitoring
Stacey Laing,† Sian Sloan-Dennison,† Karen Faulds, and Duncan Graham*

Cite This: ACS Nano 2025, 19, 8381−8400 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Since the 1980s, surface enhanced Raman scattering (SERS) has been used
for the rapid and sensitive detection of biomolecules. Whether a label-free or labeled
assay is adopted, SERS has demonstrated low limits of detection in a variety of biological
matrices. However, SERS analysis has been confined to the laboratory due to several
reasons such as reproducibility and scalability, both of which have been discussed at
length in the literature. Another possible issue with the lack of widespread adoption of
SERS is that its application in point of use (POU) testing is only now being fully
explored due to the advent of portable Raman spectrometers. Researchers are now
investigating how SERS can be used as the output on several POU platforms such as
lateral flow assays, wearable sensors, and in volatile organic compound (VOC) detection
for human healthcare monitoring, with favorable results that rival the gold standard
approaches. Another obstacle that SERS faces is the interpretation of the wealth of
information obtained from the platform. To combat this, machine learning is being
explored and has been shown to provide quick and accurate analysis of the generated data, leading to sensitive detection and
discrimination of many clinically relevant biomolecules. This review will discuss the advancements of SERS combined with
POU testing and the strength that machine learning can bring to the analysis to produce a powerful combined platform for
human healthcare monitoring.
KEYWORDS: SERS, point of use testing, VOC detection, machine learning, wearable sensors

SERS FOR BIOMOLECULAR SENSING
In the 50 years since its discovery, surface enhanced Raman
scattering (SERS) has been shown to be a powerful analytical
technique in a variety of fields, such as biosensing, forensic
science, environmental monitoring and food analysis.1−4 The
wide applicability of the technique is owed to its sensitivity and
ability to obtain specific molecular information from samples
of low concentration, which is particularly useful in the
detection of biomolecules. The capability of SERS for
biomolecular detection was realized as early as 1980 when
Cotton et al. demonstrated the use of the technique for the
detection of cytochrome c and myoglobin.5 Although
preliminary, the authors noted that the data was encouraging,
and SERS should be used to solve bioanalytical problems.
Throughout the 1980s, the direct, label-free detection of
various biomolecules was achieved,6,7 again indicating the
potential of the technique for sensitive detection in healthcare
applications.
In 1989, the first labeled SERS immunoassay was developed,

which illustrated the ability of SERS to be used as the analytical
read out for the sensitive detection of biomolecules. Using

SERS allowed the number of steps to be reduced by removing
the need for washing in biological assays, shortening the time
to results with no loss in sensitivity.8 In this work, the
antibodies were labeled with a dye and adsorbed onto a silver
(Ag) electrode for SERS detection. A later advancement
introduced the functionalization of colloidal nanoparticles
(NPs) with antibodies and a Raman reporter for incorporation
into sandwich immunoassays and demonstrated that by using
different Raman labels, multiple analytes could be detected
simultaneously.9 To this day, SERS immunoassays are well
studied and show excellent promise as a diagnostic test, where
the incorporation of SERS nanotags can offer improved
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sensitivity and multiplexing capabilities over alternative
detection methods.10

In parallel to the early protein-based detection, the
development of the first SERS gene probe in 1994 highlighted
the potential of SERS to detect DNA targets in biomedical
applications.11 SERS was also employed for the discrimination

of DNA from a low-concentration mixture without the need
for separation, and for the simultaneous detection of multiple
labeled oligonucleotides.12,13 DNA-based NP assays also
emerged, where NPs were functionalized with a Raman
reporter and specific DNA probes, such that SERS signals
could be obtained upon binding with the target DNA.14

Figure 1. A. (i) Assay concept for the SERS-LFIA for SARS-CoV-2, (ii) analysis of the SERS-LFIA strip on a portable lateral flow Raman
reader, (iii) example of a positive SERS result that would have yielded a negative result using a commercial LFIA test. B. (i) Photo of a
SERS-LFIA strip for 1000 PFU/mL SARS-CoV-2 and the pixel-to-pixel detection process for the test and control lines, (ii) photo of the
SERS-LFIA strips for 0−1000 PFU/mL SARS-CoV-2 concentration range, with test line only visible to 50 PFU/mL, (iii) average SERS
spectra of the test and control lines based on the intensity of the peak at 1602 cm−1, (iv) calibration curve for the SERS-LFIA based on the
Raman peak intensity ratios (test line (TL)/control line (CL)) at 1602 cm−1 for 1−1000 PFU/mL SARS-CoV-2.20 Adapted with permission
from ref 20. Copyright 2022 American Chemical Society.
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Each of these approaches for SERS-based detection of
biomolecules has continued to be explored and developed and
the advantages of each method have been realized for different
biosensing applications. For example, label-free SERS
detection can be applied to the analysis of biomolecules,
pathogens, cells, tissues and biofluids, and has thus found use
in many biological and biomedical applications.15 Due to the
sensitivity of SERS and the molecule-specific spectra that are
obtained, label-free detection provides an abundance of
information at the molecular level, which can be linked to
biological processes and health conditions, enabling detection
and diagnosis of disease and treatment monitoring. However,
there are some drawbacks, such as interference from other
components of the sample, weak Raman signals from certain
biomolecules, and that not all target molecules will have an
affinity for the SERS substrate to allow enhancement of the
inherent Raman signal. These issues can be overcome by using
strongly enhancing SERS substrates, by introducing targeted
biomolecule detection to ensure binding of the analyte at the
surface of the substrate, or, alternatively, by incorporating a
reporter molecule with a strong Raman signal, to further
improve sensitivity. The latter can be achieved either by using
a “Raman indicator” where the signal changes on interaction
with the biomolecule, or by incorporating Raman tags with a
distinct spectral profile. This approach also improves multi-
plexing capabilities as different labels with significantly
different Raman spectra can be incorporated, whereas the
SERS spectra of biomolecules may be less distinct from one
another. The use of data processing methods including
chemometrics and machine learning can also improve the
output of SERS analysis by increasing the accuracy of data
interpretation. However, the preferred method is highly
dependent on the end goal of the test, the desired application,
the target biomolecule, and the biological matrix that will be
sampled.
SERS-based detection of biomolecules has been well studied

over the years and the technique offers excellent capabilities in
terms of sensitivity, specificity and multiplexing. Despite the
strengths of SERS for biomolecular detection, the technique is
not commonly adopted in end-user applications. Consid-
erations such as NP toxicity, laser safety, time, cost,
reproducibility, detection in biological matrices, and the
adaption of SERS analysis into point of care (POC) tests
have been stumbling blocks in the clinical application of SERS.
Additionally, it is difficult to convince end-users that SERS is a
worthwhile replacement for their current “gold standards”.
However, there is a growing need for continuous health
monitoring and personalized healthcare due to our aging
populations, reduced resources, and strains on health boards.
This has resulted in a drive toward POC detection, wearable
sensors, and tests that can be simply and quickly carried out in
primary care settings or by patients at home. The advantages of
SERS are well-suited to these requirements and research has
begun to highlight this by demonstrating the use of the
technique for the rapid and sensitive analysis of biological
samples. Additionally, the development of portable instrumen-
tation has enabled SERS detection to be implemented at the
point of use and machine learning methods have emerged to
enable improved data analysis and therefore more accurate
diagnosis in a rapid time frame. This perspective will discuss
the potential of SERS to be integrated into true POC
applications for real-time human health monitoring, with a
particular focus on minimally invasive approaches.

NONINVASIVE POINT OF CARE TESTING
SERS-Based Lateral Flow Immunoassays. The potential

of SERS-based POC assays has been well documented and
various platforms have been investigated for the detection and
diagnosis of many different diseases.16 In recent years, the
combination of SERS with lateral flow immunoassays (LFIAs)
has gained a huge amount of attention by enabling low-cost
user-friendly LFIAs to become quantitative and more sensitive,
with the capability to detect multiple biomarkers simulta-
neously.17 SERS-based LFIAs improve on SERS-immunoassays
by carrying out the detection on an inexpensive paper-based
strip in under 20 min. The test area can then be analyzed with
a Raman spectrometer and the intensity of the signal related to
the concentration of biomolecule present. In keeping with the
POC nature of the LFIA, the SERS analysis can be carried out
on a portable Raman spectrometer, enabling the implementa-
tion of the tests in a variety of POC applications for rapid,
quantitative detection of biomarkers.18 The timing of the
coronavirus 2 (SARS-CoV-2) pandemic also helped to
highlight the potential of SERS-LFIAs as the need for such a
rapid and sensitive detection platform was so vast. Commercial
SARS-CoV-2 tests were quick and convenient but due to
limitations in sensitivity, false negative results were often
obtained in the presence of symptoms or for nondetectable but
contagious levels of the virus. SERS-based LFIAs overcame this
issue by enabling earlier detection of SARS-CoV-2, as well as
the ability to distinguish between SARS-CoV-2 and influenza
A.19 The SERS-based LFIA for SARS-CoV-2 was combined
with a portable lateral flow Raman reader for the on-site
detection of SARS-CoV-2 and out of 49 positive tests only 2
false negatives occurred, in comparison to the 21 false
negatives obtained using the commercial, visual based lateral
flow test.20 The concept of the SARS-CoV-2 SERS-LFIA and
the results obtained using the lateral flow reader are illustrated
in Figure 1. This clearly highlighted the potential of SERS-
LFIAs for improved sensitivity and the benefits of this when
rapid and accurate detection is required, for example to reduce
the spread of infection. It also demonstrates that SERS-LFIAs
are ready to be implemented into clinical settings and could
offer improvements in diagnostics by increasing sensitivity,
enabling multiplexing and allowing quantitative analysis of
LFIAs. Atta et al. used gold nanocrowns, gold shells decorated
with external nanospheres, to produce strong colorimetric and
SERS signals in a dual-mode SERS-LFIA.21 They applied the
assay to enable the ultrasensitive detection of the spike 1 (S1)
protein of SARS-CoV-2 and obtained a limit of detection
(LOD) of 91 pg/mL for colorimetric detection, with an
improvement of 3 orders of magnitude for the SERS detection
(57 fg/mL). They also demonstrated the use of the assay for
spiked saliva samples without pretreatment, with a detection
limit of 40 fg/mL using the SERS-LFIA. A SERS-based LFIA
has also been applied for the quantification of biomarkers in
whole blood. Liu et al. used magnetic nanotags for SERS
enhancement and to enable concentration of biomarkers from
unprocessed blood samples.22 This assay was applied for the
quantitative detection of serum amyloid A (SAA) and C-
reactive protein (CRP) on a single lateral flow strip, with
detection limits of 0.1 and 0.01 ng/mL, respectively.
There is a push to increase the sensitivity of SERS-LFIA by

incorporating “brighter” nanoparticles. For example, gold
nanostars, one of the most efficient plasmonic nanomaterials
for optical sensing using SERS, has been applied for the
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detection of chloramphenicol for food safety and human
health, with an ultralow detection limit of 10 pg/mL being
achieved.23 To further increase the SERS intensity, gold
nanostars coated in silver have been used for the detection of
influenza A.24 The strong electromagnetic field generated at
the tips of the nanostars and the high extinction coefficient and
refractive index of silver produced a strong SERS signal when
functionalized with 4-mercaptobenzoic acid and when applied
in the SERS-LFIA, influenza A was detected with a LOD of 8
pg/mL. Other nanoparticles used include gold nanocrowns,21

gold−silver alloy hollow gold nanoshells25 and nonspherical
gap enhanced Raman tags.26 Although these nanomaterials
produce very low limits of detection, the uniformity is often
compromised due to their complex shapes and sizes. This can
lead to variation in SERS signal and performance on the SERS-
LFIA. The synthesis methods are also more complex, again
leading to more variation. If SERS-LFIA using these nanoma-
terials are to be considered for use in clinical applications,
standardized, large scale synthesis methods, with many quality
control steps will need to be implemented to ensure that every
batch of nanomaterials has the same performance as previous
batches.
Another consideration when using SERS-LFIA is the pairing

of the LFIA strip to the Raman spectrometer. To be used at
the POC, a portable Raman spectrometer that is safe to use in
clinical environments is needed. To be safe, the laser must be
enclosed and operated at low laser powers. Therefore, when
performing initial experiments, they should be carried out at
the low laser power to ensure that the test sensitivity is not
affected. The coupling of the lateral flow strip to a portable
spectrometer should also be robust, and the correct focal
distance maintained throughout analysis to ensure little
variation between measurements. By taking the nanoparticle
synthesis and coupling to portable spectrometers into
consideration, SERS-LFIA should be viewed as a gold standard
POC technique.
Microfluidic Devices with SERS Detection. Another

attractive area that SERS has been paired with that could be
used in noninvasive POC applications, is microfluidics.
Microfluidic devices, also known as lab-on-chips, are instru-
ments that are designed to handle low volumes of fluids using
channels that can be precisely controlled. They can carry out
specific tasks including sample pretreatment, separation,
dilution, mixing, chemical reaction, detection, and product
extraction.27 Microfluidic platforms are extremely attractive for
POC applications when designed to perform immunoassays as
they can sensitively detect clinically relevant concentrations of
different biomarkers using a device that is small, uses low
sample volumes, has low associated reagent costs, is reusable
and produces rapid results.28

When pairing SERS with microfluidic devices, the SERS
substrate can either be injected into the chip as a SERS
nanotag that is designed to bind to an analyte of interest and
then immobilized onto a detection zone, or integrated into the
chip where it can enhance the Raman scattering of an analyte
of interest that has been directed on to it. Regardless of how
the SERS substrate is incorporated into the device, it is
important to consider the challenges associated with them,
which is mainly poor reproducibility in the SERS signal. To
overcome the lack of reproducibility, Choi et al. used an
internal standard (IS) approach when integrating SERS
nanotags into a microfluidic device for the automated
immunoassay detection of antigen fraction 1 (F1) in Yersinia

pestis.29 The IS inclusion accounted for variation of the SERS
substrate in a droplet, formed via the injection of an oil in a
droplet generation compartment, thus increasing the reprodu-
cibility and improving the quantitative detection. In a similar
approach, SARS-CoV-2 was detected using a SERS-based
microdroplet sensor.30 The authors compared the microfluidic
approach that analyzed 140 droplets traveling through the
microfluidic channel and focal volume of the laser over 15 s, to
a 5-point scan of the supernatant collected after magnetic
separation via a conventional SERS-based magnetic bead assay
in a microtube. Using the microfluidic channel the limit of
detection improved from 36 to 0.22 PFU/mL and the
coefficient of variation from 21.2% to 1.79%, giving compelling
evidence that SERS combined with microfluidics can be
reproducible. Furthermore, when clinical nasopharyngeal
aspirate samples were evaluated, the results agreed well with
reverse transcription-polymerase chain reaction results.
Although not demonstrated, they envisaged that it could be
easily integrated with a portable Raman spectrometer and used
as a POC diagnostic platform. Another example of a SERS-
based microfluidic with excellent reproducibility has been
reported by Lu et al.31 In their platform, a unique nanocone
array with nanoscale wrinkles acted as the solid capture plate
and SERS substrate for an immunoassay designed to detect
dual prostate cancer markers. The nanocone array covered
with gold film provided a large surface area for aptamer
conjugation allowing sandwich immunocomplexes to form and
when analyzed with SERS could detect prostate-specific
antigen and thrombin with detection limits of 0.01 ng/mL
and 0.01 nM. The substrate also produced a relative standard
deviation of 7.4%, indicating good uniformity and showing that
SERS-microfluidics do indeed have good reproducibility. Wu
et al. demonstrated the capabilities of SERS-microfluidic
platforms for POC testing using a hand-powered microfluidic
approach for the SERS detection of circulating tumor DNA in
whole blood.32 In their method, the preprocessing of the blood
was carried out on-chip and the SERS-based amplification-free
detection of DNA mutations was achieved in 35 min.
In these examples, the SERS analysis was carried out on

large Raman microscope systems, with scope to transfer the
analysis to portable Raman spectrometers. However, there are
only a few examples that have actually demonstrated the
pairing of microfluidic devices with portable detection.
Mabbott et al. reported the detection of cardiovascular disease
(CVD) biomarker miR-29A using portable SERS combined
with paper-based microfluidics.33 In this example, the three-
dimensional paper-based microfluidic device was designed to
detect mir-29a using a split hybridization assay and the
detection zone was interrogated using a portable Raman
spectrometer, with a 3D printed interface to pair the device
with the spectrometer to increase the reproducibility of
measurements. The authors suggest that when paired with
fingerprick blood samples, the quantitative paper-based assay
should be used for POC applications for CVD diagnosis.
Although excellent sensitivity has been achieved, to fully
harness the portable nature of microfluidics and their
combination with SERS for sensitive and rapid biomarker
detection at the POC, the SERS community must carry out
further investigations to push this platform as a gold standard
approach with POC detection. This can be achieved by testing
the sensitivity and specificity using clinical samples and
working on the interface between the microfluidic device and
portable spectrometers.
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For detection and diagnosis of many conditions, blood
testing is the current gold standard. However, many
biomarkers can also be detected in alternative biofluids such
as urine, which is easier to collect and can be sampled when
needed.24,25 This is advantageous in the move toward POC
testing, where minimally invasive sampling is desirable.
Ultimately, in POC testing, the most suitable biofluid and
test platform are dependent on the specific requirements and
end goal of the application. The main considerations are the
sensitivity, speed and cost of the test and the presence of
relevant biomarkers in the target biofluid. The simplicity of
carrying out the test and interpreting data are also vital
considerations but are dependent on where the test will be
taken and who will run it. For example, tests carried out in
hospitals, GP clinics or at home each have different
requirements in their ease of use, although user-friendliness
is always desirable. In current times, efforts are being made to
reduce the need for regular clinic visits and the public have an
increased awareness and desire for personal health monitoring.
This has led to the development of wearable sensors to enable
in situ health monitoring and personal tracking. Examples of
this include the widespread use of smartwatches and rings that
can track activity, resting heartbeat and measure blood oxygen
levels. However, as the population strives to learn more about
their health, the ability to obtain more detailed information
through personal devices is desirable, especially for the
personal monitoring of chronic conditions such as diabetes.
This can be achieved by incorporating SERS detection with
wearable sensors for real-time sensitive monitoring of health
indicators.

WEARABLE SERS SENSORS
The ability to obtain in situ information about health status at
the molecular level is highly beneficial for human health

monitoring. This has resulted in a large volume of research on
the development of wearable sensors, where direct information
can be obtained from biofluids, such as tears, sweat, saliva and
interstitial fluid.34 This is even less invasive than, for example,
blood sampling, and is an appealing alternative for personal
health monitoring. Wearable sensors can be combined with
portable instrumentation, sensitive detection methods, and
sophisticated hardware, to enable true POC analysis and
potential for personalized healthcare. Various outputs have
been incorporated for wearable sensing, such as colorimetric
detection, fluorescence and electrochemistry.35−37 Optical
methods like colorimetry and fluorescence are straightforward
and can be combined with smartphones to yield simple, user-
friendly devices;38 however, they tend to lack capabilities for
continuous monitoring and do not provide specific molecular
information. Electrochemical devices have been developed for
continuous monitoring, but these methods often require
complex electrode design, can suffer from interference, and
limited information is obtained from samples. SERS is a
suitable alternative that can be combined with wearable
sensors to obtain detailed information from biofluids in real-
time without the need for labeling.
Design of SERS Substrates for Wearable Sensing.

Important considerations for the application of wearable
sensors are sensitivity, to enable detection of analytes at low
concentration directly from the biofluid; flexibility, so that the
signal is not affected by movement, such as bending and
stretching; durability, so the devices are not damaged during
wear; stability, to ensure consistent performance over time;
and biocompatibility, to avoid irritation when worn. To this
end, research on the design of SERS-based wearable sensors is
largely focused on the fabrication of scalable, reproducible,
low-cost and robust substrates that enable simple sampling and
sensitive detection. This involves the incorporation of strongly

Figure 2. A. (i) Preparation process of omnidirectional plasmonic nanovoids array (OPNA) substrate. SEM images of (ii) artificial
plasmonic-compound (APC) and (iii) OPNA substrate, (iv) the enlarged image in the yellow circle in (iii). Scale bars: (ii) 25 μm, inset in
(ii) is 2, (iii) 10, and (iv) 2 μm. B. Sketches of an OPNA sensor under (i) bend and (ii) stretch. SERS responses of an OPNA sensor and Ag
NP-PDMS under (iii) bend and (iv) stretch, the insets in (iii) and (iv) are the changed “hotspots” in OPNA and Ag NP-PDMS under
deformations, respectively. SERS characteristics of OPNA and Ag NP-PDMS after the cycles of (v) bending and (vi) stretching test. The
error bars in (iii)−(iv) indicate the standard deviation of signal intensity during four measurements. Scale bars of insets in (v) and (vi) are 1
cm.45 Adapted with permission from ref 45. Copyright 2022 Wiley-VCH GmbH.
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enhancing nanomaterials into flexible and durable platforms,
such that molecular information can be obtained from the
SERS spectra of analytes, even at low concentration. Flexible
and bend-insensitive SERS substrates have been developed to
ensure stable and homogeneous SERS signals on curved
surfaces over significant time periods, and during the
movement that would be experienced upon wearing.39−41

Nanofibers have been used as low-cost, highly scalable
substrates that can be simply manufactured by electrospinning
polymers and coating with Au to form SERS-active substrates
for wearable sensing.42,43 Self-adhesive and reusable substrates
have been designed to ensure comfort and stability in
performance for wearable sensors.44 Efforts have also been
made to design substrates where the SERS enhancement is not
affected by the position or the angle of incident light. Inspired
by the structure of the Xenos Peckii eye, which has a wide-
angle detection ability, Zhu et al. prepared an omnidirectional
plasmonic nanovoids array (OPNA) by assembling a
monolayer of Ag NPs onto an artificial plasmonic-compound
eye (APC) (Figure 2A).45 The APC is an interconnected
frame with omnidirectional “pockets” for enhancement of
hotspots, which also protects the hotspots against mechanical
deformation. Sensitive detection was achieved using the
substrate, with a limit of detection (LOD) of 10−16 M for
rhodamine 6G (R6G). To demonstrate the practicability of the
sensor, a simulated on-body test was performed using a human
sweat mimic and sensor deformation to account for changes
during exercise. The authors selected dopamine as the
analytical model to study as its quantitation can help
understand neurological disease or emotional activities. The
results demonstrated the sensor could accumulate 2 μL of
sweat in the testing zone and when analyzed with SERS, could
detect 1 pM of dopamine. The SERS signal also remained
stable when the substrate was bent and stretched, or when
rubbed to test wear resistance. When compared to Ag NPs
deposited on flexible polydimethylsiloxane (PDMS), the
OPNA substrate exhibited significantly better stability during
bending and stretching, with little defects and variation of
signal (Figure 2B). Lv et al. used another nature-inspired
approach and developed a wearable SERS sensor based on a
bionic sea urchin-cavity (BSC) structure.46 The BSC structure
has high rotational symmetry that enables the sensor to make
full use of incident light regardless of reverse excitation, tilting
and bending, which is ideal for wearable sensors. Copper
nanowires (Cu NWs) were incorporated for efficient
adsorption of analytes and were coated in Ag to yield high
intensity SERS hotspots for signal enhancement. The BSC
structure has a high electromagnetic field that is less affected by
changes in angle of incident light, such that the SERS signal
was stable when the substrate was bent or when a nonvertical
laser excitation was employed. The SERS-active surface gave
good signal enhancement, with LODs of 10−15 M for R6G,
10−10 M for urea and 10−6 M for lactic acid. Furthermore,
when it was applied as a wearable sensor, it was able to detect
slight changes in urea concentration on human skin when in a
resting state. The substrate was also tested for the detection of
volatile organic compounds (VOCs) and a Raman spectrum of
acetone was obtained from gas volatilized from a 30 mmol/L
aqueous solution, which is similar to the acetone concentration
in diabetic blood. The substrate therefore demonstrated
potential as a wearable sensor for on-skin detection of
metabolites, as well as for breath analysis.

Transfer of Biofluids to SERS Substrates. Efficient
transfer of the analytes to the SERS substrate is essential for
detection and various approaches have been investigated.
Paper microfluidics are a cost-effective and disposable option
that enable simple capture of biofluids through capillary action
and have a high surface area so that a high density of NPs can
be deposited for SERS enhancement.47,48 Paper-based devices
are also advantageous for continuous monitoring where the
flow of the analyte through the microfluidic device allows
changing analyte concentration to be quantified, either by
continuously scanning a single sensor or by detection at
multiple sensors along the microfluidic channel. Paper-based
devices can also be used to monitor additional properties, such
as sample volume and pH, by measuring the distance moved
by the biofluid or incorporating pH indicators.49 Li et al.
designed a flexible plasmonic paper-based microfluidic device
with expandable channels that could be used to control the
flow rate of biological fluids.48 They demonstrated the
flexibility, strength and biocompatibility of the device as a
wearable sensor and showed that it could be used to detect uric
acid (UA) from human sweat in situ using a portable Raman
spectrometer, with a laser blocking layer incorporated to
prevent skin damage during measurements. They also
demonstrated the feasibility of the approach for continuous
monitoring by sequentially adding varying UA concentrations
and showing that the SERS intensity increased and decreased
with UA concentration. Silk fibroin films (SFFs) can also be
used for biofluid extraction as they are flexible, highly
absorbing and biocompatible.50−52 The SFF can also act as a
filter to allow absorption of the target analytes while trapping
larger molecules to avoid interference. Koh et al. demonstrated
this by analyzing Raman reporters of varying molecular weight
and showing that a SERS signal was obtained for the smaller
molecules that could pass through the SFF layer, while larger
molecules were trapped, and no SERS signal was observed.50

Lee et al. highlighted this benefit for separating small molecule
analytes, such as glucose, from the proteins present in biofluids
that could potentially interfere with analyte detection.51 Fabric
sensors have also been developed where hydrophobic and
hydrophilic layers are used to efficiently transfer and collect the
sample.53,54 NPs can then be embedded into the fibers for
SERS enhancement or SERS nanotags can be incorporated for
recognition and detection of target analytes. Hydrogels have
also been utilized for their strength, biocompatibility, porosity
and flexibility. Wang et al. used a sulfonated cellulose
nanocomposite hydrogel (S-CNF-Ag NPs/PAA), where they
incorporated sulfonated cellulose nanofibers (S-CNFs) into
their Ag NP synthesis, then UV cross-linked with acrylic acid.
S-CNFs are strong and renewable biomaterials with hydroxyl
and sulfonic acid groups on the surface that can help stabilize
the Ag NPs, while improving mechanical toughness and
adhesion of the hydrogel. This results in a biocompatible and
porous hydrogel that can hydrogen bond with the skin and
effectively absorb biofluids, with minimal loss by evaporation
due to the cross-linked network. The hydrogel enables the
effective trapping of the analytes, which can be detected due to
the SERS enhancement provided by the Ag NPs. Methods
have also been investigated to induce the production and
extraction of biofluids. Wang et al. developed a plasmonic
electronic device with an electronic sweat extraction element
and a plasmonic component for SERS sensing.55 They used
two flexible electrodes in a “yin-yang” design, with a thin
hydrogel film containing a sweat extracting drug. This induced
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sweat extraction using an iontophoresis process and a silver
nanocube (Ag NC) superlattice film was inserted through a
hole in the hydrogel as the SERS sensing component. Both
components were bonded to a thin polymer film for protection
and skin adhesion and in vivo tests were carried out on human
volunteers. The sweat extraction process was tested by
measuring skin moisture content after stimulation. A significant
increase in moisture was observed and could be controlled by
altering iontophoresis time.

Applications of Wearable SERS Sensors. Ultimately, the
most effective SERS substrates and efficient methods of
transfer are dependent on where the sensor will be worn and
what biofluid will be sampled. As outlined, many approaches
have been explored and each have benefits and disadvantages
depending on the target application. Figure 3 highlights four
types of wearable SERS sensor that have been applied for
different sampling approaches, for the analysis of interstitial
fluid (ISF), tears, sweat and breath.

Figure 3. Applications of wearable SERS sensors. A. Low-cost poly(methyl methacrylate) microneedle (PMMA MN) array for in vivo glucose
measurement from interstitial fluid in a mouse model.59 (i) Photo of the F-PMMA MN array on the skin on the back of the mouse (left), the
mouse skin 10 min after array removal (middle), and photos of sensor on the mouse and spectral collection setup (right); (ii) schematic of
in vivo transdermal detection of glucose; (iii) glucose levels measured using SERS glucose biosensor (red) and a commercial glucometer
(blue). Adapted with permission from ref 59. Copyright 2020 American Chemical Society. B. SERS contact lens material (SERS-LM) for
analysis of glucose in tears.51 (i) SERS-LM structure (silk fibroin (SF) layer for analyte absorption and filtering, Ag NWs-MPBA for SERS,
and protective film (PF) layer); (ii) selective glucose detection mechanism using SERS-LM; (iii) chemical selectivity of 4-
mercaptophenylboronic acid (4-MPBA) for glucose, and the representative change in Raman spectrum after reaction with glucose at
various concentrations (left), and human tear glucose before and after a meal (right). Adapted with permission from ref 51. Copyright 2021
Elsevier B.V. C. Skin sensor for sweat analysis.47 (i) Device conformally laminated on the forearm of a human subject, (ii) under
deformation, and (iii) a portable Raman spectrometer with a flexible fiber probe for spectra collection. (iv) Comparison of SERS spectra
collected with benchtop and portable spectrometers. (v) Photograph of the device after a healthy human subject wore it and exercised for 20
min. (vi) SERS spectrum of the sweat collected from the sensor S1 in (v). Scale bars, 1 cm. Adapted with permission from ref 47. Copyright
2022, The American Association for the Advancement of Science. D. SERS face mask as a wearable breath sensor.69 (i) Schematic illustration
of SARS-CoV-2 detection from respiratory breath aerosols using the Au-TiO2 SERS chip on a face mask. (ii) Aerodynamic behavior of
aerosols impacting on a solid substrate with different surface energies. Au-TiO2 nanoislands with high surface energies efficiently adsorb the
low-volume and high-velocity respiratory aerosols. (iii) SERS detection of SARS-CoV-2 aerosols. (iv) Photograph of the SERS face mask as
an application example. Reprinted (adapted) with permission under a Creative Commons Attributions 4.0 International License from
Hwang, C. S. H.; Lee, S.; Lee, S.; Kim, H.; Kang, T.; Lee, D.; Jeong, K.-H., Highly Adsorptive Au-TiO2 Nanocomposites for the SERS Face
Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols. ACS Appl. Mater. Interfaces 2022,
14, 54550−54557. Copyright 2022 The Authors.
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ISF is the fluid surrounding cells, which is similar to blood
plasma and has almost the same biomarker content as blood.56

As opposed to drawing blood or using a finger-prick approach,
ISF can be painlessly accessed through the dermal layer of the
skin using minimally invasive sampling, making it a more
desirable biofluid for continuous monitoring. ISF has been
investigated for diagnostic applications and, in particular, for
glucose monitoring in diabetes management.57,58 Wearable
SERS sensors for analyzing ISF have been developed in the
form of microneedle arrays that can be applied to the skin to
enable in situ intradermal measurements. An example of this is
shown in Figure 3A that demonstrates how a SERS
microneedle biosensor was used for in vivo glucose detection
from mouse ISF.59 The microneedle array was fabricated using
a commercially available polymer, poly(methyl methacrylate)
(PMMA), which was then coated with Ag NPs for SERS
enhancement and 1-decanethiol (1-DT) for glucose capture.
PMMA is a low-cost material that is biocompatible and
mechanically strong enough to penetrate skin, but causes less
skin damage than alternative materials, such as stainless steel.
As shown in Figure 3A (i), the microneedle was minimally
invasive, as there was little skin damage observed 10 min after
removal of the microneedle array. The microneedles allow
sufficient skin penetration to sample ISF but without reaching
the dermis layer that contains blood vessels and nerve endings
(Figure 3A (ii)). In addition, the PMMA has high light
transmittance, such that SERS measurements can be carried
out in situ. The results of the quantification of glucose by SERS
using the PMMA microneedle array were comparable to a
commercially available glucometer, indicating the applicability
of this device for patient glucose monitoring. SERS micro-
needles have also been used for in vivo drug detection. Li et al.
adsorbed Au NPs onto a PMMA microneedle array then grew
Ag NPs on the surface of the Au to form silver−gold (Au@Ag)
core−satellite NPs for improved SERS enhancement.60 The
Au@Ag microneedles were then coated with a protective
hydrogel layer, which also helped to extract ISF and promote
the adsorption of drug molecules onto the SERS substrate.
This enabled the real-time detection of trace levels of drugs in
ISF and a comparison of the drug concentration in ISF versus
blood, which was shown to be drug dependent. In addition to
label-free sensing, SERS microneedles have also been labeled
with Raman reporters to monitor properties such as pH, redox
potential and levels of reactive oxygen species (ROS),61 or
functionalized with SERS tags for detection of biomarkers.62

This is further demonstration of the versatility of SERS sensing
and the ability to alter the detection strategy to suit the desired
application, thus highlighting the applicability of the technique
for monitoring human health.
Despite the advantages of ISF for minimally invasive sensing,

microneedles suffer from low sample volume and some
analytes, such as glucose, have lower levels in ISF than in
blood. An alternative approach to wearable glucose sensing is
to use a plasmonic contact lens for monitoring glucose levels in
tears (Figure 3B).51 As the Raman signal of glucose is weak,
glucose sensing can be better achieved by monitoring the
glucose-induced shift in the spectrum of 4-mercaptophenylbor-
onic acid (4-MPBA).63 Complexation between glucose and 4-
MPBA results in suppression of the “breathing” mode of 4-
MPBA at 1071 cm−1 and an increase in the constrained
bending mode at 1084 cm−1, causing a shift in the dominant
peak. Yang et al. used this spectral shift for the detection of
glucose in the range of 0.1−30 mM.63 As no Raman peaks for

glucose were observed at 10 mM, this was a significantly
improved method over direct glucose detection. Additionally,
analyzing the shift in Raman bands, rather than intensity,
allows it to be independent of the substrate and other
experimental factors. This work also demonstrated the
capability of the method in wearable sensors by implanting
the substrates in ex vivo rabbit eyes and measuring glucose
concentrations, which were within 0.5 mM of a commercial
spectrometer. Lee et al. developed a SERS contact lens
material (SERS-LM) using a layered approach, where they
used a SFF for analyte absorption and filtration, a layer of silver
nanowires (Ag NWs) coated with 4-MPBA for SERS sensing,
and a protective film (PF) to prevent contamination (Figure
3B (i) and (ii)).51 This was used to measure glucose
concentration by monitoring the decrease in the Raman
band of 4-MPBA at 1068 cm−1 on binding with glucose.
Glucose was detected in the range of 500 nM to 1 mM, with a
LOD of 211 nM being achieved (Figure 3B (iii)). To
demonstrate the practical use of the device, human tears were
analyzed before and after a meal and similar trends were
observed to the glucose levels in blood. Although the device
was not applied in vivo, it demonstrated the potential of tear
glucose monitoring by integration into disposable contact
lenses.
Various wearable SERS sensor platforms have been

described and their applicability has been demonstrated for
several applications in the analysis of different biofluids.
However, the majority of wearable SERS sensors have been
developed for the analysis of sweat. Sweat is very easy to
collect, less invasive than other biofluids, and contains
metabolites and electrolytes that can reflect health conditions
(e.g., glucose, urea, uric acid). Other properties of sweat, such
as pH, can also be analyzed to monitor health. Drug
concentration in sweat can also be measured using wearable
SERS sensors, which could be useful for drug abuse testing,
antidoping control, monitoring medicinal efficacy and health
analysis.50,55,64 Sweat sensors can also be worn on body parts,
such as arms or forehead, that are accessible for detection and
can be easily analyzed in situ to enable continuous monitoring.
An example of a wearable sweat sensor is shown in Figure 3C.
Mogera et al. developed a soft, flexible and stretchable paper-
based microfluidic device for the continuous and simultaneous
quantification of sweat loss, sweat rate and concentration of
metabolites in sweat.47 The microfluidic device had a
serpentine design that was flexible and stretchable to
accommodate skin deformation (Figure 3C (i) and (ii)). As
shown in Figure 3C (iii), a hand-held Raman spectrometer was
used to analyze the sensor in situ. A thin layer of carbon tape
was placed between the device and the adhesive to protect the
skin from laser-induced damage, and plasmonic sensors (gold
nanorods (AuNRs) embedded in chromatography paper) were
immobilized at different points along the microfluidic channel
to allow the detection and quantification of analytes at different
time points using SERS. In comparison to a benchtop
instrument, there was no loss in signal when using the
portable, hand-held spectrometer (Figure 3C (iv)). The
movement of the liquid along the microfluidic device could
be clearly observed so the sweat volume and rate could be
determined (Figure 3C (v)). The device was also applied for
the detection of uric acid, which is commonly analyzed in
serum for nutritional and metabolic management and is
associated with health conditions such as cardiovascular
disease, renal disease and gout.49,65 Uric acid was measured
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in buffer and artificial sweat and could be detected to 1 μM
and without interference from other molecules. They also
demonstrated the capability of the device for continuous
monitoring by sequentially adding different concentrations of
UA and showing the corresponding change in SERS signal
intensity with the rapidly changing UA concentration. This was
carried out using two different approaches. The first was by
continuously scanning one sensor in the microfluidic channel
to quantify the changing concentration of UA when
sequentially adding increasing and decreasing concentrations.
The ratiometric SERS intensity at the sensor increased and
decreased with changing UA concentration, indicating the
potential applicability of the device for continuous monitoring.
In the second mode, multiple sensors were spatially distributed
along the microfluidic channel and the samples were scanned
at the end point. In this method, the SERS intensity at each
sensor varied corresponding to the sequentially changing UA
concentration, demonstrating the capability of the device to
measure changing analyte concentration over time. A healthy
human volunteer wore the sensor for 20 min while running
and experienced no skin irritation. 13.7 μL of sweat was
collected and the concentration of uric acid in the sample was
28 μM, which is consistent with the levels of a healthy
individual.65 Chen et al. also used a paper microfluidic sensor
for uric acid detection in sweat.49 They added a pH indicator
to their device and used a phone to determine pH and volume
of sample. They also spiked sweat samples with uric acid to
stimulate gout and used artificial intelligence (AI) methods
(linear discriminant analysis, LDA, partial least-squares, PLS,
and artificial neural networks, ANN), to separate the spiked
versus nonspiked samples. Wang et al. demonstrated the use of
their nanocomposite hydrogel-based sensor to detect urea and
uric acid detection over interferents in sweat, with LODs of
63.1 and 3.5 μM, respectively. They confirmed that the
analytes were detectable within the range of concentrations
normally found in sweat on human skin and that the sensor
had antimicrobial properties and good biocompatibility, which
are important in the application of wearable sensors.
SERS-based wearable sensors can also be used to monitor

the concentration of multiple metabolites and biomolecules
simultaneously, which can give more detailed information
about physiological state and health conditions.66,67 In a recent
paper, Atta et al. introduced a simple, wearable SERS sensor
and demonstrated its use for the simultaneous detection of
multiple analytes from human sweat.67 They dropped Au
nanostars onto an adhesive tape and established that
reasonable SERS enhancement could be attained from the
simple substrate with a LOD of 0.01 nM for R6G. LODs were
also obtained for three biomarkers, glucose, lactate and urea,
which were found to be significantly lower than the clinically
relevant concentrations. The sensor was then applied to
simultaneously measure the concentration of the three analytes
in human sweat during sitting, walking and running. This
demonstrates the capabilities of wearable SERS for the real-
time detection of multiple biomarkers from sweat.
In addition to the direct detection of metabolites from sweat,

sweat pH can also be used to check for dehydration and to
identify skin disorders, including acne and dermatitis. It can
also be used as an indicator of hypoglycaemia, which needs
medical intervention, in diabetes. Wang et al. used their
wearable device to monitor sweat pH by modifying the sensor
with a pH-sensitive Raman reporter, 4-mercaptobenzoic acid
(4-MBA).68 The sensitivity of pH detection was in the range of

human sweat (pH 5.5−7.0) and measured pH values the same
as a standard pH meter. Chung et al. formed self-assembled
monolayers (SAMs) of 4-mercaptopyridine (4-MPY) and 4-
MBA on their nanofiber substrates for pH sensing of sweat.42

They suggested using a hybrid approach with both Raman
reporters to optimize detection accuracy. They achieved
accurate and stable pH sensing over the sweat pH range
(pH 4−7) using sample volumes as low as 1 μL, with readings
from human sweat samples comparable to those obtained
using a pH meter. As described, there are many advantages to
analyzing sweat using wearable SERS sensors and a wealth of
information can be obtained in real-time using minimally
invasive in situ detection.
Although less common, breath is another biological sample

that can be assessed to monitor metabolic changes that occur
in diseases, such as cancer. The SERS breath sensor shown in
Figure 3D illustrates an alternative approach to wearable
sensing, where a SERS substrate was incorporated into a face
mask for the analysis of breath.69 The substrate used Au-TiO2
nanocomposites to preconcentrate and capture the breath
aerosol to enhance detection sensitivity by 47% over Au
nanoislands without the TiO2. This platform was used for the
direct, label-free detection of SARS-CoV-2 in respiratory
aerosol using a “breath biopsy”. The SERS face mask was
paired with machine learning to enable a quantitative assay
direct from breath for 101 - 104 pfu/mL, which was comparable
to 19−29 polymerase chain reaction (PCR) cycles from
COVID-19 patients. This wearable sensor is an example of
how exhaled air can be used to diagnose health conditions in
patients using totally noninvasive sampling. The following
section will contain further discussion on the analysis of breath
for healthcare applications, by exploring the SERS-based
detection of volatile organic compounds (VOCs).
Overall, significant advancements in the development of

nanomaterials and nanotechnology have enabled the design of
sensitive and stable SERS substrates that could potentially be
applied for in situ health monitoring. Paired with progress in
device miniaturization, this makes SERS applicable for
personalized healthcare. However, practical considerations in
the large-scale fabrication of substrates and in signal stability in
the long term continuous analysis of biofluids remain a
challenge for wearable sensing. Additionally, spectra can often
be complex and therefore data interpretation is challenging.
Nonetheless, this is a promising field and continued advances
in nanotechnology and data analysis could overcome the
challenges.

DETECTION OF VOCs USING SERS
VOCs are emitted as gas from a variety of different processes.
Their detection has been shown for various applications
including chemical sensing, homeland security and environ-
mental settings to monitor and increase safety.70−72 To detect
VOCs, the sample is collected and can be analyzed using
photoionization, gas chromatography−mass spectrometry
(GC-MS), ion flow tube MS, laser absorption spectrometry
and/or infrared spectroscopy.73,74 Although these analyses all
provide satisfactory results, the platforms are time-consuming,
laborious, can have poor sensitivity and require trained
personnel. There is therefore a growing need to combine
VOC detection with a faster, simpler analysis method, which
could also be applied at the POC, and recently SERS has been
applied to this application.
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To pair with SERS, the VOC of interest must first be
adsorbed onto the SERS substrate surface via physical or
chemical interactions, however due to the high mobility of
gases, this is incredibly difficult. VOCs also suffer from poor
adsorption onto SERS substrates as they are small molecules
with functional groups that have low or no affinity to the
substrates. Furthermore, VOCs have low Raman scattering
cross sections, which makes direct label-free analysis difficult to
achieve and results in poor sensitivity. To improve, we must
use gas enrichment techniques to increase the concentration of
VOCs near the SERS substrate, increasing the number of
interactions and subsequent adsorption.75 To increase the
chance of adsorption, the gas can be manipulated via active
sampling, which uses an air sampling pump to pull the gaseous
sample over the substrate, dynamic headspace sampling, in
which an insert gas stream purges VOCs from a sample into a
headspace with the VOCs then being transferred to a substrate,
or solid phase microextraction (SPME) where a fiber coated
with an extraction phase extracts VOCs from a sample before
being applied to the substrate.76−78 Another method uses
indirect tag strategies, which use SERS substrates function-
alized with probe molecules that have high cross section and
specific recognition elements, to target and capture specific
VOCs.79 A different approach utilizes metal organic frame-
works (MOFs) embedded in the SERS substrate that can
concentrate VOCs through their ordered porous structure.
This allows them to be nearer the SERS substrate surface and
enables them to be detected more readily.80 The next section
describes how researchers are applying these methods to
improve the detection of VOCs via SERS.
VOCs found in foods have been detected using SERS to

monitor their quality and safety. Park et al. developed a simple,
cost-effective SERS substrate to detect VOCs released from
dried teas and live cotton plants.81 Their SERS substrate
consisted of Ag NPs coated in a thin film of the polymer
Tenax-TA. The substrate had a high sensitivity to the VOCs
methyl salicylate, phthalate ester and p-cymene, suggesting it
could be a useful platform for detecting VOCs with an
aromatic group. Taking inspiration from canine animals and
their considerable number of olfactory cells, Qu et al. have
developed an integrated plasmonic array for the simultaneous
detection of multiple food-borne VOCs.79 The platform was
able to achieve the indirect detection of hydrogen sulfide
(H2S) using a MOF layer and upon the addition of H2S, a new
peak at 452 cm−1 was observed in the SERS spectrum. Direct
detection using a functionalized surface was also investigated.
For this, the substrate was functionalized with 4-mercapto-
benzoic acid (4-MBA) and the SERS signal intensity of several
peaks changed upon the addition of the biogenic amine
putrescine, which was used for quantitative analysis. They also
utilized an unfunctionalized SERS substrate for label-free direct
detection of P. aeruginosa. Two new bands at 676 and 2160
cm−1 were attributed to the fermentative metabolites of
dimethyl sulfide and hydrogen cyanide, indicating P. aeruginosa
was present. The outputs of this platform significantly
improved the sensitivity, reliability, and accuracy for freshness
discrimination.
VOCs are also emitted in human breath and the levels can

provide an insight into an individual’s physiological and
pathophysiological condition.82 The major VOCs found in
healthy individuals include acetone, ethanol, methanol,
isoprene, ammonia, pentane, and many other alcohols,
aldehydes, and ketones.82,83 Environmental exposure, diet

and lifestyle will influence the concentration of VOCs in
breath. For example, an increase in acetonitrile and furans will
be present if someone smokes.84 VOC levels can also be linked
to a patient’s health with exhaled ethane and pentane
concentrations shown to be elevated in inflammatory disease
and increased levels of sulfur containing compounds being
linked to liver failure.85

Volatile aldehydes are biomarkers of lung cancer, and their
detection can be of vital significance in diagnosis and
treatment. They are by far the most commonly detected
VOC when it comes to SERS-VOC healthcare diagnostic
platforms. This is probably due to how easily they can be
captured by a SERS substrate functionalized with amines,
which undergo a Schiff base reaction with aldehydes in the
sample to form imines. However, as the SERS signal of
aldehydes are weak, researchers are developing novel SERS
substrates to increase the SERS signal and sensitivity. This has
been achieved using a dendritic silver nanocrystals substrate
functionalized with 4-amino thiophenol (4-ATP) that reacts
with benzaldehyde in the sample via the Schiff base reaction.
The weak SERS signal was improved by the numerous cavity
traps that were present on the dendritic surface, which
prolonged the reaction time of gaseous molecules via the
“cavity vortex” effect.86 This resulted in a significant peak
appearing at 1620 cm−1, which represented the C�N stretch
due to the cross-linking between the −NH2 group of the 4-
ATP and the −CHO group of benzaldehyde. Overall, the
sensor showed good linearity between the range of 2−20 ppm
and was selective for aldehydes only. The authors suggest that
detecting aldehydes via SERS provided huge potential for
screening tests at the initial stages of lung cancer. An
alternative SERS substrate for aldehyde detection was designed
by Zhao et al., using SERS-active nano traps consisting of
plasmonic trimers.87 Using 4-ATP, the trimer configuration
selectively directed probe molecules to central traps where
hotspots were located. This uniform assembly allowed for
spatial overlap between molecular adsorption sites and
plasmonic hotspots, enhancing the probability that probe
molecules experience amplification from the hotspot, improv-
ing on a heterogeneous hotspot approach. The platform was
used to detect aldehydes from lung tumors using fresh tissue
samples. Their findings demonstrate that the approach was
sensitive to adenocarcinoma but not squamous carcinoma or
benign cancers thereby showing it could differentiate between
the subtypes. Using 4-ATP as a probe molecule for aldehyde
detection is clearly desirable and it has also been reported to
have low limits of detection of aldehyde VOCs with
functionalized Au NPs and 3D microneedle arrays coated in
Ag NPs.88,89

MOFs can also be integrated with 4-ATP functionalized
SERS substrates to increase the binding between the aldehydes
and substrate surfaces. This has been demonstrated using a
smart vapor generation paper-based thin-film microextraction
system (VG-PTFM) paired with SERS measurements and was
capable of quantifying and detecting benzaldehyde in lung
cancer breath samples.90 The SERS substrate consisted of
core−shell, 4-ATP coated gold nanorods conjugated to
quantum dots (GNR-QD)-embedded on a MOF structure.
Upon the addition of benzaldehyde, the GNR-QD assemblies
were destroyed due to Schiff base reactions between the amine
group on the GNR surface and the aldehyde moiety of the
benzaldehyde. This produced a characteristic peak at 1620
cm−1 that was used for quantification. Lung cancer and healthy
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Figure 4. A. (i) Schematic illustration of breath analysis using silver (Ag)@ZIF-67 based tubular SERS sensor for diagnosis of gastric cancer
(GC). Breath sample is applied to the sensor that captures aldehydes and ketones. (ii) The SERS spectra from samples of GC patients and
heathy volunteers is shown and transformed into barcodes to facilitate practical clinical applications. Orthogonal partial least-squares
discriminant analysis (OPLS-DA) plot of SERS spectra shows separation between healthy individuals and GC patients and a ROC curve with
an area under the curve value of 0.9715.92 Adapted with permission from ref 92. Copyright 2022 American Chemical Society. B. Overview of
SERS-based strategy to identify COVID-positive individuals using their VOCs.98 First the breath sample is exposed to the sensor which is
analyzed using a portable Raman spectrometer. SERS super profiles are obtained based on the binding of the VOCs to the surface
functionalized probes MBA, MPY and ATP. The classification using partial least-squares discriminant analysis (PLSDA) score plot shows
distinction between breath samples of COVID-positive and COVID-negative individuals. Adapted with permission from ref 98. Copyright
2022 American Chemical Society.
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subject breath were applied to the device via the VG-PTFM
system that was then analyzed using a compact Raman
microscope system. The resulting SERS spectra were analyzed
using principal component analysis (PCA), which discrimi-
nated between the two groups, demonstrating that the
platform could effectively identify the different concentrations
of aldehyde in lung cancer patients, with similar sensitivity to
GC-MS. In a similar approach, Xu et al. detected aldehydes
using a TiO2 nanochannel membrane that was coated in Au
NPs and a gas-trapping MOF layer.91 When the gas was passed
through the nanochannels, the molecules were trapped in the
porous MOF. Again, a Schiff base reaction between 4-ATP and
the aldehyde in the sample was used to obtain a robust Raman
signal. PCA was used to differentiate what type of gaseous
aldehyde was present and the authors suggested this sensor has
great promise for lung cancer biomarker screening. An
alternative sensor used a glass capillary, acting as a gas flow
channel, which was loaded with Ag NPs coated with a uniform
MOF (zeolitic imidazole framework-67, ZIF-67) shell
functionalized with 4-ATP.92 This sensor could produce
strong SERS enhancement using the Ag NPs, with the 4-
ATP to capture aldehydes and the MOF layer for selective gas
enrichment. The platform is shown in Figure 4A. The sensor
was used to screen exhaled breath from 57 gastric cancer (GC)
patients and 61 healthy individuals, with the SERS results
being easily converted into smartphone readable barcodes for
facilitating data readout and analysis. Overall, the platform
could detect GC with 91.2% and 88.5% sensitivity and
specificity, respectively. ZIF-67 has also been applied to
concentrate gaseous aldehydes when used to coat Ag NPs,
which provided the hotspot and graphitic carbon nitride (g-
C3N4) that formed a membrane to prolong contact time
between aldehyde and substrate.93

Due to the pore size of MOFs, which are usually
microporous, they do have issues with adsorbent blockage.
However, this has been overcome by Meng et al., who
expanded the pore size by etching MOF structures to form
layered double hydroxide (LDH).94 They coated silver
nanocages in LDH and 4-ATP and applied the sensor for
gas adsorption and selective enhancement of benzaldehyde
with a limit of detection of 10 ppb using SERS. Furthermore,
the sensor was recyclable, with the Schiff base reaction being
reversed via hydrolysis.
Aldehydes are well targeted VOC biomarkers, but other

VOCs can be detected and related to health concerns. For
example, Fu et al. used the MOF MIL-100 (Fe) that comprised
of iron clusters and 1,3,5-benzenetricarboxylic acid to target
lung cancer VOCs, which included aldehydes but also captured
acetone and isopropanol.95 Acetone and ethanol, which are
both linked to diabetes, were detected via their adsorption
onto the tips of nanopillars. The low limits of detection
(0.0017 ng and 0.0037 ng for ethanol and acetone vapor
molecules) demonstrated that the label-free, no chemical
sensing approach opens the possibilities of specific and highly
sensitive detection of complex VOCs in exhaled breath
samples.96 Chen et al. developed a SERS sensor, which used
reduced graphene oxide (RGO) to selectively adsorb VOC
biomarkers and Au NPs that were synthesized in situ on the
reduced graphene oxide (RGO) using hydrazine vapor.97 To
sample, the sensor was exposed to a 500 mL breath sample in a
well-sealed bag for 30 min at 37 °C, then removed and
analyzed using SERS immediately to avoid biomarker
desorption. Upon analysis of the SERS spectra, 14 Raman

bands associated with biomarkers were selected as fingerprints
to diagnose gastric cancer and distinguish between early and
advanced gastric cancer patients. A SERS-based breathalyser
used to distinguish VOC profiles in COVID positive
individuals has been developed by Leong et al.98 In this
approach the SERS substrate consisted of arrays of silver
nanocubes functionalized with 4-mercaptobenzoate (MBA), 4-
mercaptopyrdine (MPY) and 4-ATP. This is shown in Figure
4B. The multireceptor sensor interacted with VOCs via
hydrogen bonding, ion-dipole interactions and π- π inter-
actions to bring the VOCs close to the plasmonic surface. The
VOCs detected included ketones, aldehydes and alcohols. The
surface was analyzed using a portable Raman spectrometer,
allowing for on-site analysis in 5 min. Spectral changes between
positive and negative COVID breath samples were noted for
each receptor, with the platform achieving a sensitivity of
96.2% and specificity of 99.9% across 501 participants. This is a
crucial step in achieving noninvasive human breath diagnostics
at POC.
Combining VOC detection for healthcare applications with

SERS has produced a platform that can yield qualitative and
quantitative information that shows promise when paired with
human breath sampling to detect disease in the human body.
Furthermore, when the analysis is performed using a portable
spectrometer, the analysis has the capability of taking place at
the POC, a positive step for healthcare applications where
rapid diagnosis is vital. However, there are some challenges to
overcome before it can be adopted as a routine test.99 This
includes overcoming poor affinity of the VOCs with the SERS
substrate, which is currently being investigated and achieved
using various probe molecules and MOFs. Another challenge is
how to incorporate substrate cooling steps into the platform,
which increase sensitivity. This is attributed to the lowered
desorption speed of VOCs at low temperatures. Including this
step will be highly beneficial but could limit portable
applications or destroy the substrate and therefore needs to
be thoroughly investigated. Despite the challenges, VOC-SERS
can compete with traditional methods and could be an
excellent tool in breath analysis at the POC.
Most of the examples given above rely on small changes in

the Raman spectra to determine if a biomarker is present. This
becomes more difficult to interpret when more than one
biomarker is present as the data becomes more convoluted. To
deal with the complex Raman spectra obtained from these
POC platforms, machine learning can be adopted to help with
quantitation and discrimination.

SERS COMBINED WITH MACHINE LEARNING FOR
IMPROVED ACCURACY IN DATA ANALYSIS
Machine learning (ML) is an area of artificial intelligence (AI)
that uses data that is difficult to interpret as an input resource
to yield easy-to-read results. We can see examples of its use
everywhere today from innovative technology such as mobile
phones and computers, to healthcare where it is used to aid
disease diagnosis.100 Label-free SERS assays have been paired
with ML to improve results, akin to that achieved by
chemometrics.101 By applying algorithms such as PCA and
partial least-squares discriminant analysis (PLS-DA) to large,
complex Raman and SERS data sets, it analyses them with a
higher degree of accuracy, improving biomarker recognition.102

This is known as unsupervised ML as it uses clustering
methods and does not require labels. The label-free SERS
spectra are separated based on space, where every pixel is
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considered a dimension. To identify what is in a cluster, some
background knowledge of the sample is required. As
mentioned, these techniques are very similar to chemometrics
and to improve ML, more advanced algorithms have emerged
that learn from data. Deep learning (DL) is a subset of ML that
is based on neural networks that learn to improve accuracy. It
includes techniques such as random forest (RF) and support
random vector machine (SVM).103 DL is a supervised ML
model and uses samples that contain known biomarkers to
train the ML model to recognize features in the SERS spectra
and assigns them labels that correspond to the biomarker. The
model can then be used to detect and discriminate the
biomarker in unknown samples, increasing the sensitivity and
specificity of an assay. In the literature, the terms ML and DL
are used interchangeably to describe how the data has been
analyzed, with both being applied to SERS spectra to detect
and discriminate different biomarkers and to diagnose disease.
SERS combined with ML has been used to discriminate

genetic biomarkers of disease using the label-free SERS spectra
of DNA and RNA. An example of this by Chheda et al. used

spermine coated Ag NPs as a positively charged SERS
substrate to attract the negatively charged phosphate backbone
of single stranded (ss) DNA and RNA.104 A series of different
samples with sequence modifications, such as substitutions,
additions and deletions were first analyzed followed by the
analysis of the prostate cancer biomarker mir-21 and its
mutated variants. To interpret the resulting SERS spectra, a
functional data analysis (FDA)-based framework was devel-
oped to detect mutated DNA and RNA oligonucleotides. The
framework comprised of 4 steps: 1) spectra collection and
augmentation, 2) spectra pairing, 3) Gaussian process (GP)-
based modeling and 4) GP-based hypothesis testing. This is
shown in Figure 5. The approach accurately differentiated
SERS spectra obtained from the different oligonucleotides and
outperformed various data-driven methods in many metrics
including accuracy, sensitivity, and specificity. The authors
suggest that the combined use of SERS and ML could
therefore be effective for use in disease diagnosis that could be
applied for clinical applications. Nguyen et al. have also
demonstrated how SERS combined with ML can be used for

Figure 5. Schematic showing discrimination of DNA and RNA via SERS combined with ML. First, DNA and RNA are added to Ag NPs and
the SERS signal is collected. The data are then baselined followed by a data augmentation task, where the training set is inflated by creating
slightly altered versions of existing data to increase the data set. The second step forms sets of spectra pairs by matching individual spectra to
form positive and negative samples for ML training and testing. In the third step the spectra data are modeled using a GP. The last step
determines if a pair of spectra are different, which implies they are from different oligonucleotides.104 Adapted with permission from ref 104.
Copyright 2024 American Chemical Society.
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the compositional analysis of ssDNA. In their approach, Au
and Ag nanorods were used as SERS substrates to detect
differences in SERS spectra of 200-base length ssDNA
molecules.105 A linear regression model was developed and
trained along with neural network (NN) models to predict the
composition of ssDNA. The results indicated that the NN
model was the optimum method of analysis and mitigated
effects of data dispersion that could occur due to
biodegradation of samples over time or differences in SERS
substrates prepared on different days. This is particularly
appealing as SERS detection often struggles with reproduci-
bility. DNA damage in spermatozoa has also been assessed
using SERS and ML to validate the hypothesis that exposure to
the fungicide difenoconazole reduced sperm quality.106 In an
example by Shi et al., a SERS-based database of DNA was
created which was suitable for AI based analysis and
demonstrated discrimination of tumor suppressor genes.107

The combined technique was also able to profile DNA
methylation patterns in lung cancer patients and discrimination
of gene sequences.108 A deep learning assisted method that
used SERS-based ZnO-Au direct amplification (ZADA) was
developed by Kim et al. for rapid, label-free disease detection
via direct nucleic acid amplification.109 In this example, a gold
coated ZnO nanorod was used to amplify the SERS signal with
nucleic acid amplification achieved via the coupling of the Au
with thiol synthesized primers and the addition of recombinase
polymerase amplification. Clinical validation of the test was
achieved using 29 clinical samples from patients with
coronavirus disease 2019 (COVID-19) and a ResNet-based
learning model to predict patients with COVID-19. Overall,
the platform achieved 92% sensitivity and 81% specificity with
the deep learning enhancing the sensitivity and specificity,
reducing false negatives and positives, and shortening the time
required for SERS analysis.
SERS paired with ML has also been used to classify protein

species. Barucci et al. used a silver nanowire SERS substrate
onto which different protein solutions were dropped, and the
SERS signal collected.110 The proteins investigated included
human serum albumin, bovine serum albumin, lysozyme,
human holo-transferrin and human apo-transferrin, which were
selected due to their similar composition and/or secondary
structure content. A mixed analytical approach that used PCA
carried out on integrated areas of Lorentzian bands obtained
by band fitting of the SERS spectra was applied and
demonstrated superior classification of proteins compared to
standard PCA application. Early cancer detection has been
achieved via serum biomolecular fingerprinting spectroscopy
and ML in an integrated method known as SERS and Artificial
Intelligence for Cancer Screening (SERS-AICS).111 In this
example, liquid biopsy samples from 382 heathy controls and
1582 patients were added to silver nanowires and the SERS
measured. The SERS-AICS platform, which used a SVM
model, distinguished cancer patients from healthy controls
with 95.8% accuracy and 95.8% sensitivity at 95.4% specificity.
The technique provides a promising comprehensive tool for
real world cancer detection when used in conjunction with
routine physical exams. SERS and ML has also been used for
rapid diagnosis of Mycobacterium tuberculosis (Mtb) in sputum
samples using a hand-held Raman spectrometer and deep
learning algorithms, producing a platform with high potential
for rapid POC detection of Mtb infection.112 Another example
used a SERS sensing platform with controlled nanogaps and
deep neural network models to discriminate the response of

Escherichia coli and Pseudomonas aeruginosa to antibiotics from
untreated cells in 10 min with greater than 99% accuracy.113 A
10-fold difference in the concentration of antibiotic dosage was
also obtained when compared to conventional growth assays.
The rapid discrimination of different strains of antibiotic-
resistant Klebsiella pneumoniae has been achieved using a label-
free SERS-based sensor paired with autoencoder and PCA that
extracted features in a nonlinear and linear manner.114 The
extracted features were then fed into a SVM classifier that
discriminated the different strains. Another example of pairing
ML with SERS has been reported by Lussier et al., who used
the platform to measure gradients of metabolites in vitro near
different cell lines.115 An artificial neural network (ANN) was
used to extract features of the SERS spectra associated with
different orientations of metabolites on the NP surface, which
improved the number of metabolites detected as well as the
sensitivity and selectivity. Other examples of label-free ML-
SERS platforms include SERS paired with PCA-Centroid
displacement nearest neighbor (CDNN) to recognize and
detect precancerous lesions of gastric cancer and three-
dimensional surround-enhancing SERS platforms combined
with visual geometry group network for plasma exosome-based
early cancer diagnosis.116

These examples demonstrate how ML analysis can improve
the results of simple label-free SERS assays. However, they all
rely on the biomarkers interacting with the SERS substrate for
it to appear in the SERS signal. If a biomarker has a weak
affinity for the surface, it will not be detected. Another
disadvantage is that if the biomarker is in a complex matrix
sample, competitive binding can occur resulting in poor
detection. To increase the binding of a specific biomarker, the
SERS substrate can be functionalized with a biomolecule such
as an antibody, aptamer, or DNA specific to the biomarker.
This brings the selected biomarker closer to the surface of the
SERS substrate and it can be detected more readily via SERS.
When the resulting SERS spectra are analyzed with ML, key
features used for classification can be identified.
Functionalized SERS substrates have been paired with ML

for the detection of Alzheimer’s disease. In one example, gold
nanowires were functionalized with antibodies specific to
amyloid beta or self-assembled monolayers with distinct
functional groups (PMMA, methyl, carboxylic acid, or
amine) to monitor different dipole interactions with blood-
based metabolites.117 Blood plasma from Alzheimer’s patients
and human controls were added to the substrates and the
SERS signal collected and analyzed using a fully connected
neural network classifier. Amyloid beta oligomerization was
distinguished on the substrate coated in antibody demonstrat-
ing their potential in monitoring the progression of Alzheimer’s
disease. The amine coated substrate had the highest accuracy
for classifying human control and Alzheimer’s patients (99.5%)
demonstrating that deep learning assisted SERS functionalized
substrates is a promising tool at diagnosing Alzheimer’s
disease. Compositional changes in culture medium arising
from metabolic activity of tumor or healthy cells were detected
using Au NPs grafted with various chemical moieties designed
to selectively trap biomolecules of interest.118 This generated
information-rich SERS spectra that were analyzed using
convolutional neural network (CNN). The trained CNN was
able to, with 100% prediction accuracy, distinguish healthy and
cancer cell metabolites.
ML has also been applied to SERS assays that use the

intensity of the Raman reporters bound to NPs to discriminate
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and/or quantify biomarkers to increase sensitivity and
specificity. Banaei et al. demonstrated the rapid and
purification-free detection of extracellular vesicles (EVs) from
pancreatic cancer patients using a labeled SERS-based
immunoassay.119 First, the assay captured normal and tumor
derived EVs from pancreatic cancer, chronic pancreatitis, and
normal control samples onto a gold substrate. The tumor
derived EVs were then selectively detected using a gold SERS
nanotag designed specifically to only detect the tumor EVs.
The surface was analyzed using a portable Raman spectrometer
and the SERS signal of the Raman reporter used to quantify
biomarker expression levels. A classification tree was trained
with the data set and employed to predict the condition of the
patients. The sensitivity and specificity of the models were
calculated as 0.95 and 0.96, respectively. SERS based LFIAs
have also been paired with ML to rapidly and sensitively detect
Escherichia coli O15:H7.120 The authors reported that
regression models based on ML were more sensitive than
traditional linear curves used for quantitative analysis. The best
regression model was extreme gradient boosting regression
which could solve complex prediction problems.
ML also performs well when paired with multiplexing

labeled SERS assays. Li et al. synthesized seven SERS-active
“nanorattles” that were loaded with different Raman reporters
and applied them in a hybridization assay for the detection of
multiple mRNA biomarkers for head and neck cancers.121 A
CNN analysis was used to separate the multiplexed spectra and
yielded high accuracy and fast predictions. It was then used to
analyze clinical data from nonmultiplexed mRNA biomarkers
using 20 patient samples and was able to identify the specific
clinical biomarker with low error, demonstrating the capability
of CNN-based ML for SERS-based medical diagnostics. High
throughput multiplexing has been achieving using fluorescence
and SERS-active nanoprobes paired with a barcode ML
identification algorithm.122 45 unique spectra were obtained
from mixing three fluorescent and 15 Raman reporters. The
spectra were transformed into a barcode using an algorithm
that distinguished the spectra based on the position of all the
peaks and was verified using model experiments that used the
multiplexed spectra. The authors note that this barcode
approach would be extremely useful for analyzing and
encoding biological targets. Wang et al. have used the
multiplexed SERS spectra obtained from a microdroplet-
based SERS platform for the detection of EV proteins and
analyzed it with ML algorithmic tools, which helped to
discover the presence of different subpopulations in single-cell
data sets.123 To understand what reporter should be selected
for multiplexing, Sańchez-Purra ̀ et al. analyzed 15 reporter
molecules and used a correlation matrix to select five optimum
candidates.124 They were used to distinguish human IgG in
dipstick immunoassays with their relative contribution
estimated using a non-negative least-squares (LS) algorithm.
An average true positive rate (TPR) of 88% was achieved,
demonstrating that the technique could be applied for the
detection of nonspecific biomarkers in diverse clinical
conditions.
The SERS output from VOC detection platforms have also

been analyzed using ML to aid in diagnosis. For example, Li et
al. was able to detect urinary volatile metabolites to diagnose
phenylketonuria using a VOC sensor array with SERS
measurements combined with ML analysis.125 The SERS-
based sensor array patterned with three thiophenolic ligands,
4-ATP, 4-MBA and 4-MB, was prepared and applied for the

SERS monitoring of volatile metabolites with multiplexed
readouts by sampling headspace gases from the urine samples.
Detection limits as low as 2 μM were achieved for
phenylpyruvic acid, 4-hydroxyphenylacetic acid and phenyl-
acetic acid, which were well below the diagnostic thresholds for
phenylketonuria. The sensor was also able to perform
multiplexed profiling of individual phenylketones and their
mixtures at picomolar levels, and using the ML algorithms
linear discriminant analysis and t-distributed stochacti
neighbor embedding could discriminate those with and
without phenylketonia with a diagnostic average of 97%.
Another example of VOC detection using SERS and ML is by
Cao et al., who applied a microfluidic silicon SERS AI chip
designed for rapid preconcentration, reliable SERS detection
and automatic identification of trace aldehydes at ppt levels.126

To discriminate SERS spectra collected from VOCs, a fully
connected deep neural network containing one hidden layer
with 6 neurons was used. Six distinct aldehydes were readily
discriminated at low concentrations with high accuracy, laying
the foundation for precise diagnosis at an early stage using
VOC-SERS-ML platforms.
The accurate and sensitive discrimination of biomarkers of

disease is improved by analyzing the results using ML. By
applying ML models to complex SERS spectra, they can be
deconvoluted and key features identified. The key features are
used to identify what biomarkers are present and, in some
cases, the concentration as well. The platform therefore has the
potential to produce rapid and accurate results that can be
used to aid healthcare professionals in decisions and treatment
pathways. Of course, we should still be cautious when using
ML as discussed by Masson.127 For example, if an improperly
trained ML model is used, it will underperform, akin to using
the wrong calibration curve. We should also not expect the
data to be reliable or more robust just because ML has been
used. Masson states that when developing a ML model, we
should adhere to the 3Rs, robust, reasoning, and responsible.
But most importantly, the data should always be validated.

CONCLUSION AND PERSPECTIVE
There is potential for SERS to be applied in POC diagnostics,
health and therapeutic drug monitoring and significant
progress has been made. The development of portable, hand-
held spectrometers has enabled SERS to be implemented at
POC for rapid and sensitive detection in in vitro diagnostics, or
in wearable sensors for real-time testing. This is a significant
step in the application of SERS detection in clinical settings. In
moving toward continuous monitoring and at-home testing,
the capabilities of SERS-based wearable sensors have been
demonstrated using various platforms and how these can be
applied for the noninvasive analysis of biofluids. This is
ultimately owed to the development of sophisticated nanoscale
substrates with high sensitivity, stability, flexibility and
biocompatibility. Wearable SERS sensors offer the sensitivity
to directly detect analytes with minimal interference from
biofluids, the ability to measure multiple analytes simulta-
neously, and the potential to monitor biofluid properties that
can be associated with health conditions. Direct detection of
biomolecules using wearable sensors also reduces the need for
enzymes or biorecognition elements that can be unstable,
costly and require additional steps. SERS is also suitable for
continuous monitoring as the signal intensity varies with
analyte concentration in real-time. Wearable SERS devices can
be tailored to suit the specific application, and portable

ACS Nano www.acsnano.org Perspective

https://doi.org/10.1021/acsnano.4c15877
ACS Nano 2025, 19, 8381−8400

8395

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c15877?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


spectrometers can be incorporated to enable true real-time
POC analysis. The development and use of SERS-based
wearable sensors is an emerging area, where the greater need
for personal health monitoring could potentially be met by the
capabilities of SERS biosensing. However, there are still many
challenges in the adoption of SERS wearables, such as costly
fabrication methods, complex data analysis requirements and
long-term stability of substrates or analyte signal for
continuous monitoring.
SERS has also been successfully applied to VOC detection

and we have highlighted the potential of the technique in this
area and how it could be applied for the noninvasive analysis of
breath for healthcare applications. Again, much of the success
in VOC detection is owed to the development of novel
substrates for analyte capture and strong SERS enhancement,
which is key to the sensitivity and ability of SERS to obtain
specific molecular information from low concentration
samples. VOC detection using SERS has been shown to be
competitive with traditional methods and could be a promising
tool for POC analysis. One of the main challenges in SERS-
based VOC detection is the efficient capture of the volatile
molecules on SERS substrates and various methods are being
explored to achieve this. Additionally, complex data
interpretation is often required, which remains a challenge
for VOC detection using SERS but can potentially be
addressed using sophisticated data processing methods and
ML. Improved accuracy in the detection of biomarkers and
diagnosis of disease can be achieved when SERS is combined
with ML. ML should be applied to all platforms where large
data sets are generated to aid in data analysis and to increase
accuracy but should be used with caution and not relied on.
Sensitivity and reproducibility of SERS remains a concern;
however, this can be addressed by careful substrate design,
collaborative research and the use of internal standards.128 As
discussed herein, highly scalable substrate fabrication methods
have been suggested and these will help to ensure
reproducibility of SERS substrates. Although the potential of
SERS has been demonstrated for many POC applications, we
believe that the drive toward continuous health monitoring
and personalized healthcare is a key opportunity to exploit the
benefits of the technique.
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