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Over the past decade, the development of nanomaterials (NMs) has surged,
highlighting their potential benefits across multiple industries. However,
concerns regarding human and environmental exposure remain significant.
Traditional in vivo models for safety assessments are increasingly viewed as
unfeasible and unethical due to the diverse forms and biological effects of
NMs. This has prompted the design of Novel Approach Methods (NAMs) to
streamline risk assessment and predict human hazards without relying on
animal testing. A critical aspect of advancing NAMs is the urgent need to
replace animal-derived products in assay protocols. Incorporating human or
synthetic alternatives can significantly reduce the ethical burden of animal use
while enhancing the relevance of toxicity testing. This study evaluates the impact
of removing animal-derived products from standard acellular and in vitro assays
recommended in a published Integrated Approaches to Testing and Assessment
(IATA) for inhaled NMs. We specifically assessed the effects of replacing fetal
bovine serum with human platelet lysate in acellular reactivity tests and in vitro
toxicity testing using a panel of well-characterized NMs. Significant differences in
acellular NM reactivity and dramatic changes in A549 cell growth rates and
responses to NMs were observed under different media conditions. Our findings
demonstrate that variations in experimental setup can fundamentally impact NM
hazard assessment, influencing the interpretation of results within specific assays
and across tiered testing strategies. Further investigation is needed to support a
shift toward more ethical toxicity testing that does not rely on animal-derived
materials.
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1 Introduction

Over the last decade there has been a notable rise in
nanomaterial (NM) development and production for a vast array
of different applications. While the potential benefits of NMs for a
wide range of industries are clear, concerns over the impact of
human and environmental exposure remain. Since NMs can exist in
many diverse forms, each of which may cause different biological
effects, reliance on traditional in vivomodels for safety assessment is
not feasible, sustainable or ethical, considering the volume of
materials that need to be tested (Burden et al., 2021). This has
stimulated efforts to design alternative strategies to streamline the
risk assessment process and Novel Approach Methods (NAMs) to
predict human hazard without the need for animal testing (Stucki
et al., 2022). Many of these NAMs are adapted from cell culture
protocols that historically involve the use of animal-derived
products therefore, to fully humanise the hazard assessment
process it is pertinent to incorporate 3Rs principles into the
design of NAMs and novel testing frameworks at this early stage
of development. The central focus of this study is to assess the
impact of removing animal-derived products from standard
acellular and in vitro assays in order to reduce ethical concerns
and increase the human relevance of toxicity testing.

Integrated Approaches to Testing and Assessment (IATAs) are a
tool which can be utilised to streamline the hazard assessment process
(Sakuratani et al., 2018). Structured as decision trees, IATAs enable the
user to efficiently identify the key information required to support
hazard assessment and risk decision making with regards to NM(s)
under investigation (Stone et al., 2020). IATAs, delineated by the
primary routes of NM exposure, have successfully been used as the
basis of similarity assessment to support grouping of NMs which pose a
comparable inhalation, ingestion, or dermal hazard (Di Cristo et al.,
2022; Braakhuis et al., 2021; Murphy et al., 2021) and incorporated into
a risk decisionmaking framework for the injection of nanobiomedicines
(Powell et al., 2022). Recognizing the need to reduce the burden of
animal testing in toxicology, the IATAs follow a tiered structure and
prioritize data generation utilizing in silico and in vitro models to
categorize hazard before progressing to in vivo systems in limited, high
priority cases (Stone et al., 2020).

To meet the necessary demand for improved in vitro models
required to build confidence in the IATA outcome, a concerted
effort has been made to develop NAMs which prove effective for
predicting hazard (Doak et al., 2022). NAMs are generally defined as
toxicological methods that serve as (replacement, reduction or
refinement) alternatives to animal testing (e.g., in silico, in
chemico and in vitro methods) (Burden et al., 2021). The shift to
wider adoption of NAMs will have a seismic impact on the reduction
of animal numbers used directly in toxicology studies, however the
use of animals to generate reagents and supplements currently
required in the standard operating protocols (SOPs) for many
NAMs remains as a significant burden. The replacement of
animal-derived products incorporated into the NAMs protocols
has received less attention to date but as NAMs progress towards
validation it is timely to consider how to optimise the NAM
underdevelopment without the need for animal-derived products.

The removal of animal-derived products is likely to have biological,
safety as well as ethical benefits, improving assay performance and
reproducibility. Species-species differences in animal-derived products

may have a significant impact on the performance of NAMs due to
species-specific interactions between cells and proteins from different
animal sources. For example, serum transferrin functions in transport
and delivery of iron to cells (Aisen and Listowsky, 1980). Penhallow et al.,
showed a difference in the ability of human-derived cells to utilise iron
from transferrins (Tf) isolated from the sera of human, equine or bovine
sources which had an on impact cell growth (Penhallow et al., 1986).
Enhanced assay specificity and sensitivitymay be an additional benefit as
human or synthetic-based reagents eliminate the potential for cross-
reactivity or interference associated with animal-derived components
within an assay (Liu et al., 2023). Reducing the potential for xenobiotic
immunological responses is particularly relevant for to the toxic outcome
is understood allowing structure-activity relationships between NM
characteristics and toxic outcomes to be recognised.

The overall aim of this paper is to assess the impact of replacing
animal-derived reagents with human-based alternatives when
designing IATA and conducting tiered testing, in response to the
current drive towards adopting animal-free approaches in
toxicology.

A published IATA for inhalation exposure of NM was selected
as an exemplar testing strategy for the hazard assessment of NM as
inhalation is the primary route of concern (Braakhuis et al., 2021).
The initial objective of this project was to conduct an audit of the
assays and methods recommended within the IATA to identify
where animal-derived products were included, whether these were
necessary or, if appropriate, human-derived, or synthetic
alternatives were available. As a case study, the impact of
replacing animal-derived products was evaluated for both
acellular assays and simple Tier 1 in vitro toxicity testing using
A459 alveolar epithelial cells. A panel of well-characterised high and
low toxicity NMs, were selected to assess the suitability of the
animal-free approach to NM hazard assessment leading to the
potential for an alternative ‘humanised’ IATA which minimises
or avoids the use of animal-derived products.

2 Methods

2.1 NM suspensions

The panel of case study NMs (CuO, ZnO, CeO2, BaSO4, obtained
from the EC Joint Research Centre Nanomaterial repository, Ispra,
Italy) were selected based on an abundance of existing toxicity data from
in vitro and in vivomodels [7]. NMs were weighed into glass vials and
diluted to 1 mg/mL concentrations using PBS supplemented with 2%
FBS (Gibco) or 2% Human Platelet Lysate (HPL) (Stemcell
Technologies). Before use, particles were dispersed by probe
sonication for 30 s at 40% power. PBS supplemented with 2% FBS
or 2% HPL were selected as NM dispersants to align with the
recommended standard operating protocol for the acellular DCFH2-
DA assay (Boyles et al., 2022).

2.2 Size and agglomeration status of
NM panel

Dynamic light scattering (DLS) was measured using Malvern
Zetasizer Nano ZS (Malvern Industries, Malvern, UK) to determine
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the hydrodynamic diameter and polydispersity index of each case
study NMwhen suspended in PBS supplemented with 2% FBS or 2%
HPL and dispersed by sonication directly prior to measurement.

2.3 DCFH2-DA assay

For each case study NM, prepared in PBS supplemented with 2%
FBS or 2% HPL, the acellular generation of ROS was detected by using
an oxidant-sensitive fluorescent probe, DCFH2-DA, following the
standard operating protocol described in literature (Boyles et al.,
2022). Fluorescent readings were detected using the GloMax®

Explorer microplate reader at 485/530 ex/em nm after 90 min
incubation and were normalised to a standard curve of fluorescein
fluorescence and expressed as Fluorescein Equivalent (μM). PBS
supplemented with FBS or HPL included as the relevant vehicle control.

2.4 Ferric reduction ability of serum
assay (FRAS)

The panel of NMs was used for assessment of the total antioxidant
depletion level in commercially available human serum (H4522, Sigma-
Aldrich). After a 3-h incubation of serum with the NMs at 37°C, the
NM-mediated depletion of antioxidant capacity was quantified by
colorimetric detection of Fe2+-2,4,6-tri (2-pyridyl)-s-triazine
complexes according to the protocol reported in Gandon et al. (2017).

2.5 A549 cell culture

The cell line presents in this study were obtained from ATCC
(A549 CCL-185). A549 human alveolar epithelial cells were
continuously cultured in T75 cell culture flasks at 37°C with 5% CO2

and maintained in RPMI 1640 medium, supplemented with either 5%
(v/v) HPL (Stemcell Technologies), 1% L-Glutamine (Gibco) and 1% (v/
v) penicillin/streptomycin (Gibco) or 10% (v/v) FBS (Gibco) with 1%
L-Glutamine (Gibco) and 1% (v/v) penicillin/streptomycin. Due to the
higher protein content of HPL (56 mg/mL) compared to FBS (38 mg/
mL) (according to respective product datasheets), a lower concentration
of HPL was tested to maintain a more consistent total protein content
across all tested supplements. The A549 cells, originally cultured in FBS,
were adapted to HPL over several passages (minimum 3) prior to
assessment and maintained continuously in the respective media over
the course of growth curve analysis. The culture medium was renewed
every 2–3 days for both conditions, and cells were subcultured upon
reaching approximately 70% confluence following disruption with 1X
TrypLE™ Express Enzyme (Gibco), an animal-free recombinant
Trypsin-Like Enzyme.

2.6 A549 growth rate analysis

Growth rates were quantified by counting A549 cells cultured
continuously in either FBS- or HPL-supplemented medium at days
0, 1, 2 and 3 using a hemocytometer, after disruption with 1X
TrypLE™ Express Enzyme (Gibco), an animal-free recombinant
Trypsin-Like Enzyme.

2.7 Cell morphology using light and
fluorescent imaging

Morphological changes between A549 cells cultured in medium
supplemented with FBS or HPL were visualised by light microscopy
using the EVOS™XL Core Imaging System. For immunofluorescent
staining cells were seeded onto glass coverslips for 24 h and fixed
with 4% paraformaldehyde (PFA) for 15 min before staining with
Fluorescein Phalloidin (F432, Thermo Scientific) and mounted
using ProLong™ Diamond Antifade Mountant with DAPI
(P36966, Thermo Scientific). Slides were imaged using fluorescent
microscopy at ×10 and ×40 magnifications.

2.8 Western blotting

A549 cells, cultured in FBS- or HPL-supplemented medium,
were lysed using RIPA buffer (10 mM Tris-HCl, 1 mM EDTA,
0.5 mM EGTA, 1% v/v Triton X-100, 0.1% w/v SDS, 140 mM NaCl,
diluted with dH2O, pH 8.0). Protein levels were quantified using a
BCA assay (23225, Thermo Scientific). Equal amounts of protein
samples were loaded per well and separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Samples
were electro-transferred to nitrocellulose membranes. The
membranes were blocked with 5% v/w non-fat dry milk then
incubated at 4°C overnight with primary antibodies to detect
vimentin (SC-6260, Santa Cruz Biotechnology) and
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), used as
the loading control. The membranes were then incubated with
secondary antibodies. Protein bands were visualised using LI-
COR Odyssey® 9120 Gel Imaging System (Biosciences).

2.9 Alamar blue

The Alamar Blue (AB) cell viability assay was used to measure
cell viability of A549 cells in either HPL or FBS supplemented
medium following exposure to the panel of case study NMs and
relative to 0.1% v/v Triton X-100, the negative control (100% cell
death). Confluent cells were trypsinised and counted, as detailed
previously. Cells were seeded at an initial density of 2.7 × 105 cells/
well in 12-well plates, using medium supplemented with HPL or
FBS, then incubated overnight. Cells were treated with six different
concentrations of each test NM (5, 10, 20, 39, 78 μg/cm2) suspended
in FBS- or HPL-supplemented media with the corresponding media
included as the vehicle control. Treatments were incubated for 5- or
24-h. At the end of the treatment, medium was removed, and AB
reagent (2% resazurin in PBS) was added to each well and incubated
at 37°C for 30 min. The supernatant from each well was plated in
triplicate on a 96-well plate then fluorescence detected using the
GloMax® Explorer microplate reader at ex/em 520 nm/580–640 nm.

2.10 Wound healing assay

Cells were seeded at a density of 2.7 × 105 cells/well in 12-well
plates, using medium supplemented with HPL or FBS, and
incubated overnight at 37°C. A scratch was made along the
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centre of the well using a sterile p200 pipette tip. Wells were imaged
by light microscopy using the EVOS™ XL Core Imaging System at
time 0 and after 24 and 48 h. ImageJ was used to measure the gap
width in each media conditions at 0-, 24-, or 48-h timepoints.

2.11 Fluorescent bead uptake

Cells were seeded at a density of 0.5 × 105 cells/well in a 24-well
plate and incubated with Fluoresbrite® YG Carboxylate
Microspheres 200 nm beads (1 × 104 - 1 × 1011 beads/well) for
5 h. Supernatants were removed and cells washed twice with PBS.
Fluorescence of wells were then measured on the GloMax® Explorer
microplate reader at ex/em 414 nm/488 nm.

2.12 Statistical analysis

The data are presented as mean ± SEM of at least three
independent samples or experiments, and was analysed using
GraphPad Prism 9, version 9.4.1 (GraphPad Software Inc., San
Diego, California, United States). When two groups were
compared, Student’s t-test was to compare mean values between
groups. When applicable, ordinary one-way ANOVA using multiple
comparisons was used to elucidate statistical differences between
multiple groups. Statistical significance was set at p < 0.05.

3 Results

3.1 IATA audit

The inhalation IATA developed by Braakhuis et al., is supported
by a tiered testing strategy to guide the collection of data to group
NMs which pose a similar inhalation hazard (Braakhuis et al., 2021).
Key characteristics driving toxicity via the inhalation route of
exposure were identified including dissolution, reactivity,

cytotoxicity, inflammogenicity and genotoxicity. The inclusion of
animal-derived products in the methods and models included at
each tier of the IATA testing strategy were reviewed and animal-free
alternatives were considered (Figure 1). Briefly, protocols
recommended for assessment of dissolution do not require animal-
derived products and are not considered further (Koltermann-Jülly
et al., 2018). A number of assays can be selected for the assessment of
intrinsic NM reactivity including electroparamagnetic resonance
(EPR), ferric reduction ability of serum (FRAS) assay and the
reactive oxygen species (ROS) sensitive probe, DCFH2-DA. EPR
and FRAS do not require animal-product supplementation.
Although not essential for the DCFH2-DA assay, NM particle
suspensions are routinely prepared in a protein-rich solution to
generate a more homogenous dispersion and to replicate in vitro
cell culture conditions. Bovine serum albumin (BSA) or foetal bovine
serum (FBS) are common sources of protein used for this purpose
(Boyles et al., 2022). Tier 1 cytotoxicity, inflammogenicity and
genotoxicity studies involve the measurement of cell viability, pro-
inflammatory cytokine release and chromosomal damage after acute
exposure of NMs to a monoculture of a relevant cell line, such as
A549 alveolar epithelial cells. Routine maintenance of cells in culture
requires protein-rich media to support viability and growth of cells.
FBS is the most frequently used protein supplement in cell culture
(Jochems et al., 2002).

Based on the audit of the tiered testing strategy the following
adaptations were prioritised for further assessment:

1. Preparation of well-dispersed NM suspensions in human
platelet lysate (HPL) as an alternative to FBS.

2. Comparison between reactive oxygen species (ROS)
production measured by DCFH2-DA assay from NMs
prepared in HPL versus FBS-supplemented media.

3. Evaluation of FRAS assay as an appropriate measure of
intrinsic reactivity of NMs compared to DCFH2-DA.

4. Impact of replacing FBS with HPL in A549 cell culture.
5. Impact of replacing FBS with HPL in A549 sensitivity to NM

case study panel.

FIGURE 1
Integrated Approach to Testing and Assessment via inhalation exposure (A) and Tiered Testing Strategy (B). Results of audit for use of animal-derived
products and suggested adaptations.
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3.2 Nanomaterial suspension

Dynamic light scattering (DLS) analysis was performed to
characterise hydrodynamic diameter and polydispersity index
(PDI) of the case study NM panel dispersed in PBS
supplemented with 2% FBS or 2% HPL (Table 1). A significant
increase (p < 0.05) in both hydrodynamic size and polydispersity of
CuO NMs when dispersed in HPL-containing PBS in comparison to
FBS was observed. A significant decrease in BaSO4- HPL
hydrodynamic diameter was recorded however this did not
correspond to a change in PDI. No significant differences were
noted for ZnO or CeO2 when prepared in FBS or HPL-
supplemented media.

3.3 Acellular reactivity

To assess the reactivity of the case study NMs, the oxidant-
sensitive fluorescent probe, DCFH2-DA was used to determine the
intrinsic ROS production of each case study NM prepared with the
different media conditions (Figure 2A). The fluorescent values for
each treatment were normalised against the fluorescent signal
produced by a standard curve of fluorescein diacetate (FDA).

CuO and ZnO NMs suspended in HPL-containing PBS showed
significantly higher fluorescence levels at concentrations of 2.4 μg/
cm2 and 10 μg/cm2 and above, compared to the HPL-PBS no particle
control, respectively. Fluorescence levels indicative of ROS
production by CuO at 39 and 78 μg/cm2 when suspended in FBS
were also found to be significantly higher than the FBS vehicle
control (p < 0.05). No significant difference was found in any of the
BaSO4, CeO2 samples in either condition or the ZnO samples
prepared in FBS-PBS. From this, we identified CuO, in both
HPL-PBS and FBS-PBS, and ZnO, in HPL-PBS only, to be ROS-
producing NMs. We found that CuO samples prepared in HPL-PBS
displayed significantly higher fluorescence levels at particle
concentrations from 1.2 μg/cm2 and above in comparison to
CuO samples dispersed in FBS-PBS. No significant difference was
found between any of the other particles when comparing between
the means of each particle concentration in FBS or HPL.

Based on comparison of the top concentration of each particle
and the vehicle control, we proposed an acellular hazard ranking

order for the NMs in their respective media condition as follows:
CuO_HPL >> CuO_FBS = ZnO_HPL >> ZnO_FBS > CeO2_HPL =
BaSO4_HPL = BaSO4_ FBS = CeO2_FBS.

Ferric Reduction Ability of Serum (FRAS) assay measures the
reduction in antioxidant capacity of human serum after incubation
with NMs as an indirect indicator of ROS generation and does not
require animal-derived reagents. Similar to the results fromDCFH2-
DA assay, CuO NM caused a reduction of antioxidant capacity,
indicating exposure concentration dependent generation of ROS
whereas BaSO4 did not cause a detectable reduction in antioxidant
capacity (Figure 2C). Due to limited available material and the high
exposure concentrations required to measure FRAS in NM
suspensions the assay was not conducted for other members of
the NM panel.

3.4 Tier 1 in vitro hazard assessment

The impact of switching from animal to human-derived proteins
on NM toxicity testing was evaluated using A549 epithelial cells.
A549 cells are a human epithelial cell line derived from basal cell
carcinoma tissue and are commonly used as a model of alveolar type
II epithelial cells (ATII) in respiratory research and toxicity testing of
NMs (Smith, 1977; Don Porto Carero et al., 2001).

3.4.1 Impact of HPL on A549 growth rate
The effect of switching from media supplementation from

10% FBS to 5% HPL on A549 cells under basal culture conditions
was first evaluated. A significantly slower rate of A549 cell growth
was observed when cultured in HPL-media (Figures 3A, B). Light
microscopy imaging of A549 cells in the two media conditions
(Figure 3C) highlighted distinct morphological differences
between the two media conditions. Cells grown in FBS
supplemented media displayed typical epithelial ‘cobblestone’
morphology while the change to HPL media resulted in cells with
a spindle-shaped morphology more commonly observed in
mesenchymal cell lines.

3.4.2 Cytoskeletal protein expression
To investigate whether changes in the underlying

A549 cytoskeleton reflected the observed morphological

TABLE 1 Size and agglomeration status of NM panel. Hydrodynamic diameter (nm) and Polydispersity Index (PDI) by dynamic light scattering techniques of
BaSO4, CeO2, CuO and ZnO when suspended in PBS with 2% FBS or HPL after sonication by ultra-sonication water bath. Values represent the mean ± SEM
(n = 3 individual replicates per treatment). Statistical analysis was performed using an unpaired 2-tailed T-test; *p < 0.05 vs CuO FBS.

Hydrodynamic size (nm) +/− SD t-test Polydispersity index +/− SD t-test

CuO_FBS 225.08 46.94 * p < 0.05 0.58 0.14 * p < 0.05

CuO_HPL 391.72 23.88 0.91 0.08

ZnO_FBS 502.44 33.13 ns
p = 0.16

0.24 0.03 ns
p = 0.406

ZnO_HPL 442.53 44.83 0.26 0.01

CeO2_FBS 533.74 103.12 ns
p = 0.079

0.42 0.08 ns
p = 0.103

CeO2_HPL 348.33 65.69 0.28 0.06

BaSO4_FBS 590.20 83.27 * p < 0.05 0.61 0.06 ns
p = 0.421

BaSO4_HPL 383.82 67.45 0.56 0.07

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Fraser et al. 10.3389/fbioe.2025.1526808

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1526808


differences between cells grown under each media condition
immunofluorescent staining for filamentous (F)-actin stress
fibres was conducted. A qualitative increase in F-actin stress
fibre formation in HPL-supplemented media was observed in the
spindle-like A549 cells as well as a flattened, larger nuclear
morphology (Figure 4A). Western blot analysis of the

intermediate filament protein vimentin was significantly
increased in cells grown in HPL-supplemented media
(Figure 4B). Vimentin is primarily expressed in cells with a
mesenchymal phenotype (Ridge et al., 2022). Additional
changes in expression levels of key regulators of actin
polymerisation were also observed. A significant increase in

FIGURE 2
Acellular ROS levels of case study NMs. (A) Fluorescence levels of case study NMs, dispersed within 2% FBS- or HPL-supplemented PBS, were
detected using the DCFH2-DA assay and normalised to standard curves of fluorescein diacetate (FDA) fluorescence. PBS alone was included as the
vehicle control. Statistical analysis was performed between each particle concentration and the corresponding vehicle control using an unpaired T-test;
*p < 0.05, **p < 0.01 and ***p < 0.001 vs own particle’s vehicle control (0 μg/cm2). (B) Individual graphs for each case study NM. Data represent the
mean± SEM (n = 3 per treatment). Statistical analysis was performed using a one-way ANOVA test; # (p <0.05) (#) vs. 1.2 μg/cm2CuO in FBS, p < 0.01 (‡) vs
2.4, 5, and 10 μg/cm2 CuO in FBS, p < 0.001 (Ω) vs 20–78 μg/cm2 CuO in FBS. (C) Antioxidant capacity of serum after incubation with CuO and BaSO4 NM
expressed as Trolox equivalent ±SEM (n = 3 per treatment).
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the actin-binding protein, cofilin was detected in HPL media
(Figure 4C). Filamin A which plays a crucial role in organisation
and maintenance of cytoskeleton (Sutherland-Smith, 2011) was
also significantly increased (Figure 4D). Interestingly an apparent
decrease in alpha smooth muscle (αSMA) commonly used as a
marker of cells undergoing EMT and adopting a mesenchymal
phenotype (Scanlon et al., 2013) was observed in A549 cells
grown in HPL-media (Figure 4E).

3.4.3 Wound healing assay
Increased expression in vimentin intermediate filament protein

and changes in actin organization suggests the A549 cells are
adopting a more motile phenotype which was examined by the
wound healing scratch assay. Contrary to expectations the scratch
wound closed more quickly in A549 cells grown in FBS compared to
A549 cells grown in HPL (Supplementary Figure S1). However,
differences in the proliferation rate between cell grown in each
media condition (Figure 3) may be a confounding factor obfuscating
potentially more subtle differences in motility.

3.4.4 A549 response to nanomaterial exposure
A549 cultured in HPL and FBS media were exposed to the case

study panel of NMs: ZnO, CuO, CeO2 and BaSO4. Each NM
suspension was prepared in matched media prior to
A549 exposure. Cell viability was measured after 24 h exposure
(1.2–78 μg/cm2 dose range). CuO NMs caused significant levels of
cellular cytotoxicity compared to untreated cells from 20 μg/cm2,
however, no difference was observed between media conditions.
Interestingly, increased sensitivity to ZnO NMs was observed when
cells were cultured in HPL media (Figure 5A), with significant
differences between FBS- and HPL-media conditions observed
from 10 μg/cm2 to the top concentration of 78 μg/cm2 (p < 0.01).

ZnO NM cytotoxicity was also examined over a 5 h treatment
period. Elevated levels of cell cytotoxicity were observed within both
media conditions however, a dose-dependent reduction in viability
was observed only in HPL but not FBS at 5 h. Corresponding
brightfield microscopy images show the progressive detachment of
the A549 cell monolayer with increasing exposure concentrations of
ZnO NM under HPL-media conditions. (Supplementary Figure S2).

FIGURE 3
Effect of HPL-supplementedmedium on A549 cell growth rates. (A)Number of A549 cells grown inmedium supplemented with 10% FBS or 5% HPL
and counted on days 0, 1, 2 and 3. (B) Slope of growth curves. Bars representmean± SEM for the slopes of the growth curves of eachmedia condition (n =
7), normalised to cell count on day 0. Statistical analysis was performed using an unpaired T-test; *p < 0.05. (C) Light microscopy images of A549 cells
which had been cultured in FBS- or HPL-supplemented media.
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Comparison of the relative cytotoxicity of each NMs reported in
Figure 5 after incubation with A549 cells grown in FBS and HPL-
supplemented media allowed the relative hazard posed by each NM

to be ranked. From exposure of A549 cells grown in FBS-
supplemented media the following hazard ranking is suggested:
CuO >> ZnO > CeO2 = BaSO4.

FIGURE 4
HPL-mediated changes in cytoskeletal protein expression. (A) F-Actin expression was qualitatively visualized by immunofluorescent phallodian
staining. (B–D)Western blot analysis of cytoskeletal protein expression from A549 cell lysates, cultured in FBS or HPL media, was detected anti-vimentin,
anti-cofilin, anti-filamin and anti-αSMA antibodies and anti-tubulin as the internal control. Lysates from 3 independent biological replicates were run
together on the same gel. Protein bands were visualised using LI-COR Gel Imaging System. (E) Relative band intensity of protein expression was
normalised compared to loading control and quantified using ImageJ. Data represents themean +SEM (n = 3). Statistical analysis was performed using an
unpaired T-test; *p < 0.01.

FIGURE 5
Cell viability of A549 cells cultured in FBS or HPL-media exposed to case study panel of NMs for 24 h (A) BaSO4 NM, (B) CeO2 NM, (C) CuO NM, (D)
ZnO NM. n = 5 *p < 0.05, **p < 0.01.
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Results from A549 cells grown in HPL-supplemented media
leads to a different interpretation of NM hazard as suggested by the
following hazard ranking: ZnO >> CuO > CeO2 > BaSO4, directly
demonstrating the impact of media supplementation and the
conditions under which cells are cultured and exposed to NM
can directly impact the outcomes of a hazard assessment.

3.4.5 Particle uptake by FBS and HPL-cultured cells
After 24-h exposure to the NM panel qualitative differences in

particle uptake were observed with an apparently greater level of
uptake seen in A549 cells cultured in HPL-media (Figure 6A). It was
hypothesized the difference in cytotoxicity which resulted from
exposure to ZnO NM under different media conditions may be
due to increased particle uptake in HPL-media cells. Uptake of
200 nm fluorescent polystyrene beads was measured using a

fluorescent microplate reader after 5 h incubation. Figure 6B
shows a significantly greater fluorescent signal in A549 cells
cultured in HPL-media compared to FBS-media, which increased
with increasing exposure concentration of fluorescent beads.

4 Discussion

The aim of this study is to address the pertinent need to
reconsider the status quo use of animal-derived products in
toxicity testing of NMs and to support the timely incorporation
of animal-free SOPs into the IATA frameworks and tiered testing
strategies which are currently gaining traction and progressing
towards validation for regulatory acceptance (Hristozov et al.,
2024). The EU complete ban on the use of animal models for the

FIGURE 6
NMuptake by A549 cells in FBS and HPLmedia. (A)Qualitative brightfield microscopy images of FBS and HPL cells exposed to NM panel (10 μg/cm2)
for 24 h. Differing pattern of uptake observed in cells grown and exposed under each condition. (B) Uptake of fluorescent beads measured after 5 h
incubation of A549 cells with Fluoresbrite

®
YG Carboxylate Microspheres 200 nm beads. Statistical analysis was performed using an unpaired t-test

compared to FBS versus HPL; n = 3 **p < 0.01, *p < 0.05.
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safety assessment of cosmetics since 2013 provided the critical
impetus for the rapid development, validation and adoption of
alternative models to assess skin irritation and sensitization
(Casati et al., 2018). In vitro methods that can replace animal
testing in the identification of skin sensitisers are now commonly
used to generate the required regulatory hazard to bring a product to
market. Although considered a success in the promotion of 3Rs
principles a recent systematic review of 156 articles utilising in vitro
methods to assess skin sensitization was carried out by Marigliani
et al., who reported the use of several animal-derived products from
different species in many protocols, with the use of FBS being cited
in 78% of studies (Marigliani et al., 2019a). Therefore, further
optimisation of skin sensitization NAMs is still required to
completely remove the use of animals from cosmetics testing.
Although in their infancy compared to the NAMs used to detect
skin sensitization, efforts to develop advanced models to assess
hazard of NM and substances via other exposure routes have
made significant progress in recent years (Fentem et al., 2021). It
is therefore timely to consider the hidden burden of animal use at
this stage of NAM development to ensure animal-derived products
are excluded where possible. To meet this need we conducted an
initial audit of an IATA developed for the assessment of NMs hazard
via inhalation and identified a number of key areas where animal
reagents such as BSA or FBS are commonly used, from initial
preparation of NM suspensions to in vitro cell-based assays.
Critical assays were then selected for further assessment to
explore the feasibility of removing and/or replacing animal-
derived components, focussing on the replacement of FBS with HPL.

Worldwide production of FBS is estimated at approximately
600,000 to 800,000 L collected from around 1 to 2 million foetuses
each year (Jochems et al., 2002). Although included in status quo cell
culture protocols FBS is a complex mixture of different factors and
introduces a degree of complexity and variability that can have a
substantial impact on experimental results. Of note, albumin amajor
protein constituent of FBS contains high levels of antioxidants and
can act as a protective buffer to cellular stresses and influence the
detection of particle-mediated oxidative stress (Boyles et al., 2022).
Reducing the potential for xenobiotic immunological responses is
also particularly relevant for NM toxicity testing to ensure potential
hazard is accurately identified and to mitigate against
artefactual responses.

Issues with data reproducibility have been shown to arise from
batch-to-batch variation between FBS sources leading to
inconsistencies in results (Barosova et al., 2021). As a result, the
transition to FBS-free media is encouraged by scientific
organizations worldwide; the Organisation for Economic Co-
operation and Development (OECD) began to discourage the use
of FBS in 2017, especially for human health risk assessments of
chemicals (Pedersen and Fant, 2018). Additionally, to address both
reproducibility and ethical concerns related to the use of FBS the EU
Reference Laboratory for Alternatives to Animal Testing (EURL
ECVAM) Scientific Advisory Committee (ESAC) requires
justification when non-animal alternatives to serum are not used
in methods forwarded to the organization for validation/pre-
validation (Directive, 2010, 2022; ECVAM News and Views,
2008). Numerous options are now available to act as
replacements for FBS and animal-derived components in cell
culture including an increasing number of commercially available

media formulations of chemically defined, animal component-free,
or xeno-free media and supplements. The Fetal Calf Serum-Free
Database lists commercially available serum-free media and
summarises medium compositions from the scientific literature
for various cell types (Utrecht, 2024). For our study we opted for
HPL as a cost-effective replacement for FBS, however acknowledge
the issue of batch-to-batch variation remains a concern.

The essential physiological role of platelets in wound healing and
tissue repair underlies the rationale for the use of human platelet
derivatives in cell culture (Burnouf et al., 2016). HPL has emerged as
a promising alternative to FBS for cell culture applications, offering
advantages in safety, efficacy, and ethical considerations (Ben
Azouna et al., 2012; Brachtl et al., 2022; Viau et al., 2017; Liau
et al., 2021; de Wildt et al., 2022). Studies have demonstrated that
HPL is rich in growth factors that promote cell proliferation, making
it a viable substitute for FBS as a culture medium (37-39) title =
supplement_ (Murphy et al., 2023; Guiotto et al., 2020; Bieback et al.,
2009) > supplement (Murphy et al., 2023; Guiotto et al., 2020;
Bieback et al., 2009) however, as an equally complex protein mixture
but with a differing composition profile, the impact of replacing FBS
with HPL needs to be well understood to support a change in
protocol and to ensure fidelity of hazard results obtained.

Here we observed a significant increase in both the
hydrodynamic size and polydispersity of CuO particles in HPL
compared to CuO in FBS, suggesting a difference in NM
agglomeration. NMs have the ability to adsorb proteins and
other biomolecules from biological media on to their surface,
forming a ‘protein corona’ which dictates particle-particle and
particle-cell interactions (Brachtl et al., 2022; Zhang et al., 2024).
Due to the varying composition of biomolecules in different media
preparations, different protein coronas can be created (Ge et al.,
2015). Furthermore, factors such as the size, surface chemistry
(Mortensen et al., 2013), charge and shape of the NM, as well as
the binding affinity of particular media proteins for specific NMs,
can majorly impact the formation and composition of the protein
corona (Ahsan et al., 2018; Kopac, 2021) which may explain the
interesting observation that switching to HPL lead to a measurable
increase in hydrodynamic diameter and polydispersity of CuO NM
but decrease of BaSO4 diameter. Once formed, the protein corona
can influence various characteristics of the NM such as the
agglomeration of particles, e.g., in a study from Vertegel et al.,
(Vertegel et al., 2004), lysozymes were shown to bind to silica NMs
and cause enhanced NM aggregation, with Park et al. (Park, 2020),
postulating that this was due to the interaction of positively charged
residues on the bound lysozymes interacting with other proteins.
Adsorbed proteins are also able to act as physical bridges between
NMs and thus promote agglomeration (Falahati et al., 2019) while
on the other hand serum albumin has been shown to coat some NMs
and decrease agglomeration through inhibition of electrostatic and
attractive forces between individual particles (Zook et al., 2011).
Particle agglomeration is a key factor that must be considered in
nanotoxicity testing, as it has been shown to affect NP toxicity and
reactivity. Murugadoss et al. (Murugadoss et al., 2020), reported a
size-dependent decrease in glutathione levels and increase in IL-8
and IL-1β levels and increase in DNA damage when THP-1
macrophages were exposed to large and smaller TiO2

agglomerates. Furthermore, TiO2 prepared in various media
reportedly caused differences in particle agglomeration, cellular
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interactions and chromosomal damage in BEAS-2B cells, with
differences attributable to changes in protein corona (Prasad
et al., 2013).

Evaluation of intrinsic NM reactivity is a core component of the
inhalation IATA and considered a key driver of NM toxicity.
Ensuring the methods employed to assess NM reactivity are
sufficiently robust to differentiate high from low reactivity NM is
therefore critical. Here we showed the choice of media supplement
used in the preparation of NMs can result in significantly different
responses when ROS production is detected by the DCFH2-DA
probe which will fundamentally affect the interpretation of relative
hazard or NM hazard ranking. Therefore, care should be taken when
comparing DCFH2-DA results from across the literature. We also
demonstrated the FRAS assay, which does not require animal-
derived products, can differentiate between high reactivity CuO
and low reactivity BaSO4 confirming results previously reported by
(Ag Seleci et al., 2022). Interesting in this study the authors reported
significant reactivity of ZnO when measured by the FRAS assay but
not when the DCFH2-DA assay was used, suggesting the FRAS assay
is a more sensitive read-out. It is tempting to recommend the FRAS
assay as the first-choice reactivity assay in ‘humanised’ IATA
however a number of key limitations should first be considered.
The FRAS assay may not be suitable for all material types, e.g.,
colorimetric assays, including the FRAS assay, are not recommended
for NM with high absorption coefficient (i.e., where traces of NM
may produce a false positive result due to optical interference) as
demonstrated with NM pigments in (Ag Seleci et al., 2022). Another
challenge associated with FRAS assay are comparatively high
exposure doses required to obtain a signal (e.g., 60 mg per
1.5 mL of serum as the highest dose) which could pose a
problem when only a limited amount of the material is available.

We focussed our study on the IATA tailored towards inhalation,
as the primary route of particle exposure. The IATA recommends a
tiered approach to toxicity testing initially utilising simple monocell
cultures of a cell-line relevant to the exposure route to screen acute
toxicity and pro-inflammatory and/or genotox changes. The
A549 cell-line isolated from a basal cell adenocarcinoma from a
58-year old Caucasian male (Lieber et al., 1976) are commonly used
as a model system for Type II alveolar epithelial cells, however
A549 cell phenotype and behaviour has been shown to be
manipulated by culture conditions (Cooper et al., 2016; Wu
et al., 2017) further exemplified by the reduction of cell growth
rate and change of morphology we have observed here.

It has been reported that HPL in general has the higher
concentration of growth factors than any other cell culture
supplements including FBS (Guiotto et al., 2020).
Correspondingly, the majority of recent reports assessing the use
of HPL in expansion of mesenchymal stem cells agree that HPL
supports cell expansion to a higher degree, compared to FBS, cells
proliferate faster and maintain undifferentiated phenotype (Guiotto
et al., 2020). Hildner et al. (2015) reported both human articular
chondrocytes and human adipose-derived stem cells cultured with
5% HPL showed strongly enhanced proliferation rates compared to
cells grown in 10% FBS. Rauch et al. (2011), showed almost identical
growth promoting effect of 5% HPL is compared to that of 10% FBS
for renal epithelial cells and human leukemia cell lines. Hofbauer
et al. (2014), demonstrated use of HPL on different EC types did not
reveal any substantial negative effects on EC growth however a slight

decrease in metabolic activity was noted. Conversely here we see a
reduction in A549 cell growth rate and change in morphology. To
normalise our comparative cell culture conditions we opted to
reduce the concentration of HPL to more closely align with the
total protein content of FBS which may have led to the reduction in
proliferation rate, however this adjustment was based on total
protein content and not tailored to matching levels of specific
proteins with known functional impact on cell growth.
Comprehensive characterisation of FBS and HPL-supplemented
media composition should be conducted in future mechanistic
studies to elucidate the impact of specific factors present in each
media. It has also been reported that HPL may stimulate cells to
mature which may account for reduction in proliferation as cells
differentiate (Bieback et al., 2009). The evident change in
morphology and expression of structural proteins identified in
our study may therefore be indicative of differentiation or
phenotypic switching to a less proliferative state. Confirming the
relative reduction of cell proliferation observed here, Fazzina et al.
(2016), showed that FBS resulted in a faster replication rate for
haematopoietic cell lines (KG-1, K562, JURKAT, HL-60), with an
average of doubling time 14% higher than HPL cultures. A lack of
standardisation in preparation of HPL and protocols for use are
likely to be responsible for the contradictory impacts on cell culture
proliferation and differentiation reported in the literature. Here we
report the impact of different media composition on cell growth,
phenotype and behaviour using a direct approach to switching from
FBS to HPL-supplemented media. It would be interesting to
compare the impact of different HPL concentrations and
alternative strategies for adaption periods, e.g., gradual, or
staggered replacement over prolonged time (Marigliani et al.,
2019b; Weber et al., 2022). Suggesting an optimal protocol for
adaptation to HPL-supplemented media was considered out with
the scope of this manuscript rather the results reported here provide
direct evidence for the need to careful consideration of cell culture
conditions and processes when developing NAMs which deviate
from standardised protocols such as the growth of cells in FBS-
containing media.

Commercially available HPL usually consists of a pool of at least
three different blood donors, to get a standardised product and
prevent undesired donor-dependent characteristics. Hesler et al.
(2019), tested effect of non-pooled, single patient-derived HPL on
A549, HepG2 and Caco-2 human cell lines. The relative
proliferation of A549 cells decreased when cultured in the
presence of 10% single doner HPL (74.5 + 10.1%), 6% single
doner HPL (74.0 + 11.0%) and 10% human serum (78.7 +
13.4%) compared to cells grown in 10% FBS. Here we compared
a single batch of FBS with a single batch of HPL as a limited, proof-
of-concept to highlight the need to consideration of media
composition in the interpretation of hazard results. Future
detailed studies considering impact of batch-to-batch variation
on the phenotypic changes reported here will be required to
delineate the critical factors driving different responses, for
example, additional mechanistic studies tailored to better
interpret the influence of the protein corona derived from
different serum sources on nanomaterial toxicity.

Discrepancies between studies highlight the fundamental
limitation of all protein mixtures used as cell culture
supplements regardless of origin. Hormones, growth factors
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and other signalling molecules are abundant in serum, but tightly
regulated in interstitial fluid in which cells in the body are bathed
(Baker, 2016). The microenvironment of cells, most of which are
not directly exposed to serum and its higher concentration of
proteins in vivo, may be better modelled in serum-free cultures
compared to those supplemented with FBS (Muoio et al., 2021).
However, the growth and maintenance of cell lines using serum-
free media is not always possible, or pragmatic. Most serum-free
formulations apply only to a specific cell type or closely related
group of cell lines, may be prohibitively expensive for widespread
application in cell culture lab where multiple cell lines and types
are used routinely. As novel media formulations which may have
broader applications across a wide variety of cells start to become
available (Rafnsdóttir et al., 2023; Weber et al., 2024) it would be
interesting to assess the comparative growth, phenotype and
behaviour of cells and impact of use of new formulations on
NAM performance. However, weaning cells off serum and
transferring to novel media formulations can take time,
resources, and effort. Chary et al. (2022) compared a number
of commercial serum-free defined media and showed that
A549 cells can be successfully transitioned to FBS-free media
under submerged and air-liquid interface conditions, however
only 2 out of 4 media tested were effective. Each serum-free
formulation resulted in distinct cell phenotypes typified by
differences in doubling time ranging from 21.3 ± 1.5 h
(DMEM +10% FBS) to 51 ± 6.6 h (CnTPrime Airway). A
change in morphology was also observed with A549 cells
grown in either DMEM +10% FBS or X-VIVO™ media
showing a similar morphology of smaller, cuboidal cells (about
10–20 μm in diameter) whereas CnT-Prime Airway cultured cells
were a heterogeneous mixture of large cells (>50 μm in diameter),
medium cells (about 20–50 μm in diameter), and smaller,
cuboidal cells. Significant differences in cell sensitivity to toxic
insult were also reported as dependent on culture conditions. The
authors concluded that A549 cells cultured in CnTPrime Airway
may lose their adenocarcinomic phenotype in favour of
differentiation towards an ATI and ATII epithelial cell-like
phenotype. Therefore, the choice of media and culture
conditions may have an impact on the physiological relevance
of a NAM.

To support the replacement of FBS in cell culture systems
used in toxicity testing it is critical to assess how changes in cell
phenotype or functionality stimulated by the new culture
environment may affect the response of cells to toxic agents
and therefore alter the perception of hazard compared to other
studies or previous data collected. To address this important
factor, we assessed the cytotoxicity of a panel of well
characterised NMs prepared as suspensions in FBS- or HPL-
supplemented media and exposed to A549 cells cultured under
each media condition. Interestingly although CuO NM showed
much greater ROS production in the DCFH2-DA assay when
prepared in HPL-medium compared to FBS this was not
replicated in a corresponding increase in cytotoxicity
suggesting the level of ROS production under FBS-media
conditions is sufficient to trigger mechanisms of cell death
within the parameters of the experimental set-up (NM
exposure concentration x exposure time). Therefore, although
the acellular reactivity assay ranks CuO-HPL higher in potential

hazard the toxicology implications are comparable to CuO-FBS
in a cellular system. On the other hand, ZnO-HPL and ZnO-FBS
both produced very low levels of acellular ROS, however ZnO-
HPL was significantly more toxic to A549 cells grown in HPL
media compared to the cytotoxicity caused by ZnO-FBS exposure
to A549 cells cultures in media with FBS. The degree of
cytotoxicity observed resulted in a necessary re-ordering of the
hazard ranking of the NM panel when potential to cause
cytotoxicity to A549 cells was compared; CuO NM, the
highest toxicity material identified under FBS conditions, was
surpassed by ZnO when FBS was switched for HPL. Furthermore,
the hazard ranking for all NMs generated from cytotoxicity study
was different when compared to acellular DCFH2-DA reactivity
(DCFH2-DA: CuO_HPL >> CuO_FBS = ZnO_HPL >> ZnO_
FBS > CeO2_HPL = BaSO4_HPL = BaSO4_ FBS = CeO2_FBS
versus cytotoxicity: CuO >> ZnO > CeO2 = BaSO4 in FBS-media
or ZnO >> CuO > CeO2 > BaSO4 in HPL-media).

The protein corona can impact the NM toxicity profile via
altering the nano-bio interface; alternative epitopes on the
adsorbed proteins can become exposed upon binding to the
NM which can allow for binding to different receptors (Ge
et al., 2015) altering uptake of NMs in biological systems, as
well as their distribution and clearance. Adsorption of different
protein preparations (human serum albumin (HSA), bovine
serum albumin (BSA), high-density lipoprotein (HDL) to the
surface of silver NPs were shown to induce conformational
changes in the structures of bound proteins, for example, the
number of α-helices decreased in both HSA and BSA but increased
in HDL, whereas the number of β-sheets remained unchanged in
all 3 protein coronas. This, in fact, altered the cellular uptake of
NPs (specifically through scavenger receptors) and initiated
cytotoxicity and an inflammatory response (increased mRNA
expression of the pro-inflammatory cytokine IL-6) in vitro
cellular models (epithelial and endothelial cells) (Shannahan
et al., 2015). These studies along with the data presented here
exemplify how a change in protein corona due to a change in NM
suspension media can influence biological responses at the nano-
bio interface should be carefully considered when altering media
composition. We hypothesise differences in particle uptake
mechanisms triggered by the ZnO-HPL protein corona directly
accounts for the increase in cytotoxicity of the ZnO NM compared
to FBS-media conditions (Hassanian et al., 2021). It is well
acknowledged that ZnO NM mediated toxicity is largely due to
the ‘Trojan Horse’ mechanism which describes how the
internalisation of ZnO NM leads to rapid dissolution of ZnO
NM to highly reactive Zn2+ in the low pH of the phagolysosome
(Sabella et al., 2014). Therefore, an increase in the rate of ZnO NM
uptake can account for the more rapid onset of cell death observed
in response to ZnO-HPL compared to ZnO-FBS.

The results of our nanotoxicity testing demonstrate how
differences in cell culture set-up can have a fundamental impact
on NMhazard assessment with implications for the interpretation of
results both within specific assay and across a tiered testing strategy.
Therefore, we consider it possible to remove and replace animal
derived products from the inhalation IATA while acknowledging
that the switch may greatly affect both cell growth a phenotype as
well the results of toxicity assays which will need to be carefully
considered when interpreting the results of both acellular and
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cellular toxicity assays in comparison to previously generated hazard
data. Further work needs to be done to investigate in detail the
impact of HPL as a protein source on cell growth and behaviour and
the nano-bio interface. A better understanding of how changes in
medium composition may affect the interpretation of specific NM
hazard but also importantly in vitro assay predictability of human
hazard will be fundamental to promote the adoption of NAMs to
replace in vivo models for understanding risk.
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