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We present new exclusion bounds obtained at the European X-Ray Free Electron Laser facility
(EuXFEL) on axionlike particles in the mass range 10−3 eV≲ma ≲ 104 eV. Our experiment exploits the
Primakoff effect via which photons can, in the presence of a strong external electric field, decay into axions,
which then convert back into photons after passing through an opaque wall. While similar searches have
been performed previously at a third-generation synchrotron [Yamaji et al., Phys. Lett. B 782, 523 (2018)],
our work demonstrates improved sensitivity, exploiting the higher brightness of x-rays at EuXFEL.
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Introduction—The axion arises from the breaking of
Peccei-Quinn (PQ) symmetry [1–3], which was proposed
to explain the absence of CP violation by the strong
interactions described by quantum chromodynamics (QCD).
Axionlike particles (ALPs) also arise in string theory [4].
In spite of being very light and having suppressed couplings,
coherent oscillations of relic axions can naturally account
for cold dark matter if ma ∼ 10−6 − 10−4 eV [5–7]. Most
laboratory searches for axions converting to photons in a
magnetic field [8] have therefore focused on this “light axion
window” [9], targeting axion-photon couplings correspond-
ing to the Galactic halo dark matter being made of axions.
This coupling is related (inversely) to the scale of PQ
symmetry breaking in extensions of the standard model
that implement the PQ symmetry, e.g., the Kim-Shifman-
Vainshtein-Zakarov model [10,11] or the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) model [11,12]. It has been
noted that when the PQ symmetry (in the DFSZ model) is
broken after cosmological inflation, axions are also produced
by the decay of domainwalls [13], and the preferredmass for

axions to make up dark matter then exceeds 10−2 eV [14].
Such “heavy” axions are associated with a low scale of
Peccei-Quinn symmetry breaking, so are theoretically pre-
ferred as being less susceptible to the “axion quality
problem,” namely, the potential destabilizing effects of
quantum gravity on global symmetries [15–17].
Stringent bounds on such heavy axions (excluding

astrophysical arguments derived from stellar cooling [18])
come from the CERNAxion Solar Telescope (CAST) [19].
This is a “helioscope” which looks for conversion of axions
from the Sun into x-ray photons as they pass through a strong
magnetic field. However, due to the specific experimental
geometry ofCAST, the axion-photon conversion probability
gets highly suppressed for ma ≳ 1 eV. For such masses,
more competitive bounds arise from experiments which
exploit Bragg conversion in the electric field of crystals, and
underground searches for dark matter and ββ decay have
been claimed to place strong bounds on the axion-photon
coupling [20–27].However,when the dampingof x-rays in a
crystal is taken into account, such bounds are considerably
weakened [28]. Moreover, since the axions originate from
the Sun there is necessarily some model dependence in
extracting such bounds; the high plasma frequency and
temperature on the Sun are particularly relevant as these
can perturb the effective axion-photon coupling [18,29].
Similarly, bounds derived from stellar cooling arguments,
e.g., neutrino observations of Supernova 1987a, have large
astrophysical uncertainties [30].
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By contrast, in laboratory experiments the axion produc-
tion process is directly controlled, avoiding such model
dependence. Interesting constraints have been set by accel-
erator experiments, such as NOMAD [31], BABAR [32,33],
and NA64 [34]. Laboratory-based searches for axions are
thus well motivated even though they do not presently reach
the same sensitivity as astrophysical limits. Of course, it is
important to use as many different experimental approaches
as is feasible, since each has its own characteristic strengths
and limitations.
Here we present results from a new laboratory search

for axions performed with the HED-HiBEF instrument at
the European X-Ray Free Electron Laser (EuXFEL) in
Hamburg [35]. This is sensitive to a broad range of axion
and ALP mass between ∼10−3 and 104 eV. Our experi-
ment exploits the Primakoff effect via which photons can
decay into axions in the presence of a strong external
electric field and then reconvert back into photons after
passing through an opaque wall. This technique was
previously employed in experiments with optical lasers
and external magnetic fields [36–38].
When using x-rays, it is possible to increase the detection

sensitivity by exploiting the electric fields which are
present within a crystalline material. These atomic electric
fields can be as high as 1011 Vm−1 which, due to the form
of the Hamiltonian, corresponds to magnetic field strengths
of order 1 kT—much higher than the field strengths
accessible using the best electromagnets. Although the
length scales, which are accessible with crystal-based
searches are smaller than for those with electromagnets,
the path integrated equivalent field is competitive, being
∼25 Tm for the present study.
The strength of the effective magnetic field is calculated

numerically using a Draic-Fock method [39,40]; these
calculations are well verified experimentally, for example,
in positron channeling experiments [41].
Furthermore, arranging atoms in a crystalline structure

leads to a coherent effect analogous to Bragg scattering.
Generation and reconversion can thus be carried out with a
pair of x-ray crystals. This concept was first described by
Buchmüller and Hoogeveen [42].
We improve on previous laboratory-based searches in the

above mass range (up to which were performed using third-
generation synchrotron facilities [43,44], but we achieve
higher detection sensitivity due to the increased brightness
of free electron lasers (FELs). This is because of the much
shorter duration of the photon pulse which allows for a
more accurate discrimination of the signal against the
background.
Experimental setup—As discussed, a number of experi-

ments have already placed bounds on the available axion
parameter space, with varying degrees of model depend-
ence. We use the term axion to describe both the QCD
axion and any ALP which couples to photons via the
dimension-five operator

Laxion ¼ gaγγE · Ba; ð1Þ

where E≡ Eeff is the electric field in the crystal lattice,
B≡BFEL is the magnetic field associated with the electro-
magnetic wave of the x-ray photon, a is the CP-conserving
scalar field of the axion, and gaγγ is the axion-photon
coupling. Note that here and throughout this Letter, unless
otherwise noted, natural Heaviside-Lorentz units are used.
Experiments employing the above coupling exploit the

Primakoff effect, viz., that there is a finite probability for a
photon to decay into an axion in the presence of another
photon, typically given by a static, external field. The
conversion (or regeneration) probability is maximized
when the electric and magnetic fields of these two photons
are aligned. This probability increases linearly with the
interaction length.
Our experimental setup is depicted in Fig. 1. It shows

two germanium (Ge) crystals oriented in Laue geometry,
with their lattice planes parallel to one another. The
σ-polarized XFEL beam impinges on the first crystal
from the left. The angle between the wave vector of the
incoming x-ray beam and the lattice planes in the crystals
is denoted θ. An important detail is that the Laue geometry
is preferable to the more conventional Bragg scattering
geometry because of the Borrmann effect, through which
the transmission of x-rays in the Laue case is increased
[42,44–46].

FIG. 1. Diagram of the setup in our experiment; the x-ray beam
propagates from left to right. Here, BFEL is the magnetic field in
the XFEL beam, and Eeff is the crystalline electric field. Axion
production and photon regeneration are expected to take place via
the effective electric field within a pair of monolithic crystals, Ge
(220) in Laue geometry, with dimensions 10 × 10 × 0.5 mm3. A
pair of piezoelectric rotation stages (Xeryon, XRT-U30) were
used to orient the germanium crystals. The shield is a 1 mm thick
titanium sheet. The polarization of the x-ray beam maximizes the
value of BFEL ·Eeff and thus the probability of axion production.
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Both axions and Laue diffracted photons are transmitted
through the first crystal. These are denoted, respectively, by
a and γ in the figure. The photons are absorbed by a
radiation shield, but the weakly interacting axions impinge
on the second crystal. Here the strong electric field enables
the regeneration of photons via the inverse Primakoff
process. These regenerated photons are observed by a
detector downstream of the crystals. In the configuration
where θ ¼ θB (here, θB is the Bragg angle), the design is
sensitive to a broad range of axion mass ma satisfying the
inequality

jm2
a −m2

γ j≲ 4kγ
Leff

; ð2Þ

where mγ ¼ 44 eV is the plasma frequency of the valence
electrons in the conversion crystals [44], kγ is the photon
energy, and Leff is the effective path length of x-rays within
a crystal. We use units where ℏ ¼ c ¼ 1.
In the case where there is a detuning from the Bragg

angle by Δθ ¼ θ − θB, it can be shown [44,46] that this
setup becomes sensitive to a narrow range of axion mass
(Δma ∼ 10−3 eV) centered on

ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ 2qTkγ cosðθBÞΔθ
q

; ð3Þ

where qT ¼ 6.20 keV is the magnitude of the reciprocal
lattice vector. This means that by sweeping through differ-
ent values of Δθ, it is possible to search for heavy axions
with mass in the interval between the plasma frequency of
the crystal and the projection of the incoming photon
energy onto the reciprocal lattice vector.
The EuXFEL was operated in a seeded mode, with

9.8 keV photon energy (wavelength, λx ¼ 2π=kγ ¼
1.265 Å). The repetition rate was 10 Hz, with one pulse
per train. The x-ray beam was collimated by upstream
compound refractive lenses. The full width at half maximum
of the beam transverse profile was measured to be 400 μm at
the center of the interaction chamber. The axion-photon
conversion probabilityPða ↔ γÞ for Laue-case diffraction is
given by [44]

Pða ↔ γÞ ¼
�
1

4
gaγγEeffLeff cos θB

�
2

; ð4Þ

where Eeff ¼ 7.3 × 1010 Vm−1 is the crystalline electric
field [44] and

Leff ¼ 2LB
att

�
1 − e−Lx=2LB

att
�
; ð5Þ

where Lx ¼ l= cosðθB þ ΔθÞ is the x-ray path length inside
the crystals (l ¼ 500 μm is the thickness of each crystal) and
LB
att ¼ 1499.8 μm (for σ polarization) [47].

Since the x-ray pulse duration in our experiment is
short compared to that at a synchrotron facility, the result
presented above requires a modification. For a short (i.e.,
transform-limited) x-ray pulse, the width of the rocking
curve (ΔθRC) and timescale of the scattering process (Δt)
form a time-bandwidth product given by [48,49]

ΔθRCΔt ≃
λx tan θB

c
; ð6Þ

where for clarity we have reinstated c, the speed of light.
Because of the Borrmann effect, the extinction length of

the x-rays is longer than the x-ray path length in the crystal,
and therefore, the characteristic timescale is simply given
by the geometric time delay due to scattering off multiple
planes,

cΔt ¼ 2l tan θB sin θB: ð7Þ

Combining these two expressions yields a rocking curve
width ΔθRC ≃ 0.4 μrad, which is far narrower than the
Darwin width ΔθD ¼ 44 μrad for Ge (220) [50]. By the
rocking curve width, we mean the actual angular spread in
incoming x-rays which are transmitted through the crystal.
Meanwhile, the Darwin width refers to the predicted
angular spread obtained with a theory that neglects time
dependence.
As shown in Ref. [44], the effective conversion length is

inversely proportional to the width of the rocking curve.
However, in deriving Eq. (4), it was assumed that the
Darwin width and rocking curve width were equivalent.
This narrowing of the rocking curve may also be interpreted
as a change in the effective index of refraction inside the
crystal lattice. Following the same steps as in Ref. [44], it
can then be readily shown that the interaction amplitude
must increase by a factor ξB ¼ ΔθD=ΔθRC. Thus, the
scattering probability becomes

Pða ↔ γÞ ≃
�
1

4
gaγγEeffLeffξB cos θB

�
2

: ð8Þ

TABLE I. Summary of the different runs which were per-
formed during the experiment. The detuning angles Δθ, corre-
sponding masses ma, total number of photons incident upon the
apparatus Nin, and inferred bound on the strength of the axion-
photon coupling constant gaγγ are indicated.

Δθ (mrad) ma (eV) Nin (×1016) gaγγ (GeV−1)

0.0 ≲44 2.6 3.91 × 10−4

1.0 3.4 × 102 2.4 3.10 × 10−4

1.8 4.6 × 102 1.6 3.87 × 10−4

10.0 1.1 × 103 1.7 3.69 × 10−4

50.0 2.4 × 103 1.5 2.76 × 10−4
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While an exact derivation of this result would require a full
solution of the time-dependent dynamical diffraction equa-
tions, as outlined in Ref. [48], the above expression is
accurate to within a factor of order unity.
Results—The regenerated photons were measured using

a silicon hybrid-pixel JUNGFRAU detector [51]. Further
details regarding data acquisition and the steps taken to
ensure alignment stability are provided in Supplemental
Material [52].
Our search was limited to five discrete Δθ values, with

data collected for 60–90 min at each angle. Table I shows
the bounds on the axion-photon coupling determined from
our data at each detuning angle.
Figure 2 is a histogram which shows energy-resolved

events for each of the datasets which are detailed in Table I.
These are compared against the number of counts in a
24-hour-long dark run. ALP observations can be distin-
guished from the background as reconverted x-rays must be
identical to the primary EuXFEL x-rays, and moreover
must fall inside the region on the detector which is
impacted by the x-ray beam when the shield is absent.
To establish if any of the few events in the relevant

energy band do fall upon the x-ray spot and might therefore
be associated with axion production, hit maps of events
were produced as in Fig. 3. The blue color map shows
transmission through the setup in the absence of the
radiation shield, while the overlaid data points indicate
the location of hits on the detector with a photon energy
exceeding 4 keV for each of the datasets in Table I.
As Fig. 3 shows, there are no events which overlap with

the region of the x-ray spot (the darker blue region in the
center of the figure). Their absence implies that no events
consistent with axion production were detected during the
experiment. The corresponding limit on the axion-photon
coupling is then obtained by inverting Eq. (8):

gaγγ <

�
1

4
EeffLeffξB cos θB

�
−1
Pða ↔ γÞ1=2; ð9Þ

with Pða ↔ γÞ2 ¼ ðNdet=ηNinÞ, Ndet is the detected num-
ber of photons, and Nin is the number of input photons.
The efficiency factor η accounts for losses associated

with the deviation from parallelism between the two
crystals, fluctuations in the exact x-ray energy, and the
quantum efficiency of the detector. The value of η was
obtained experimentally: At the beginning and end of each
data run, the crystals were tuned to the Bragg angle, and the
radiation shield was removed in order to characterize the
experimental setup. During these characterization phases,
the efficiency factor for the ith run at a given detuning angle
ηi was given by

ηi ¼
1

T2
Ge

EJF;ch
i

Ein;ch
i=

; ð10Þ

where TGe is the transmission factor associated with a single
crystal, EJF;ch

i is the total x-ray dose measured on the
(downstream) JUNGFRAU detector during these characteri-
zation phases, and Ein;aq

i is the total x-ray dose measured
(during characterization) on a passive upstreammonitor [53].

FIG. 2. A histogram showing the events detected across all
acquisitions and over the whole detector area. The number of
counts in a 24 hour dark run are also shown.

FIG. 3. An image showing the transmitted signal in the absence
of the radiation shield (blue color map) overlaid with the position
of kγ ≥ 4 keV events across all data acquisitions. A fiducial
indicating scale on the detector plane is also shown.

FIG. 4. X-ray transmission through a single Ge crystal as a
function of the detuning angle Δθ. The central peak is fitted with
a Gaussian (dashed line) of widthΔθs ≈ 17.4 μrad. An average of
145 shots per angular point are used to construct the peak curve,
while 32 shots are used for each angular point on the baseline.
The error bars on the measurements are 1σ.
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Because of the very narrow rocking curve for Laue-case
diffraction, a single Ge crystal can be used to determine the
EuXFEL spectral profile by detuning it from the Bragg
angle and recording the transmitted intensity on a separate
JUNGFRAU detector as a function of the detuning angle.
This is shown in Fig. 4, where the seeded x-ray beam
is shown to have an energy bandwidth of ΔE=E ¼
Δθs= tan θB ¼ 5.2 × 10−5 or ∼0.5 eV at 9.8 keV. This is
indeed expected for a self-seeded beam [54], and the
variations in the transmitted intensity are associated with
shot-to-shot variability in the exact seeded pulse energy.
Overall, the transmission through a single crystal is
determined to be of order TGe ≈ 3 × 10−3.
For the data collection phases of a given dataset, the

value of ηNin was then taken to be

ηNin ¼
X

i

ηiE
in;aq
i =kγ; ð11Þ

where the summation is across all runs at a given detuning
angle, Ein;aq

i is the dose measured on the passive upstream
monitor during data collection, and kγ ¼ 9.8 keV is the
photon energy. To obtain a 90% CL upper bound based on
the observation of zero events consistent with axion
production, we then take Ndet ¼ 2.3 events [55].
Concluding remarks—The outcome of this analysis of

data collected at EuXFEL is shown in Fig. 5, which
summarizes bounds in the meV–few keV mass range,

from searches for laboratory-generated axions. We were
able to improve on the results from Ref. [43] at several
discrete axion masses.
For ma ≳ 200 eV, we are able achieve a sensitivity

within a factor 10 of the most competitive previous
searches, namely, NA64 [34] and BABAR [32,33].
Although our search is presently not as sensitive as these
experiments, our result constitutes an important validation,
especially as the NA64 and BABAR limits were extracted
assuming different production and detection mechanisms
for axions, namely, spontaneous axion decay and/or flavor-
changing meson decay, rather than the Primakoff process as
in our case.
We emphasize that this is not the best sensitivity

achievable with the present setup. Issues with x-ray heating
forced us to attenuate the x-ray flux by a factor of 103.
Moreover, the x-ray bunch structure was set with the
number of pulses per train limited to one, out of a possible
300. Issues with retaining alignment also limited data
acquisition time to 60–90 min at each detuning angle;
with a more stable setup that would include active cooling
of the first conversion crystal, these times could be
increased by a factor of 30. Furthermore, we could also
fully exploit the Borrmann effect and use Ge crystals up to
1.5 mm in thickness. Taken together, these improvements
would increase the sensitivity by a factor ∼150, bringing
the estimated bounds down to 2 × 10−6 GeV−1, close to the
expectation for QCD axions to be dark matter [59]. Below
∼1 eV, these bounds are also comparable to proposed
photon regeneration experiments using superconducting
pulsed magnetic fields [60]. Currently, no experiment has
the level of sensitivity for ma ≳ 10 eV that we anticipate
for future searches with the platform described here.
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FIG. 5. Bounds on the axion-photon coupling from our experi-
ment (pink) compared with those from Yamaji et al. [43,44]
(purple). The excluded region (blue) taking ξB ¼ 1 in Eq. (9) is
also shown to illustrate the improvement due to the higher photon
number. Shown for comparison are bounds from other laboratory
searches: NOMAD [31], PVLAS [56], ALPS [37], NA64 [34],
BABAR [32,33], Battesti et al. [57], and Inada et al. [58]. To aid
visualization, the width of the off-Bragg bounds inferred from our
search (in reality, only ∼10−3 eV) is exaggerated here. The
masses associated with off-Bragg searches are also labeled in
the figure.
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