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Abstract
In this article we explore parameter inference in a novel hybrid discrete-continuum 
model describing the movement of a population of cells in response to a self-gen-
erated chemotactic gradient. The model employs a drift-diffusion stochastic pro-
cess, rendering likelihood-based inference methods impractical. Consequently, we 
consider approximate Bayesian computation (ABC) methods, which have gained 
popularity for models with intractable or computationally expensive likelihoods. 
ABC involves simulating from the generative model, using parameters from gen-
erated observations that are “close enough” to the true data to approximate the 
posterior distribution. Given the plethora of existing ABC methods, selecting the 
most suitable one for a specific problem can be challenging. To address this, we 
employ a simple drift-diffusion stochastic differential equation (SDE) as a bench-
mark problem. This allows us to assess the accuracy of popular ABC algorithms 
under known configurations. We also evaluate the bias between ABC-posteriors and 
the exact posterior for the basic SDE model, where the posterior distribution is trac-
table. The top-performing ABC algorithms are subsequently applied to the proposed 
cell movement model to infer its key parameters. This study not only contributes to 
understanding cell movement but also sheds light on the comparative efficiency of 
different ABC algorithms in a well-defined context.

Keywords  Approximate Bayesian computation · Model calibration · Drift-diffusion 
model · Stochastic differential equations · Chemotaxis

1  Introduction

Collective cell movement is an essential component of several important biologi-
cal processes such as wound healing (Li et  al. 2013), collective cell migration in 
embryonic development (Scarpa and Mayor 2016), the movement of leukocytes 
(white blood cells) to infections in immune response (De Oliveira et al. 2016) and 
cancer metastasis (Stuelten et al. 2018). Most of these processes depend on a type of 
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collective cell migration known as chemotaxis, the movement of cells along chemi-
cal gradients in response to a chemical stimulus. For example, it is well established 
that chemotaxis plays a key role in cancer metastasis (Roussos et al. 2011). Despite 
the obvious importance of chemotaxis, the sources of chemoattractants, and how 
these chemical gradients evolve in response to their depletion from cells, are often 
unknown (Tweedy et al. 2016).

Biophysical models have become an important and often essential tool in under-
standing complex biological processes, evidenced by the abundance of models in the 
literature (Tomlin and Axelrod 2007; Motta and Pappalardo 2013; Hori et al. 2021). 
These models can be used to help interpret experimental data and better understand 
the mechanisms underlying the observations. They can also be used to formulate 
hypotheses, make predictions under perturbations and allow certain aspects of the 
model to be added or removed to see its effect on the overall process, all of which 
can then be verified experimentally. We concentrate on quantitative models; those 
which describe and interpret results by linking mathematical models to quantita-
tive data. There are many different types of quantitative models used within biol-
ogy. For example, hybrid discrete-continuum models aim to combine different math-
ematical modelling approaches to try and account for often complicated biological 
behaviours (Osborne et al. 2010; Spill et al. 2015; Harrison and Yates 2016; Bardini 
et al. 2017). Whole-cell modelling aims to understand the inner working of cells by 
accounting for every gene and molecule within a cell (Purcell et al. 2013; Babtie and 
Stumpf 2017; Bhat and Balaji 2020). These models are often very high-dimensional 
and computationally expensive but very realistically capture the mechanisms under-
lying collective cell behaviour. In this paper, we consider using stochastic differen-
tial equations (SDEs) to model collective cell movement, an approach explored in a 
number of previous works (Hu et al. 2010; Shi et al. 2013; Tang et al. 2014; Giurgh-
ita and Husmeier 2018). SDEs can be used to describe the migration of individual 
cells, similar to individual-based models. SDE models can also be used to describe 
collective migration but work better for small population sizes. When the population 
size is taken much larger, SDE models can become computationally expensive and 
so partial differential equation (PDE) models are more suitable in that case.

Using biophysical models with physiologically relevant parameter values with 
the aim of replicating the results of an experiment is often called the forward prob-
lem. Equally important is the opposite: being able to estimate parameter values of 
a model from experimental data. This is known as the inverse problem or statisti-
cal inference, and it has a history of being used for biological problems (Wilkinson 
2007; Secrier et al. 2009; Lillacci and Khammash 2010; Pullen and Morris 2014). 
However, statistical inference is seldom done in cell biology due to the complex-
ity of the models and availability of the data. To the best of our knowledge, Fergu-
son et al. (Ferguson et al. 2016, 2017) were the first and only attempt at parameter 
inference for a PDE model describing self-generated gradient chemotaxis (Tweedy 
et al. 2016). These authors estimated the parameters of their PDE models of collec-
tive movement by numerical optimization with bootstrap (Ferguson et al. 2016) and 
Markov chain Monte Carlo (MCMC) (Ferguson et al. 2017). A related work is that 
of Devlin et al. (Devlin et al. 2019), who inferred drift and diffusion coefficients in a 
SDE model of a particle undergoing a directed random walk in the presence of static 
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localization error. Their approach makes heavy use of specific analytical results and 
fits weighted least-squares to mean-square displacement (MSD) data.

There are three main contributions of this paper. First, we propose a novel, hybrid 
discrete-continuum model of a population of cells moving in response to a self-
generated chemotactic gradient, as motivated by the experimental set-up in Tweedy 
et al. (Tweedy et al. 2016). To our knowledge, no one has used a drift-diffusion sto-
chastic model to describe self-generated gradient chemotaxis. As the model is com-
plex enough to render likelihood-based inference methods infeasible, our second 
contribution is to demonstrate how the class of approximate Bayesian computation 
(ABC) methods can be used to infer key parameters of interest. Our third contribu-
tion relates to the problem of algorithm selection. After testing the accuracy of the 
ABC methods on a related but much simpler drift-diffusion SDE (where the pos-
terior is available in closed form), we compared the best methods from this study 
to inferring key parameters from our hybrid discrete-continuum model. Among the 
compared ABC methods, we considered an enhanced two-stage “residual" approach 
that, to the best of our knowledge, has not been used in an ABC setting. We note that 
ABC has been applied to SDE models before (Picchini 2014; Sun et al. 2015; Zhu 
et al. 2016; Picchini and Samson 2018; Picchini and Forman 2016; Kypraios et al. 
2017; Maybank et al. 2017; Buckwar et al. 2020).

The structure of this paper is as follows. We present a new cell movement model 
in Sect. 2 and illustrate its ability to simulate self-generated cell chemotaxis. In the 
same section we also discuss the tractable toy problem based on the drift-diffusion 
dynamics as well as the mean-square displacement, which is a popular tool for ana-
lysing trajectories from SDEs and which we will use to form summary statistics for 
ABC. In Sect.  3 we revise popular ABC algorithms, where we also describe two 
enhanced algorithms. We discuss the ABC comparison results for the toy problem 
in Sect. 4. Results for parameter estimation using ABC for the cell movement model 
are reported in Sect. 5. Section 6 concludes with a discussion.

2 � Model for self‑generated gradient cell chemotaxis

Motivation for the development of a model of self-generated gradient chemotaxis 
comes from the experiment of Tweedy et al. (2016). Dictyostelium discoideum cells 
move within a two dimensional chamber of length L and height H. Initially, a sat-
urating level of the chemoattractant, folic acid, is uniformly dissolved in an aga-
rose gel. As the cells are introduced into a small well at the left hand side of the 
chamber it is observed that they gradually migrate away from the well by creating 
a self-generated gradient of the chemoattractant as depicted in Fig. 1. An analysis 
of cell migration data from (Tweedy et al. 2016) using Kolmogorov-Smirnov tests 
confirmed that the cell coordinates in the y-direction were not significantly different 
from samples from uniform distributions, indicating that there are no interesting fea-
tures to be explained in the y-direction (Ferguson et al. 2017). To allow for efficient 
parameter inference, in the following subsections we therefore present a one-dimen-
sional model for self-generated chemotaxis.
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2.1 � Model of the discrete cell movement

We model the movement of each individual cell by the one-dimensional drift-diffusion 
SDE

where Xt is the location of the cell at time t, � is a parameter which converts the 
difference in receptor occupancy across a cell diameter to a cell velocity due to 
chemotaxis, dl is the diameter of the cell, Kd is the disassociation constant describ-
ing the interaction between the chemotactic ligand and its membrane bound recep-
tor, c ≡ c(x, t) is the concentration of the chemical at position x at time t, D is a 
measure of the random motion of the cells, assumed to be equal and constant for all 
cells, and Wt is a Wiener process. Here, the domain of Xt is [0, L], with the initial 

(1)dXt = � dl
Kd

(Kd + c)2
�c

�x
dt +

√
2D dWt,

Fig. 1   Illustration of the experimental set-up: the blue circles represent cells and the red areas represent 
the chemical attractant
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condition X0 = � , where � follows the uniform distribution U(0, L/20). Note that this 
uniform distributions ensures that the cells begin in a small well of length L∕20�m . 
To ensure that the cells remain in the chamber, we impose the boundary conditions 
Xt = 0 , if at any stage Xt < 0 , and Xt = L , if any cell is predicted to have Xt > L.

The chemotaxis velocity term in (1) is motivated by looking at receptor-ligand 
kinetics. First, imagine cells interacting with a chemical attractant. Over time, 
ligands begin to bind on and off the cell receptors. The rate at which ligands bind 
on to the receptors depends on the number of free receptors and the concentration 
of the chemical, while the rate at which they bind off the receptors depends on the 
number of bound receptors. From this, if we let � denote the number of bound 
receptors, then we have

where k1, k−1 are the rates at which the ligand binds on and off the receptors, respec-
tively, and Rtot is the total receptor number. For simplicity, we assume that Rtot is 
constant. Denoting R = �∕Rtot as the fractional receptor occupancy, we can rewrite 
(2) so that

If the chemical concentration remains constant over a long enough time scale, then 
we can assume that the receptor occupancy reaches an equilibrium value where 
�R∕�t = 0 . Therefore, we get

where Kd = k−1∕k1 denotes the disassociation constant. From (4) we can see that 
the disassociation constant is the ligand concentration which results in half the total 
number of receptors being occupied. It is easy showed that equation (2) has solution

where �0 is the initial number of bound receptors. We can see therefore that the 
rate to reach equilibrium is determined by k1c + k−1 . We will assume that the initial 
background concentration c ≫ Kd , and so

Therefore, the exponential term in (5) will decay rapidly, and so the timescale to 
reach equilibrium will be small compared to the other processes taking place (fur-
ther justification about this assumption is given in Appendix A).

Denoting the difference in fractional receptor occupancy from the front to the 
back of the cell by ΔR , we can approximate this by

(2)
��

�t
= k1c(Rtot − �) − k−1� ,

(3)
�R

�t
= (k1c + k−1)

(
k1c

k1c + k−1
− R

)
.

(4)R =
c

Kd + c
,

(5)� =
k1Rtotc

k1c + k−1
+

(
�0 −

k1Rtotc

k1c + k−1

)
exp(−(k1c + k−1)t),

(6)k1c + k−1 = (k1c − k−1) + 2k−1 > k1c − k−1 ≫ 0.
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If we assume that the chemotactic velocity is proportional to ΔR with velocity � , 
then we arrive at (1). The chemotactic term in (7) is similar to that used in Hillen 
and Painter (2009) and others (Segel 1977; Tyson et al. 1999). They looked at PDE 
chemotaxis models of advection–diffusion type, where the advection models the cell 
density movement.

It is instructive to consider the behaviour of this chemotatic term under differ-
ent scenarios. For example, if we have a steady state relative concentration gradi-
ent, then

where Δc and c0 denotes the difference and average concentration across the cell, 
respectively. In this situation we find that

We can see that the chemotactic term therefore decays to zero as the absolute con-
centration level tends to zero as expected. We also see that ΔR → 0 when c ≫ Kd , as 
in this situation almost all of the cell’s receptors are occupied and hence it is difficult 
for the cell to determine the gradient of the chemoattractant. It is easy to show that 
in fact ΔR is maximised when c ≈ Kd . At this level of chemoattractant, roughly half 
of the cell’s receptors are occupied at the front and the back of the cell.

2.2 � Model of the continuous chemical concentration

We assume that the chemical concentration evolves according to a constant coef-
ficient diffusion equation with moving point sinks to model the degradation of the 
chemical by membrane-bound enzymes on each cell. The governing equation is 
therefore

where Dc is the diffusion coefficient of the chemical, x (j) is the location of the jth 
cell, �2 is variance of the Gaussian degradation term, c0 is the initial concentration 
and �(c(x (j), t)) denotes the rate of decay of the chemical at the jth cell. The strength 
of the cell degradation is modelled using a Michaelis-Menten formulation

(7)ΔR ≈ dl
Kd

(Kd + c)2
�c

�x
.

Δc

c0
≈

dl

c0

�c

�x
= constant,

(8)ΔR ∝
cKd

(Kd + c)2
.

(9)
�c

�t
=Dc

�2c

�x2
−

1
√
2��2

NS�

j=1

�(c(x (j), t)) exp

�
−(x − x (j))2

2�2

�
,

(10)c(x, 0) =c0, t > 0,
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where Vmax is the maximum rate of degradation and Km is the Michaelis-Menten 
constant.

2.3 � Numerical discretisation

We assume that there are NS cells which are simulated over the time interval 0 ≤ t ≤ T . 
The total time of simulation T should be commensurate with the observational time 
over which experimental data is collected and as such is a possible experimental design 
parameter. The time interval is assumed to be partitioned uniformly by the N time 
points, tn = (n − 1)T∕(N − 1) = (n − 1)Δt , n = 1,… ,N . The position of the jth cell at 
the nth time point is given by x (j)

n , 1 ≤ n ≤ N, 1 ≤ j ≤ NS.
The cells are moved by solving numerically the SDE (1) by the Euler-Maruyama 

method. This gives

where c (j)
n  is the chemical concentration evaluated at the location of the jth cell at the 

nth time point, �cn∕�x is the chemical gradient evaluated at the location of the jth 
cell at the nth time point, and ΔWn = Wtn+1

−Wtn
 follows a normal distribution of the 

form N(0,Δt).
Notice that equation (12) depends on the concentration and gradient of the concen-

tration for each cell over all time. To estimate these quantities, we will use an implicit-
explicit finite difference scheme to numerically solve (9). To do this, we split the spatial 
domain into NX + 1 points, xi = (i − 1)L∕NX = (i − 1)h , for i = 1,… ,NX + 1 . Then, 
denoting the approximation of the concentration at the point xi at time point tk by ci

k
 , we 

look to solve

for ci
k+1

 , along with an approximation of the boundary conditions that �c∕�x = 0 at 
x = 0 and x = L which gives c0

k+1
= c2

k+1
 and cNX−1

k+1
= c

NX+1

k+1
 . The updated concen-

tration ci
k+1

 , i = 1,… ,NX + 1 can be obtained by solving a tri-diagonal system of 
equations. Once we have calculated the concentration at the NX + 1 spatial points, 
we use linear interpolation to estimate the concentration at the location of the cells. 
Similarly, we use a linear approximation of the gradient of the concentration so that 
�c∕�x ≈ (ci+1

k+1
− ci−1

k+1
)∕2 h when x = xi , and again use linear interpolation to estimate 

(11)�(c(x (j), t)) =
Vmax c(x

(j), t)

Km + c(x (j), t)
,

(12)

x
(j)

n+1
= x (j)

n
+ � dl

Kd

(Kd + c
(j)
n )2

�cn

�x
Δt +

√
2DΔWn, 1 ≤ n ≤ N, 1 ≤ j ≤ NS,

(13)

ci
k+1

− ci
k

Δt
=Dc

�
ci+1
k+1

− 2ci
k+1

+ ci−1
k+1

h2

�

−
1

√
2��2

NS�

j=1

Vmax c(x
(j)

k
)

Km + c(x
(j)

k
)
exp

�
−(xi − x

(j)

k
)2

2�2

�
,
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its value at the location of the cells. The same size of time step is used to solve (13) 
as is used to moved the cells in (12).

Once we have solved numerically equation (12), we must ensure that the cells 
remain in the simulated chamber by imposing appropriate boundary conditions. This 
is done by assuming that if x (j)

n+1
< 0 , then x (j)

n+1
= 0 , and if x (j)

n+1
> L , then x (j)

n+1
= L.

2.4 � Self‑generated gradient simulations

The dataset of Tweedy et al. (2016) contains the coordinates of a group of Dictyos-
telium discoideum cells moving by self-generated gradients under a plate of agarose 
of length L = 2500�m . The time taken for the cells to traverse the majority of the 
plate length is T = 5.5 h = 19800 s . Initially, there is a uniform amount of folate of 
concentration c0 = 10�M that covers the entire chamber.

Our mathematical model (1) and (9) is parameterised by a seven-dimensional 
vector � = (D,Kd, dl, �,Dc,Vmax,Km)

T . When available, the physical parameters in 
our model are set to literature values, see Table 1, with the following modifications: 
Vmax is set to a slightly higher value to allow for the relatively low number of simu-
lated cells ( NS = 100 ). The diffusion coefficient for folic acid, Dc , is based on the 
estimate in Kalimuthu and John (2009), but slightly reduced to allow for the fact that 
we do not have diffusion in solution, but in an agarose gel.

As opposed to the other parameters, which refer to physical quantities that can 
in principle be directly measured, � and D characterise the collective cell move-
ment and its interaction with the environment. This is a complex system that defies 
parameter estimation by direct measurement, and we therefore have to infer them 
based on the observed cell movement itself. The former does not have an equivalent 
literature value. This value controls how far along the domain the cells will travel. 
We have therefore chosen a value of � = 31.57�m∕s , which allows the cells to move 
a similar distance as those from Tweedy et al. (2016).

Studies of tracks of cell movement in isotropic environments reveals a common 
feature that cells typically maintain their direction of motion over short time periods, 
but over longer periods the direction of movement becomes random. This type of 
motion is normally referred to as a persistent random walk. The short time period 
where cells maintain their direction is called the directional persistence time. An 
analysis of the mean squared displacement of a persistent random walk indicates 

Table 1   Nominal model 
parameter values for the 
simulation of Dictyostelium 
discoideum cells moving in 
response to a self-generated 
gradient in the chemoattractant 
folic acid

The asterisk (∗) indicates that the corresponding reference values 
from the literature were adjusted as discussed in the main text to 
match our model

Parameter Dimensional Reference

K
d

150 nM Wurster and Butz (1980)
dl 10�m Rivero et al. (1996)
D

c 11.05�m2∕s Kalimuthu and John (2009)∗

V
max 3 × 10−2 nM∕s Kakebeeke et al. (1980)∗

K
m

5�M Kakebeeke et al. (1980)
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that an estimate for D can be obtained from the expression D = tpv
2∕2 , where tp is 

the directional persistence time and v is the speed of an individual cell (Dickinson 
and Tranquillo 1993). Li et  al. (2008) carried out careful single-cell experiments 
on Dictyostelium cells and found tp = 8 minutes and v = 8�m∕minute . Therefore, 
we can estimate that D ≈ 3�m2∕s . A similar value can be deduced from the gradi-
ent of a straight line fit to the long time mean-squared-displacement data in Bos-
graaf and van Haastert (2009) for Dictyostelium cells migrating in the absence of a 
chemoattractant.

We calculate the location of the cells by (12) and the chemical concentra-
tion by (13). We take NX = 1000 , giving a spatial grid size of h = 2.5�m for the 
implicit-explicit finite difference scheme. Simulations are performed using Ns = 100 
cells and the time interval is discretised using N = 500 time steps, and hence the 
time step Δt = 19800∕499 = 39.68 s . Initially, the cells are given the position 
x
(j)

1
= 125� , where � follows a standard uniform distribution U(0, 1). Note that this 

condition ensures that the cells begin in the small well. To verify the correctness of 
the proposed numerical solution and empirically prove convergence, we analyse a 
progression of the location of the cells, chemical concentration profile and the cell 
location probability density function (PDF) at six equally spaced time points (see 
Fig.  2). We can see that the cells move from left to right as expected. We see a 
leading wave of cells, a key property of self-generated gradient chemotaxis. Tweedy 
et al. (2016) measure the chemical concentration profile at a single time point corre-
sponding to the end of the experiment. They find that the chemical concentration is 
high in front of the cell wave and quickly drops off to near zero concentration at the 
location of the wave. We see very similar results with our simulated concentration 
profiles. Finally, we find a single mode in the cell location PDF corresponding with 
the cell wave, whereas the experiments done by Tweedy et al. (2016) find a bimodal 
distribution for the PDF. In their experiments, new cells continue to move into the 
chamber during the experiment, while in our simulated experiments, the number of 
cells in the chamber is constant from the start. We believe this is why we do not find 
a bimodal cell location PDF.

To test whether the time and space steps used in the Euler-Maruyama method and 
the implicit-explicit finite difference scheme give rise to accurate numerical approxi-
mations, we repeat the simulations which led to Fig. 2 with doubled values of N and 
NX (which results in a halving of both the time step and the spatial grid size). The 
results shown in Fig. 3 are almost identical to those in Fig. 2, suggesting that the 
original values for N and NX give rise to accurate numerical approximations.

2.5 � Toy problem

Below we introduce a simple drift-diffusion SDE, which we refer to as the “toy prob-
lem”. The purpose of this model is to facilitate selecting an appropriate ABC algo-
rithm for inference in the proposed cell movement model. Comparing ABC methods 
directly on the cell movement model would be too computationally involved due to 
the complexity of that model.

We consider the following one-dimensional drift-diffusion SDE:
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where Xt ∈ ℝ denotes the true location of a particle1 at time t, with the initial con-
dition X0 = 0 , and dWt is the increment of a Wiener process. The particles are 
assumed to move in an infinite domain, so there are no boundary conditions. The 
model parameters are � , the drift velocity, and D, the diffusion coefficient, which 
we collect in � = (�,D)T . In the simulation study in Sect. 4, for both parameters we 
adopt the uniform prior distribution from 0 to 10, denoted U(0, 10).

(14)dXt = � dt +
√
2D dWt,

Fig. 2   The cell locations (red circles), the chemottractant concentration (dashed blue line) and the cell 
location PDF (solid red line) over time, where time progresses from (a) to (f)

1  For the sake of generality, we will refer to any entity which moves as a particle.
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2.5.1 � Numerical solution

Due to its simplicity, model (14) admits an exact solution. However, to make our dis-
cussion of selecting an appropriate ABC algorithm (Sect. 4.3.1) general and applicable 
to more complex SDE models – that do require numerical methods for solving – we 
present a general solution to (14) based on the Euler-Maruyama method.

We assume x(j) , the jth trajectory generated from (14), j = 1,… ,NS , is measured 
at N time points tn = (n − 1)T∕(N − 1) , n = 1,… ,N , covering the measurement time 

Fig. 3   The cell locations (red circles), the chemoattractant concentration (dashed blue line) and the cell 
location PDF (solid red line) over time, where time progresses from (a) to (f), for the same parameter 
values as in Fig. 2, except for the values of N and N

X
 , which we doubled to halve both the time step and 

the spatial grid size
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range [0, T], which we denote x(j) = {x
(j)
n }N

n=1
 . We set N = 100 (the number of discre-

tization time points) and NS = 100 (the number of generated trajectories).

2.5.2 � Exact posterior distribution

Under model (14), the likelihood for the nth time (measurement) point from the jth tra-
jectory at time t is given by Codling et al. (2008)

which means that the likelihood for the whole trajectory x has the following form

where Δt = T∕(N − 1) is the step size and Δx(j)n = x
(j)
n − x

(j)

n−1
 . We assume that each 

step from x(j)n  to x(j)
n+1

 is equivalent to taking a time step of size Δt starting from 
x
(j)
n = 0 . The likelihood for the population data y = {x(1),… , x(NS)} of NS independ-

ent trajectories is then a product of the likelihoods for individual trajectories

Notice that the likelihood is tractable, which combined with uniform priors results 
in a closed form for the posterior.

2.6 � Mean‑square displacement

The MSD has been traditionally used to analyse trajectory data (Savin and Doyle 2005; 
Qian et  al. 1991; Saxton and Jacobson 1997; Saxton 1997; Devlin et  al. 2019). The 
MSD measures the spatial extent of a random process based on the deviation of the 
particle location with respect to a reference location (the 0 origin, in our case). The 
MSD is defined as

where p(x, t) is the pdf of the particle displacement at time t given in (15). For a one-
dimensional system (14), the MSD can be derived analytically (Devlin et al. 2019) 
as

(15)p(x(j)
n
, t��,D) = 1

√
4�Dt

exp

�
−(x

(j)
n − �t)2

4Dt

�
,

(16)

L(x(j)��,D) =
N�

n=2

p(x(j)
n
, t�x(j)

n−1
, �,D)

=(4�Ddt)−
N

2 exp

�
−
∑N

n=2
(Δx

(j)
n − �Δt)2

4DΔt

�
,

(17)L(y|�,D) =
NS∏

j=1

L(x(j)|�,D).

(18)�(t) ≡ �(|Xt|2) = � x2p(x, t|�,D)dx,
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2.6.1 � MSD estimation

In practice, we cannot use the theoretical, continuous-time formula (19) for the MSD 
and hence we need to estimate it based on discrete observations. The most popular 
method to do this is the time-average overlapping MSD (Michalet 2010), which, for the 
jth trajectory, j = 1,… ,NS , is computed as

Notice that �(j)n  is computed for each time lag nΔt resulting in N values of the MSD 
per trajectory. To obtain more reliable estimates of the MSD we then average indi-
vidual MSDs over trajectories to obtain the ensemble time-averaged MSD given by

Figure 4 compares individual MSDs (20) with the ensemble MSD (21); the former 
are calculated at the N − 1 non-zero time points for each of NS cells, with N = 500 
and NS = 100 as in Sect.  2.4, and using the parameter values from Table  1. In 
Sect.  4.3.1 we will use (21) at N = 100 time points as the summary statistics for 
comparing the ABC algorithms on the toy problem. Note that using the ensemble 
time-averaged MSD (21) allows us to limit the number of summary statistics to a 

(19)�(t) = �2t2 + 2Dt.

(20)�(j)
n
=

1

N + 1 − n

N+1−n∑

i=1

(x
(j)

i+n
− x

(j)

i
)2, n = 1,… ,N.

(21)�n =
1

NS

NS∑

j=1

�(j)
n
, n = 1,… ,N.

Fig. 4   A plot of the time-average overlapping MSDs for each individual cell (red lines) and the ensemble 
MSD (dashed black line) using the parameter values from Table 1
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pre-selected value even with increasing number of data points as we take the mean 
of the whole distribution of the MSD values.

2.6.2 � Properties of the MSD

Formula (19) reveals important properties of the MSD. First, it shows how the two 
parameters of the SDE model affect the MSD values for different values of t. Notice 
that the MSD is a quadratic function of t. For small values of t the linear term 2Dt 
dominates, so that the MSD value is mostly determined by the value of D, the dif-
fusion coefficient. On the other hand, for large values of t, the quadratic term �2t2 
prevails, and consequently the value of the drift coefficient � matters most. This will 
influence the informativeness of the MSD as the chosen summary statistic for infer-
ring � and D for different values of T. Second, we note that the MSD increases quad-
ratically with T, while its variance grows cubically with T (Devlin et al. 2019). The 
latter implies that the estimated MSD becomes less accurate a summary statistics as 
time increases.

3 � Approximate Bayesian computation

In an inverse or statistical inference problem we are interested in the posterior 
distribution �(�|y) of the unknown parameters � ∈ Θ ⊆ ℝ

H of a model given the 
observed data y , which by Bayes’ theorem is given as

where p(y|�) is the likelihood function, �(�) is the prior distribution and p(y) is the 
marginal likelihood. Application of Bayes’ theorem requires computing the likeli-
hood; however, this is not always feasible. For stochastic systems calculation of the 
likelihood depends on the solution of path integrals over all realisations of the latent 
state, which typically is analytically intractable. Likelihood-free methods are a com-
mon workaround for systems where the likelihood function is not available. The two 
common likelihood-free approaches are density estimation methods, which approxi-
mate the likelihood function numerically, e.g. the synthetic likelihood method 
(Wood 2010), and ABC, which compares observed and simulated data, or statistics 
of the data, through use of a distance measure. ABC has gained a considerable inter-
est in recent years and has been used for parameter inference in a wide range of dis-
ciplines, from the biological sciences (Pritchard et al. 1999; Beaumont et al. 2002; 
Lintusaari et al. 2017; Lambert et al. 2018), through image analysis (Moores et al. 
2015), epidemiology (Kypraios et al. 2017; McKinley et al. 2018), up to time series 
analysis (Toni et al. 2009; Drovandi et al. 2016; Martin et al. 2019; Tancredi 2019). 
We refer to Sisson et al. (2018) for a detailed treatment of ABC.

Below, we first discuss basic rejection ABC (Subsection 3.1). We then move 
to more advanced schemes, i.e. sequential Monte Carlo (SMC) ABC (Sisson 

(22)�(�|y) = p(y|�)�(�)
p(y)

,
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et al. 2007; Prangle 2017) (Sect. 3.2) and semi-automatic ABC (Fearnhead and 
Prangle 2012) (Sect. 3.3). Finally, in Sect. 3.4 we discuss two novel ABC algo-
rithms, based on standard techniques from computational statistics and machine 
learning, aimed at mitigating the problems faced by the previous semi-auto-
matic ABC scheme. We present listings of the discussed algorithms in Appen-
dix B.

3.1 � Rejection ABC

In the basic modern rejection ABC algorithm (Tavaré et  al. (1997), Pritchard 
et  al. (1999); see Algorithm  2 in Appendix B) the prior distribution is sam-
pled to obtain draws �∗ , which are used to simulate from a generative model 
y
∗ ∼ f (y|�∗) . The parameter value �∗ is accepted if ||S(y∗) − S(y)|| < 𝜀 , where 

the norm || ⋅ || , the summary statistics S(⋅) , and the tolerance level � must be 
specified. If the summary statistics used are sufficient, then the approximate 
posterior distribution approaches the exact posterior distributions as � tends 
to zero. Beaumont et al. (2002) introduced smooth weighting to overcome the 
problem of the S(y∗) values being treated equally whenever ||S(y∗) − S(y)|| < 𝜀 , 
regardless of the exact value of ||S(y∗) − S(y)||.

Rejection ABC is subject to considerable computational inefficiencies, especially 
when dealing with high dimensional parameter spaces or continuous data (Lin-
tusaari et al. 2017). It is also inefficient when the prior and posterior distribution are 
vastly different, requiring small tolerance values to obtain an accurate estimate of 
the posterior distribution, thereby increasing the computational cost.

3.2 � Sequential Monte Carlo ABC

Sisson et  al. (2007) propose an ABC method based on sequential Monte Carlo 
(SMC) with partial rejection control (Liu 2001). Their algorithm samples over 
a sequence of N� intermediary distributions, with decreasing tolerance values 
�1, �2,… , �N�

 leading to closer approximations to �(�|S(y)) . In each iteration sam-
ples are generated from the previously found intermediary distribution, except the 
initialization for which the prior distribution is used. The generated draws are then 
perturbed with Markov transition kernels and, to preserve convergence properties, 
weighted appealing to the importance sampling argument (Douc et al. 2007). The 
resulting approximation to the posterior is biased (Beaumont et al. 2009) and a num-
ber of unbiased alternatives has been proposed (Beaumont et al. 2009; Toni et al. 
2009; Beaumont 2010) (a general version of one of them Beaumont 2010 is pro-
vided in Appendix B, Algorithm 3)

Sampling from distributions that are progressively becoming closer to the target 
distribution �(�|S(y)) reduces the number of parameter values drawn from low prob-
ability regions, thus enhancing computational efficiency compared to the rejection 
method. However, for low tolerance values, the probability of accepting parameter 
values can become small, even for good proposal distributions. This may result in 
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the algorithm being ran for longer than needed with little improvement in the infer-
ence (Lintusaari et al. 2017).

Adaptive weighting
When the summary statistics are not standardised (Pritchard et al. 1999; Beau-

mont et  al. 2002), i.e. they are out of scale with each other, the largest summary 
statistic can dominate over the others during the acceptance step. To overcome this 
problem Prangle (2017) proposes an adaptive approach to weighting summary sta-
tistics, focusing on the weighted Euclidean distance and adopting the median abso-
lute deviation (MAD) for weighting. During the first ABC-SMC iteration, equal 
weights are used, while in all later iterations, the weights are based on the MAD 
of the accepted summary statistics from the previous iteration. The tolerance val-
ues are chosen automatically as a quantile of the previous accepted distance val-
ues (Drovandi and Pettitt 2011). Algorithm 4 in Appendix B summarises Prangle’s 
(2017) algorithm.

3.3 � Standard semi‑automatic ABC

Fearnhead and Prangle (2012) propose a semi-automatic approach to selecting sum-
mary statistics, in which the posterior mean serves as the summary statistics. Fearn-
head and Prangle (2012) demonstrate that this approach minimizes the quadratic 
loss measuring the estimation accuracy. The posterior mean is not known a priori 
and hence in practice it needs to be estimated using a regression model. Below we 
will refer to semi-automatic summary statistics as “second-stage” summary sta-
tistics, to distinguish them from “first-stage” summary statistics that are obtained 
directly as transformations of the data. Algorithm 1 presents a high-level description 
of semi-automatic ABC.
Algorithm 1   High-level description of semi-automatic ABC.

Note that the regression model in Step 4 can be selected in different ways, which 
we discuss in Sects. 3.3.1 (multivariate linear regression), 3.3.2 (Gaussian process 
regression) and 3.4 (two modified approaches).
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3.3.1 � Linear regression approach

The original approach of Fearnhead and Prangle (2012) adopts multivariate linear 
regression (MVLR) of parameter values on first-stage summary statistics. Formally, 
suppose we have generated a set of M parameter values �(j) and the corresponding 
observations y(j) , j = 1,… ,M (Step 2 in Algorithm  1). Let g(⋅) be a vector-valued 
function representing transformations of the data and z denote a vector of transforma-
tions under g, z ∶= g(y) ∈ X ⊆ ℝ

G . We refer to z as “first-stage summary statistics” 
(see Step 3 in Algorithm 1). As an illustration, consider an application by Fearnhead 
and Prangle (2012), who found that g(y) = [y, y2, y3, y4] , a vector of length 4ny (where 
ny is the length of the data vector y ) consisting of the data together with the second, 
third and fourth powers of individual data points, resulted in well-performing set of 
summary statistics. In our applications, z consists of ensemble MSD (21) calculated 
at either N = 100 points (in Sect. 4.3.1) or at the first and final ten MSD points (in 
Sect. 5).

In the semi-automatic ABC approach the posterior mean of the ith component of � 
is taken as the ith “second-stage summary statistic” (see Step 4 in Algorithm 1). Fearn-
head and Prangle (2012) propose to estimate that posterior mean by regressing the 
parameter values �i on the linear of transformations of z , i.e.

where �i is a zero-mean noise term. We can use least-squares to fit (23); the fitted 
value 𝛽(i)

0
+ 𝜷

(i)
z is an estimate for �(�i|y).

3.3.2 � Gaussian process enhanced ABC

Using MVLR in Step 4 of Algorithm 1 is likely to be suboptimal when the relation-
ship between parameters and first-stage summary statistics is nonlinear. More accurate 
results are then likely to be obtained if we construct second-stage summary statistics 
using a flexible, nonlinear regression model e.g. using Gaussian processes (GPs) as in 
Borowska et al. (2021). We refer to this approach as GP-ABC.

GP regression is a nonparametric regression model where the values of the latent 
function f at the corresponding locations z explain the observed values y . The unob-
served function values are assumed to follow a GP, a stochastic process such that the 
joint distribution of any finite number of random variables from this process is Gauss-
ian. A GP is fully specified by its mean and covariance function. Rasmussen and 
Williams (2006) provide an extensive treatment of GPs. Adopting the notation from 
Sect. 3.3.1, we can write the GP regression model as

where N(⋅|�, �2) denotes the Gaussian distribution with mean � and variance �2 
(and iid stands for “independently and identically distributed”). The latent val-
ues fi(z) follow a GP fi(z) ∼ GP(mi(z), ki(z, z

�)) , where mi(z) = �[fi(z)] and 
ki(z, z

�) = �[(fi(z) − mi(z))(fi(z
�) − mi(z

�))] are the mean and the covariance function 

(23)�i = �(�i|y) + �i = �
(i)

0
+ �(i)z + �i,

(24)�i = fi(z) + �i, �i
iid
∼N(⋅|0, �2

i
),
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(kernel) of the process fi , respectively. We follow a standard practice and assume 
that mi(z) = 0 ; this implies that the latent process fi(z) is fully specified by its kernel 
function.

For the collected covariates Z = [z(1), z(2),… , z(M)]T the GP prior over 
fi = [fi(z

(1)), fi(z
(2)),… , fi(z

(M))]T , the vector of stacked latent function values, is 
given by p(fi|z,�i) = N(fi|0,Ki), where �i denotes the GP kernel hyperparame-
ters and Ki = ki(Z,Z) . The likelihood can be expressed as p(�i|fi) = N(�i|fi, �2

i
�) , 

where �i = [�
(1)

i
, �

(2)

i
,… , �

(M)

i
]T and � is the identity matrix. Marginalising over 

the latent variables gives the formula for the marginal likelihood

Under the Gaussian observation model the conditional posterior distribution of the 
latent variables is also Gaussian and is given by

Kernel specification
In our experiments in Sect. 4.3.1 we will adopt the squared exponential (SE) 

kernel, which is one of the most popular kernels in the literature, mostly because 
it results in a smooth prior on the latent function. We will also allow for auto-
matic relevance determination (ARD) (Neal 2012; Rasmussen and Williams 
2006), which provides a built-in method of variable selection. ARD kernels have 
a separate length scale per predictor; the ARD SE kernel has the following form

where the vector of kernel hyperparameters to be estimated is given by 
� = (�2

se
, l1,… , lG)

T . The inverse of the length scale parameters lg , g = 1,… ,G , can 
be seen as the weight of the corresponding explanatory variable zg , determining how 
relevant it is.

3.4 � Modified semi‑automatic GP‑ABC

GPs are designed for interpolation and do not extrapolate well (Brynjarsdót-
tir and O’Hagan 2014). ABC-SMC algorithms (semi-automatic or not) perturb 
parameter samples, meaning that values could be sampled from outside the GP 
training region, requiring the GPs to extrapolate. This can result in inference 
problems, e.g. inferring false modes of the ABC-posterior distribution (which 
we report in Sect.  4.3.1). To overcome the extrapolation issues we investigate 
two variations of the basic GP setting and assess what influence they have on 
ABC inference.

p(�i) = N(�i|0,Ki + �2
i
�).

p(fi|�i,Z,�i) = N(Ki(Ki + �2
i
�)−1�i,Ki −Ki(Ki + �2

i
�)−1Ki).

k(z, z�) = �2
se
exp

(
−

G∑

g=1

(zg − z�
g
)2

2l2
g

)
,



Approximate Bayesian inference in a model for self‑generated…

3.4.1 � GP‑ABC with convex hulls

Our first approach is to restrict the sampling region for the GP-ABC algorithm to 
the convex hull of the GP training region. This ensures that the samples remain 
within the training region. Specifically, we first create a convex hull over the GP 
training set. Then, when perturbing the parameter samples during ABC-SMC, we 
reject and resample those draws that fall outside of the training region. We note, 
however, that restricting the sampling region of the GP-ABC algorithm to the GP 
training region could introduce a bias to the ABC results. The resulting algorithm 
is the same as Algorithm 1, except for potential rejection-resampling done in Step 
5.

3.4.2 � Residual approach

An alternative approach to alleviating the extrapolation problem is based on com-
bining GP regression with MVLR in a two-stage regression. A similar approach 
is proposed by Conti et al. (2009), who integrate the regression parameters out.

We first fit MVLR (23) as in the linear regression semi-automatic ABC from 
Sect.  3.3.1. Then, we train a zero-mean GP regression model on the residuals 
from the first-stage regression as follows

where 𝜖i = 𝜃i − 𝜃̂i = 𝜃i − (𝛽
(i)

0
+ 𝜷

(i)
z) is the residual from (23), while fi follows a 

GP (see Sect. 3.3.2).

4 � ABC comparison results on the toy problem

In this section we compare the performance of the ABC algorithms discussed in 
Sect. 3 on the simple drift-diffusion SDE from Sect. 2.5. The aim of this analysis 
is to select the most appropriate ABC algorithm for inference in the cell move-
ment model proposed in Sects. 2.1 and 2.2. As already emphasised, an exhaustive 
comparative evaluation of the ABC methods directly on the complex cell move-
ment model is practically infeasible due to the high computational costs.

4.1 � Simulation setting

We generate synthetic data by solving numerically (14) by the Euler-Maruyama 
method as discussed in Sect.  2.5.1 with the model parameters set to D = 2 and 
� = 1 . Hence, the observed data y = {x(j)}

NS

j=1
 consist of NS = 100 trajectories gen-

erated from (14).
Because Devlin et  al. (2019) demonstrated that the inference accuracy for a 

MVLR model depends crucially on the value of T, we want to investigate whether 

(25)𝜖i = fi(z) + 𝜉i, 𝜉i
iid
∼N(⋅|0,𝜔2

i
),
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the performance of the ABC schemes reveals a similar dependence for our SDE 
model 14. Therefore, we consider three values of T: T = 0.05 , 5 and 500.

4.2 � Implementation of ABC algorithms

Each ABC algorithm is run with Na = 1000 parameter acceptances. The semi-auto-
matic approaches from Sects. 3.3 and 3.4 utilise pilot runs with calibration sets of 
M = 1000 draws. That training set comes from the last intermediary distribution of 
a pilot run of the ABC-SMC with adaptive weights of Prangle (2017) with three 
iterations.

For the rejection ABC and ABC-SMC algorithms we use the l2 norm, while for 
the semi-automatic algorithms we adopt the l1 norm as the distance function. The 
reason for using different norms is somewhat arbitrary and motivated by different 
lengths of summary statistics vectors. In the former case we compare MSD vec-
tors of length 100, while in the latter case there are only two second-stage summary 
statistics corresponding to posterior means for the two parameters. Below we report 
configurations for specific algorithms.

4.2.1 � Rejection algorithm

We set higher values of the tolerance parameter � for larger T values, which is moti-
vated by the properties of the MSD, see Sect. 2.6.2. Moreover, we investigate how 
the ABC-posterior distributions change for a schedule of decreasing tolerance val-
ues reported in Table 2.

4.2.2 � ABC‑SMC

We consider the ABC-SMC algorithm of Beaumont (2010) with the deterministic 
tolerance schedules reported in Table 3. As for the rejection algorithms, we condi-
tion the tolerance values on the value of T. We initialise with a fairly large value as 
is typically done for ABC-SMC algorithms.

Table 2   Rejection ABC: 
tolerance values for different 
values of T 

T � values

0.05 2 1 0.5 0.25
5 200 100 50 25
500 200000 100000 50000 25000

Table 3   ABC-SMC: tolerance 
schedules for different values 
of T 

T �
1

�
2

�
3

�
4

�
5

�
6

0.05 8 4 2 1 0.5 0.25
5 800 400 200 100 50 25
500 800000 400000 200000 100000 50000 25000
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4.2.3 � ABC‑SMC with adaptive distance function

We run the algorithm with eight iterations. In the first iteration we set the tolerance 
value large enough to accept all parameter samples. In subsequent iterations we use 
the � th quantile of the previous accepted distance values as tolerance values. For the 
examples tested by Prangle (2017) the quantile value � = 0.5 performed best. In our 
experimentations, however, such a small value led to too low acceptance rates caus-
ing the algorithm to be very slow (most likely due to using the MSD as our sum-
mary statistics). Therefore, we take the smallest value of � that allows for reasonable 
run time, for each of the three different values of T: for T = 0.05 , 5 and 500, we set 
� = 0.9 , 0.5 and 0.6, respectively.

4.2.4 � Semi‑automatic ABC

In the main run of the semi-automatic approach we adopt the ABC-SMC with adap-
tive weights algorithm of Prangle (2017). Hence, as before, we weight each sum-
mary statistics by an estimate of its MAD. We also take the same quantile values 
� (in the first iteration we set the tolerance at the � th quantile of the draws from the 
last iteration of the pilot run – the one used to fit the regression model).

4.2.5 � Residual approach

We initialise the residual approach in the same way we initialise semi-automatic 
ABC. Having fitted MVLR, we retrieve the residuals of the parameter values, to 
which we then fit a GP regression model. The second-stage summary statistics are 
then calculated as a sum of the fitted values from the MVLR and the GP regression 
model. Note that for the semi-automatic and the residual approach we found good 
acceptance rates could be obtained by setting � = 0.5.

4.3 � Results

4.3.1 � Exact posterior parameter distribution

We start our analysis by discussing the results for the gold-standard, the exact pos-
terior distribution, which we plot on a uniform mesh of 1000×1000 points over the 
prior domain. At each of the mesh points we calculate the population likelihood (17) 
for the NS trajectories, the shape of which matches that of the population posterior 
due to uniform priors for D and �.

Figures  5a, 6a and 7a present contour plots of the likelihood for the values 
T = 0.05 , 5 and 500, respectively. As expected, the shape of the likelihood heavily 
depends on T. Similar to Devlin et al. (2019) for a small value of T, � is difficult to 
infer accurately, with the likelihood being very dispersed in � . As we increase T, 
the likelihood becomes more isometric and concentrated around the true parameter 
values. However, increasing T indefinitely will not improve inference as too high a T 
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Fig. 5   Contour plots of the exact posterior distribution, superimposed with draws from the ABC algo-
rithms at T=0.05 s. White dot: ABC posterior mean
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Fig. 6   Contour plots of the exact posterior distribution, superimposed with draws from the ABC algo-
rithms at T=5 s. White dot: ABC posterior mean



	 J. Devlin et al.

Fig. 7   Contour plots of the exact posterior distribution, superimposed with draws from the ABC algo-
rithms at T=500 s. White dot: ABC posterior mean
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value will lead to identification problems for D as the MSD will be dominated by the 
drift term, as we demonstrate in Appendix C.1. The chosen large value for T of 500 
is still moderate in this regard so D is practically identifiable in this case.

We focus on comparing the results from the ABC algorithms with the exact pos-
terior visually, by superimposing the draws from each algorithm with the contour 
plots of the exact posterior in Figs. 5, 6 and 7 for T = 0.05 , 5 and 500, respectively. 
For all the values of T the sampling domain is [0, 10]2 , however, for the middle and 
large value of T the posterior distributions become very concentrated, so we “zoom 
in” and present the results on [0, 4]2 . Table 4 quantitatively summarises the results in 
terms of percentage relative errors of means and variances from ABC with respect 
to the corresponding values for the exact posterior. To provide ballpark figures of 
the uncertainty associated with the presented error estimates we report their approx-
imate standard deviation based on Gaussian error propagation. We assume no cor-
relation between the moments of the ABC posteriors and those of the exact posterior 
(this assumption can only lead to slightly overestimated uncertainty of the presented 
errors).

4.3.1.1  Rejection ABC  Figures 5b, 6b and 7b present the draws from the rejection 
ABC algorithm with the lowest tolerance values from Table 2 for T = 0.05 , 5 and 
500, respectively. Figures 14, 15 and 16 in Appendix C illustrate the results for all 
the considered tolerance values from Table 2. Not surprisingly, rejection ABC leads 
to poor approximations of the exact posterior distributions, as confirmed by the 
extremely large errors reported in Table 4. This might be due to using the MSD as the 
summary statistics, which might not be informative enough.

4.3.1.2  ABC‑SMC  Samples from the final intermediary distributions of the ABC-
SMC algorithm for T = 0.05 , 5 and 500 are shown in Figs. 5c, 6c and 7c, respec-
tively. We refer the reader to Figs. 17, 18 and 19 in Appendix C for an overview of 
the convergence over the sequence of intermediary distributions with the tolerance 
schemes from Table 3. The final ABC posterior distributions are very similar to those 
from the rejection algorithm – as we would expect, given the same � values used in 
both cases. There is still a noticeable discrepancy between the ABC and true posterior 
distributions, resulting in substantial errors (see Table 4).

4.3.1.3  ABC‑SMC with adaptive distance function  Figures 5d, 6d and 7d show the 
draws from the ABC-SMC algorithm with adaptive weighting (Prangle 2017) for 
T = 0.05 , 5 and 500, respectively. We find that scaling each MSD value by an estimate 
of its MAD generally improves inference compared to the standard SMC approach, 
resulting in much lower errors (see Table 4). For the small value of T, the correlation 
between � and D is better captured, while for the large value of T we are able to prac-
tically identify � and D, as demonstrated by negligible errors for the posterior means 
of both parameters. For the middle value of T, both � and D are inferred relatively 
accurately. However, for all the values of T the algorithm struggles to capture the true 
parameter uncertainty, with the ABC-posterior variances being much larger than the 
true ones (see Table 4).
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4.3.1.4  Semi‑automatic ABC with MVLR  Figures 5e, 6e, 7e illustrate the samples 
from semi-automatic ABC for T = 0.05 , 5 and 500, respectively. We see that using 
the second-stage summary statistics (estimates of the posterior means) improves 
the inference over all the previous approaches based on the first-stage summary 
statistics (MSD), especially for D. Still, it remains problematic to accurately esti-
mate parameter uncertainty, with the ABC-posterior variances generally being 
either too disperse (for � ) or too tight (for D). For the latter, however, the standard 
errors are larger than the absolute values of the corresponding estimates, signal-
ling that the apparent underdispersion of the ABC posteriors is not significant. 
Compared with ABC-SMC with adaptive distance function, the variance of the 
semi-automatic ABC posteriors is higher for � but lower for D (see Table 4). This 
may be expected as the MSD is linear in D while quadratic in � , and so we would 
expect using linear regression to extract more reliable values for D than for �.

4.3.1.5  GP‑ABC  The samples from GP-ABC for T = 0.05 , 5 and 500 are given 
in Figs. 5f, 6f and 7f, respectively. For the middle value of T there was a small 
group of outlier draws concentrated around D = 2, � = 7 , which is not illustrated 
in Fig. 6f for the scale consistence with other figures. This explains the inflated 
error for the ABC-posterior variance of � for T = 5 . For the remaining values of 
T the difference with respect to the MVLR semi-automatic algorithm is moderate, 
with the GP-ABC algorithm tending to underestimate the posterior variance of D a 
bit more often (see Table 4). We note, however, that the standard errors of the vari-
ance estimates for D are substantial, meaning that the recorded underdispersion is 
not significant. For the middle and large values of T, the location of the GP-ABC 
posterior for � is better than for the MVLR semi-automatic ABC approach.

4.3.1.6  GPs with convex hulls  Figures 5g, 6g and 7g present the samples obtained 
with GP-ABC with convex hulls for T = 0.05 s , 5 and 500, respectively. We find 
that restricting the sampled parameter values using convex hulls removes the 
outliers present in the GP-ABC posterior distributions observed for T = 5 . This 
confirms our conjecture that the problem with practical identification was caused 
by unsatisfactory extrapolation from the GP training region. However, the ABC-
posteriors are still underdispersed in D and, for the large T, also in � compared to 
the exact posterior (see Table 4). However, again, the underestimated variance for 
D is subject to considerable standard errors – for the large T even greater then the 
absolute value of the corresponding estimate – suggesting that there is substantial 
simulation noise affecting the recorded results.

4.3.1.7  The residual approach  The samples from the residual ABC algorithm for 
T = 0.05 s , 5 and 500 are given in Figs. 5h, 6h and 7h, respectively. The ABC-
posterior distributions for the small and middle value of T seem rather similar to 
those from GP-ABC with convex hulls, while for the large value of T the ABC-
posterior is more dispersed in � . The uncertainty in D remains underestimated for 
the middle and large T, but is captured relatively well for the small value of T (see 
Table 4). This suggests that the potential bias induced by introducing the convex 
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hull truncation might be negligible in our case. As for semi-automatic ABC with 
MVLR the standard errors for the variances for D are larger than the absolute val-
ues of the corresponding estimates, which signals that the underestimation of the 
variance is likely due to the simulation noise.

4.3.2 � Predictive distributions

Next, we inspect the predictive posterior distributions in output space. The out-of-
sample posterior distribution of x for a future timepoint t∗ , x[t∗] , is given by

where y is the set of data used for training. For a conjugate prior the posterior 
distribution

and the integral in equation (26) can be worked out analytically. However, for a uni-
form prior, it is easier to compute the integral in equation (26) numerically with the 
Monte Carlo method:

where the summation 
∑

i,j extends over a dense mesh in parameter space and the 
likelihood is obtained from equation  (17). When the likelihood is unknown (or 
assumed unknown, for method evaluation), the predictive distribution is approxi-
mated by

where {�i,Di}
M
i=1

 is our approximate sample from the unknown posterior distribution 
p(�,D|y) , obtained with the various ABC samplers discussed earlier. Inserting the 
expression from equation (15), we get:

We have repeated the training simulations three times, for different time intervals 
[0, T] with T ∈ {0.05, 5, 500} , and made out-of-sample predictions 10% above that 
time interval, that is, we set t∗ = 1.1T  . The results are shown in Fig. 8.

A comparison of Figs.  5, 6, 7 and 8 shows very good agreement. Rejection 
ABC and ABC-SMC, for which the ABC posterior samples are not well aligned 

(26)p(x[t∗]|y) =∫ p(x[t∗]|�,D)p(�,D|y)

(27)p(�,D|y) =
L(y|�,D)p(�,D)

∫ L(y|�,D)p(�,D)d�dD

(28)p(x[t∗]�y) =
p(x[t∗]��i,Dj)L(y��i,Dj)∑
i,j p(x[t

∗]��i,Dj)L(y��i,Dj)

(29)p(x[t∗]|y) ≈p̃(x[t∗]|y) =
1

M

M∑

i=1

p(x[t∗]|𝛼i,Di)

(30)p(x[t∗]�y) ≈ 1

M
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i=1

1
√
4�Dit

∗
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�
−(x[t∗] − �it
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∗
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Fig. 8   True (blue solid lines) and predictive distributions (red dashed lines) at T = 0.055 s (left column), 
T = 5.5 s (centre column) and T = 550 s (right column).The different rows correspond to the differ-
ent ABC methods, from top to bottom: Rejection ABC, ABC-SMC, ABC-SMC with adaptive weights, 
Semi-automatic ABC, GP-ABC, GP-ABC with convex hulls and Residual ABC
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with the parameter domain of high likelihood (Panels b-c in Figs. 5, 6 and 7) also 
show the largest deviation between the estimated and true predictive distributions 
(top two rows in Fig. 8). The other ABC algorithms, whose posterior parameter 
samples are much better aligned with the regions of high likelihood, also achieve 
a much better agreement between the estimated and true predictive distributions. 
Of those the poorest agreement has been found for the semi-automatic ABC algo-
rithm at the largest value of T (Fig. 8, 4th row, right column). This tallies with 
Fig. 7e, which shows several sampled � values falling into the tails of the high 
likelihood region.

Table 4   Relative percentage errors between the ABC posterior means and variances and those for the 
exact posterior for D and � , together with the corresponding standard errors (SE)

Compared methods are: rejection ABC (Rejection), ABC-SMC (SMC), ABC-SMC with adaptive 
weights (SMC adj), semi-automatic ABC with MVLR (Semi-auto), GP-ABC (GP), GP-ABC with con-
vex hulls (GP conv), residual ABC (Residual). Negative numbers mean that the ABC value is smaller 
than the corresponding exact posterior value. Lowest estimate values (for each quantity, for each value of 
T) in bold

Method Mean D Variance D Mean � Variance �

Estimate SE Estimate SE Estimate SE Estimate SE

T=0.05 s
Rejection −27.92% 2.64% 23454.60% 308.50% −19.93% 5.56% 7097.26% 170.53%
SMC −39.85% 2.69% 20242.61% 286.69% −17.79% 5.33% 6691.40% 165.65%
SMC adj −4.05% 0.34% 328.27% 41.60% −44.41% 4.14% 2673.38% 105.86%
Semi-auto −4.53% 0.20% −14.35% 18.60% −30.88% 4.22% 3458.04% 119.90%
GP −5.00% 0.19% −25.05% 17.40% −41.61% 3.94% 2524.57% 102.98%
GP conv −5.00% 0.19% −35.76% 16.11% −43.33% 4.06% 2605.74% 104.56%
Residual −5.00% 0.20% −3.64% 19.73% −41.40% 4.10% 2754.55% 107.39%
T=5 s
Rejection 4.48% 4.18% 85163.16% 586.94% −36.57% 3.42% 1900.36% 89.90%
SMC 41.52% 3.15% 65163.16% 513.51% −43.08% 3.27% 1536.66% 81.32%
SMC adj −4.54% 0.43% 636.84% 54.56% −12.17% 1.04% 81.85% 27.11%
Semi-auto −3.12% 0.20% −15.79% 18.45% −29.25% 1.75% 445.55% 46.95%
GP −3.12% 0.19% −26.32% 17.25% −4.85% 6.43% 10629.22% 208.21%
GP conv −2.65% 0.19% −26.32% 17.25% −12.99% 0.96% 45.48% 24.24%
Residual −2.65% 0.20% −15.79% 18.45% −15.43% 0.61% −83.63% 8.13%
T=500 s
Rejection 125.83% 8.92% 835029.31% 1836.92% −0.65% 0.20% 261.45% 38.22%
SMC 114.75% 8.60% 738046.55% 1726.97% −2.66% 0.17% 140.96% 31.20%
SMC adj −1.29% 1.29% 7443.10% 174.58% 0.35% 0.14% 20.48% 22.06%
Semi-auto 1.12% 0.21% 7.76% 20.87% 8.38% 0.92% 10743.37% 209.31%
GP 1.12% 0.19% −24.57% 17.46% 0.35% 0.10% −90.36% 6.24%
GP conv 1.12% 0.20% −13.79% 18.66% 0.35% 0.10% −89.16% 6.62%
Residual 1.12% 0.20% −13.79% 18.66% 0.35% 0.14% 20.48% 22.06%
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4.3.3 � Coverage of HDI intervals

We have also estimated the coverage of the highest posterior density intervals 
(HDI) for the best performing methods. To this end we have repeated the ABC 
simulations K = 100 times. For each simulation we have estimated the 95% 
highest density interval using the package bayestestR (Makowski et al. 2019). 
We have then established how often the true parameters were included in the 
central 95% interval. The coverage is given by the percentage of simulations 
that included the true parameters in this central 95% posterior interval. For a 
reliable sampler, the coverage should be close to 95%. We also recorded the 
width of the central 95% posterior interval; this gives an indication of how 
compact the 95% posterior support is. The results can be found in Table 5. We 
note that in a few cases where the posterior distribution is bimodal, this meas-
ure is misleading as it does not allow for the low posterior probability region 
between the modes; see e.g. Figure 2.2 in Gelman et al. (2014) for an illustra-
tion. This explains some of the outliers in Table 5. However, the coverage is, 
in general, close to the target value of 95% , suggesting that our selected ABC 
samplers achieve a reliable approximation of the true posterior distribution.

4.3.4 � Practical identification and accuracy measures

In Sect.  4.3.1 we have analysed the performance of ABC algorithms compared 
with the gold-standard exact posterior distribution. However, as we have seen in 
Sect.  4.3.1, even for the exact posterior whether both parameters are practically 
identifiable depends on the value of T. For ABC these issues with practical identifi-
cation can be further amplified by choosing the MSD as summary statistics. Moreo-
ver, we have observed that substantial simulation noise can make capturing the true 
uncertainty of both parameters challenging, even for more advanced ABC schemes 
(ABC-SMC with adaptive weights and semi-automatic ABC algorithms). This 
raises different questions to that of comparing ABC with the exact posterior. How 
good a job do ABC algorithms do in practically identifying the parameters? And, 

Table 5   Percentage coverage of 95% highest posterior density regions C and the mean of the widths of 
the 95% highest density intervals (HDI) for D and �

Compared methods are: Semi-automatic ABC with MVLR (Semi-auto), GP-ABC (GP), GP-ABC with 
convex hulls (GP conv), and residual ABC (Residual). For T = 5 the increased width of the credible 
interval for GP is caused by the bimodality of the corresponding ABC posterior distribution; see main 
text, Sect. 4.3.3

Method T = 0.05 T = 5 T = 500

⟨�HDI
D
�⟩ ⟨�HDI��⟩ C ⟨�HDI

D
�⟩ ⟨�HDI��⟩ C ⟨�HDI

D
�⟩ ⟨�HDI��⟩ C

Semi-auto 0.88 6.22 99 0.11 0.58 84 0.11 0.30 90
GP 0.11 4.17 90 0.16 4.94 98 0.16 0.21 96
GP conv 0.10 4.21 93 0.14 0.37 88 0.14 0.05 97
Residual 0.18 4.71 94 0.15 0.40 90 0.14 0.13 100
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how to measure practical identification accuracy in the first place? To address these 
questions, in Appendix D we introduce two accuracy measures, which we then use 
to compare ABC algorithms in terms of their practical identification performance.

5 � Self‑generated gradient model simulation study

This section presents our main results on inferring key parameters of the proposed 
cell movement model (see Sect. 2) using ABC. As we discuss previously, we focus 
on two parameters of the model, D and � , as they are physiologically most relevant.

5.1 � ABC implementation

To illustrate the performance of the ABC methods we will focus initially on the 
residual ABC algorithm (see Sect.  3.4.2), as it was found to be one of the best 
approaches among those tested in Sect. 4. We set the nominal values for D and � 
to 3�m2∕s and 31.57�m∕s , respectively, and adopt a triangular distribution2 as the 
prior on D and � , with maximum and minimum values equal to double and half the 
nominal values, respectively. For the vector of summary statistics used during the 
initial run of ABC-SMC with adaptive distance function, we use the ensemble MSD 
calculated at the N − 1 non-zero time points. The observed vector of summary sta-
tistics will be the ensemble MSD calculated using the nominal values from Table 1.

5.2 � ABC results

Figure 9 presents samples from the estimated joint posterior distribution for D and � 
after 8 iterations of the residual ABC algorithm, where the dashed lines indicate the 
true values of D and � . Although we do not have access to the exact joint posterior 
distribution, we find that both D and � are inferred relatively well from the final esti-
mated joint posterior distribution.

The results from our toy problem simulation study in Sect. 4.3.1 showed that tak-
ing a smaller value of T generally improved the inference of the diffusion coefficient, 
while taking a larger value of T generally improves the inference of the drift veloc-
ity. Here, we test re-running the residual ABC algorithm where we calculate the 
ensemble MSD as before, but the summary statistics will be taken to be the first and 
final ten MSD points. If the MSD for the self-generated gradient problem is similar 
in form to that for the toy problem, then the behaviour of the MSD for short time 
intervals will be dominated by the random motility parameter D, but over longer 
time intervals the behaviour of the MSD is determined by the chemotaxis velocity 
parameter � . We would expect using the first ten MSD points to improve the infer-
ence of D and the final ten MSD points to improve the inference of � . Figure 10 

2  The triangular distribution is described in  Evans et  al.   (2000) and is characterised by three values 
(a; b; c), where b is the nominal value of the parameter, and a and c are the minimum and maximum 
values, respectively
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Fig. 9   Samples from the joint posterior distributions for D and � using the residual ABC algorithm. The 
value of � decreases as we progress through (a) to (h). The dashed lines correspond with the true values 
of D and � . These experiments were for N

S
= 100 , N = 500 and T = 19800 s , with the parameter values 

given in Table 1
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shows a plot of the residual ABC results when we use the first ten MSD points, all 
the MSD points (note that this is the same plot as Fig. 9h), and the last ten MSD 
points as the summary statistics. When we use the final ten MSD points, D becomes 
unidentifiable as we would expect. For � , however, the marginal posterior distribu-
tions appear similar using the three different summary statistics and we do not find 
an improvement in the inference of � when we use the final ten MSD points. This is 
likely due to the chemotactic term of our chemotaxis model being much more com-
plex than the simple drift term considered in the toy model problem.

In Table 6 and Fig. 11 the results using the residual ABC algorithm are com-
pared to those obtained using the three other best performing methods identified 
in Sect. 4.3.1. In Table 6 we observe that the relative error in the posterior mean 
estimate for D is generally lower than that for the chemotaxis parameter � . This 
is likely to to due to the more complex nature of this term in the self-generated 
gradient model. In general, all four methods perform well in terms of accuracy 
and there is no evidence of any systematic bias in the estimates of the model 

Fig. 10   Samples from the joint posterior distributions for D and � using the residual ABC algorithm, 
where the summary statistics is taken to be the first ten MSD points (a), all the MSD points (b), and the 
final ten MSD points (c). The dashed lines correspond with the true values of D and � . These experi-
ments were for N

S
= 100 , N = 500 and T = 19800 s , with the parameter values given in Table 1
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parameters. While our focus has been on the relative accuracy of the considered 
ABC algorithms, our observations are that the four methods considered in this 
section produce their estimated posterior distributions over a similar time period.

Table 6   Percentage errors in ABC posterior means and relative MSE for self-generated gradient study

Compared methods are: Semi-automatic ABC with MVLR (Semi-auto), GP-ABC (GP), GP-ABC with 
convex hulls (GP conv), and residual ABC (Residual)

Method D �

Estimate SE Estimate SE MSE

Semi-auto 0.37% 1.01 × 10−3 % −6.79% 5.51 × 10−3 % 8.22 × 10−3

GP −0.67% 6.59 × 10−4 % 5.72% 3.82 × 10−3 % 4.28 × 10−3

GP conv −0.10% 7.11 × 10−4 % 0.21% 3.84 × 10−3 % 1.53 × 10−3

Residual 0.36% 9.64 × 10−4 % −6.17% 5.21 × 10−3 % 7.66 × 10−3

Fig. 11   Samples from the joint posteriors using a Semi-automatic b GP c GP-Convex Hulls and d Resid-
ual ABC methods
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6 � Discussion

In this paper we have first proposed a novel discrete-continuum biophysical model 
describing self-generated collective cell chemotaxis induced by the diffusion of a 
local chemoattractant. The cells move collectively according to the drift-diffusion 
SDE (1) and the evolution of the concentration of the chemoattractant is mod-
elled using the PDE (9). Second, we have studied the inverse problem, inferring 
the two model parameters most critical for collective cell movement, D and � . 
Since the complexity of our biophysical model renders likelihood-based statisti-
cal inference infeasible, we resort to the class of approximate Bayesian compu-
tation algorithms. To select the best algorithm for our problem, we have com-
pared different ABC methods on a simpler analytically tractable drift-diffusion 
SDE model, referred to as the “toy problem”. Comparing ABC methods directly 
on the cell movement model is practically infeasible due to its computational 
complexity.

The drift term in the SDE of the collective cell movement model is derived by 
considering receptor-ligand kinetics. By looking at the rate at which ligands bind 
on and off the cell receptors, assuming a constant total receptor concentration, we 
arrive at the chemotactic term given by (7). This term allows cells to chemotax 
proportionally to the chemical gradient when the concentration is small relative 
to the disassociation constant Kd , and it induces random cell movement when the 
concentration is large relative to the disassociation constant. The evolution of the 
chemoattractant is described using the diffusion equation with constant diffusion 
coefficient, along with a Gaussian-like term that models the degradation of the 
chemical by the cells. The strength of the cell degradation is assumed to have a 
Michaelis-Menten form.

To numerically simulate the movement of the cells and the evolution of the 
chemoattractant, we have retrieved experimental quantities for the self-generated 
gradient data from Tweedy et al. (2016) and values for the model parameters from 
the literature. To simulate the movement of the cells, we solve our drift-diffusion 
SDE numerically by the Euler-Maruyama method. The evolution of the chem-
oattractant is simulated on a uniform background grid using an implicit-explicit 
finite difference scheme to numerically solve (9). The updated concentration is 
then found by solving a tri-diagonal system of equations. Linear interpolation is 
used to estimate the chemical concentration at the location of the cells, as well as 
using a linear approximation for the chemical gradient at the location of the cells. 
Our simulations have shown a leading wave of cells, a key property of self-gen-
erated gradient, and concentration profiles which matched that found in Tweedy 
et al. (2016). This demonstrates that our drift-diffusion model has the flexibility 
to give rise to self-generated gradient chemotaxis.

We have compared different ABC approaches to inferring the parameters of the 
synthetic benchmark problem, the diffusion coefficient D and the drift velocity 
� . The adopted model specification renders the exact posterior tractable, allow-
ing us to compare results from ABC algorithms against the known gold-standard. 
We have investigated the performance of five popular ABC algorithms: rejection 
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ABC, ABC-SMC, ABC-SMC with adaptive distance function of Prangle (2017), 
semi-automatic ABC of Fearnhead and Prangle (2012), and GP-enhanced semi-
automatic ABC of Borowska et al. (2021). To further improve upon the obtained 
results, we have proposed two modified algorithms: an extension of the GP-ABC 
algorithm utilising convex hulls, and a two-stage semi-automatic approach, in 
which a GP regression model is fitted to the residuals from a first stage linear 
regression model. In all our experiments we have used the MSD calculated at 
N = 100 discretisation points as the first-stage summary statistics; for semi-auto-
matic ABC algorithms we then used estimates of the posterior mean for D and � 
as the second-stage summary statistics.

The main finding from our synthetic benchmark study is that regardless of the 
algorithm used, the ABC-posterior distributions depend crucially on the value of 
the measurement time interval T, as does the exact posterior distribution. For small 
values of T, the exact posterior distribution is relatively tight in D and considerably 
dispersed in � , meaning that � is hard to identify. In contrast, for large values of T, 
the exact posterior distribution is more dispersed in D compared with � , which may 
lead to identification problems for D. However, there are intermediate values of T 
for which the exact posterior distribution is more isotropic, which facilitates identi-
fication and precise inference simultaneously for D and � . These findings mirror the 
results reported by Devlin et al. (2019), who show that an intermediate value of T 
balances the accuracy of the inference of both parameter values.

Compared to standard approaches based on first-stage summary statistics, the 
semi-automatic algorithms considered, including the two new ones proposed in 
this paper, provide more accurate inference of the location of the posterior distri-
bution. Moreover, these methods generally do a (relatively) good job of estimating 
the uncertainty of D, in contrast to the basic methods, such as rejection ABC or 
ABC-SMC, which tend to produce considerably overdispersed ABC-posterior dis-
tributions. We have therefore used the proposed residual ABC approach for infer-
ring D and � of the cell movement model. As expected, both parameters are inferred 
relatively accurately.

One prominent challenge, universal for most ABC methods, relates to the use of 
summary statistics. Our results demonstrate that the semi-automatic approaches, 
in which second-stage summary statistics are obtained as predictions from a pre-
fitted regression model, provide an advantage over standard algorithms based on 
first-stage summary statistics. However, the semi-automatic methods still rely on 
manually selected and constructed transformations of the data (first-stage summary 
statistics). ABC methods without summary statistics seem a promising strand of 
research (Sousa et  al. 2009). More recently, applying the Wasserstein distance to 
directly convert high dimensional data into a one-dimensional distance value has 
been proposed (Bernton et al. 2019). However, even such seemingly fully automatic 
methods still require user inputs, e.g. as to what mapping from the data space to the 
distance space to use. In other words, application-specific intuition behind selecting 
summary statistics is traded for intuition behind selecting an appropriate space fill-
ing curve.

We have used the MSD as first-stage summary statistics either directly in rejec-
tion ABC or ABC-SMC, or indirectly in semi-automatic algorithms, where it served 
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as the explanatory variable in regression models. We note that the 100 time points 
at which we calculate MSD are uniformly spread over the time domain [0, T]. This 
might be sub-optimal, especially given the relationship between the MSD and the 
two parameters of interest. Generally, the quadratic nature of the MSD means for 
small values of T, the quadratic term in formula (21) essentially disappears so we 
cannot estimate � well; on the other hand, for large values of T, the relative weight 
of the linear term becomes negligible so that D becomes hard to estimate accurately. 
Selecting MSDs uniformly intensifies this issue. Such insights can inspire better 
choices and designs of summary statistics, but that requires domain knowledge that 
may not always be available.

Appendix A: Kinetics of receptor‑ligand binding

In this section we consider receptor-ligand binding dynamics to justify the assump-
tion that these occur quickly compared to the other physical processes involved in 
cell motility. In Fig. 12 we have plotted the evolution of fractional receptor occu-
pancy R(t) = �(t)∕Rtot , where �(t) is the number of occupied receptors and Rtot is 
the total (occupied and and unoccupied) number of receptors. We have assumed ini-
tially that all receptors are unoccupied, the ligand-receptor disassociation parameter 
Kd = 150nM (Wurster and Butz 1980) and the ligand-receptor on rate k1 = 0.1s−1 . 
For a range of concentrations c, we can see that the fractional receptor occupancy 
rapidly increases to its equilibrium value R = c∕(Kd + c) , and the time to reach equi-
librium decreases with increasing concentration c. In all situations, equilibrium is 

Fig. 12   Kinetics of ligand-receptor binding
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reached rapidly and hence this justifies the use of equilibrium conditions for the 
fractional receptor occupancy term in the modelling of chemotaxis in the SDE (1).

Appendix B: ABC algorithms

Algorithm 2   ABC rejection algorithm (Pritchard et al. 1999)
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Algorithm 3   ABC-SMC algorithm (Beaumont 2010)
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Algorithm 4   ABC-SMC with adaptive weighting (Prangle 2017)

Appendix C: Additional results

C.1 Exact posterior for a very large T value

Figure 13 illustrates the shape of the exact posterior distribution for a value of T 
much higher than in our simulations in Sect. 4.3.1 and equal to 50, 000 s . Notice 
that the marginal for � becomes concentrated around the true value of � = 1 , how-
ever the marginal for D becomes essentially diffuse and is not centred around the 
true value D = 2 . One of the reasons for this practical unidentifiability of D is 
related to keeping the number of discretisation points N fixed (which is dictated 
by keeping the computational costs equal between different simulation configura-
tions). However, as investigated by Michalet (2010) (see Fig.  4 there), for dif-
fusion processes increasing the number of fitting points helps to infer diffusion 
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coefficients to a certain point, beyond which it becomes detrimental to use a 
higher number of fitting points.

C.2 The impact of the tolerance value on rejection ABC and ABC‑SMC

C.2.1 Rejection ABC

Figures  14, 15 and 16 show samples from the joint posterior distributions for 
T = 0.05 s , 5 s and 500 s , respectively. As we decrease � , the joint posterior dis-
tributions get slowly closer to the exact posterior distributions for all values of T. 
We see a larger improvement for a small and middle value of T, while for a large 
value of T, the joint posterior distribution in D covers the entire prior distribution.

C.2.2 ABC SMC

See Figs. 17, 18 and 19.

Fig. 13   Contour plots of the exact posterior distribution for T = 50, 000 s
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Appendix D: Accuracy measures

As discussed in Sect.  4.3.4, for models with practical identification problems, 
such as SDE (14), one may be interested in assessing how well an ABC algo-
rithm practically identifies each parameter, or both parameters simultaneously. To 
this end, we need to define accuracy measures that take the ground-true values of 
parameters into account. In this Section, we first introduce two such measures, 
based on mean squared errors (MSEs), and then we use them to compare ABC 
algorithms. We focus on the five ABC algorithms that we have demonstrated to 
perform relatively well (see Sect.  4.3.1), i.e. ABC-SMC with adaptive weights 
(Prangle 2017) and four semi-automatic schemes (based on MVLR, GP regres-
sion, GP regression with convex hulls, and the residual approach).

Fig. 14   Rejection ABC: samples from the ABC-posterior distributions for T = 0.05 s and different � val-
ues
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D.1 Definitions

Harmonic accuracy

We first introduce the harmonic accuracy that is predominately determined by 
the change in the strongly (practically) identifiable parameter (which parameter 
it is depends on the value of T). To define it, we calculate the posterior mean for 
D and � for the ith tolerance value, denoted by Di and �i , respectively, as well as 
the variance of the accepted values of D and � , denoted by (�2

D
)i and (�2

�
)i , respec-

tively. The MSE for D and � for the ith tolerance value is then given by

(MSED)i = (D − Di)
2 + (�2

D
)i, i = 1,… ,N�,

(MSE�)i = (� − �i)
2 + (�2

�
)i, i = 1,… ,N�,

Fig. 15   Rejection ABC: samples from the ABC-posterior distributions for T = 5 s and different � values
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where D and � are the true parameter values, and N� is the number of tolerance val-
ues. The harmonic accuracy for the ith tolerance value is then given by

Circular accuracy

We will define the second accuracy measure so that a higher level of accuracy cor-
responds with estimating both parameters well, rather than only the strongly (practi-
cally) identifiable parameter. To do this, we need to think about what it means for 
both parameters to be estimated well. In two dimensions, we could think of this 
as the shape of the level sets of joint posterior distribution being circular/elliptical 
around the true parameter values an appropriately small radius.

(31)AH
i
=

1

(MSED)i
+

1

(MSE�)i
, i = 1,… ,N�.

Fig. 16   Rejection ABC: samples from the ABC-posterior distributions for T = 500 s and different � val-
ues
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To implement this idea, we need a measure of circularity of a general shape. One 
simple measure would be the compactness measure [?], defined as C = 4�A∕p2 , 

Fig. 17   ABC-SMC: samples from subsequent intermediary joint distributions for T = 0.05 s
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where A is the area enclosed and p is the perimeter of the shape. If the shape is a 
circle then C = 1 and C < 1 otherwise.

Fig. 18   ABC-SMC: samples from subsequent intermediary joint distributions for T = 5 s
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For posteriors roughly rectangular in level set plots, we set A = MSED ×MSE� 
and p = 2(MSED +MSE�) . This gives an approximate value of 

Fig. 19   ABC-SMC: samples from subsequent intermediary joint distributions for T = 500 s
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C ≈ �(MSED ×MSE�)∕(MSED +MSE�)
2 . Since C is maximised when the area is 

close to a circle, dividing by C puts more emphasis on estimating both parameters 
well, rather than just one of them. A possible error measure could then be specified 
as 

√
A∕C ≈ (MSED +MSE�)

2∕
√
MSED ×MSE�  . We then define our second accu-

racy measure, which we call the circular accuracy, as the inverse of the error, giving

Note that this measure of accuracy could be extended to higher dimensional param-
eter spaces by using higher-dimensional analogues for the area and perimeter.

D.2 Results

A comparison of the harmonic and circular accuracy against the simulation count 
for ABC-SMC with adaptive weights and the four semi-automatic ABC algorithms 
(semi-automatic ABC with MVLR, GP-ABC, GP-ABC with convex hulls, and the 
residual approach) is given in Fig. 20.

Small T

For T = 0.05 s , the harmonic accuracy for all the semi-automatic approaches is com-
parable, with GP-ABC with convex hulls achieving the highest value the quickest. 
The semi-automatic approaches considerably outperform ABC-SMC with adaptive 
weight, which corresponds to the narrower ABC-posterior distribution in the practi-
cally identifiable parameter D for the former compared to the latter (see Fig. 5).

As for the circular accuracy, for all the algorithms it initially increase as both 
parameters are inferred more accurately, but then falls as the joint posterior distribu-
tions remain wide in � . ABC-SMC with adaptive weights performs best in this case, 
as the corresponding ABC-posterior distribution is most circular. Semi-automatic 
ABC with MVLR results in the lowest circular accuracy, which is due the ABC-
posterior of � being the most dispersed among those for the four semi-automatic 
algorithms (see Table 4).

Medium T

For T = 5 s , the harmonic accuracy exhibits a similar patter as for T = 0.05 s , with 
GP-ABC with convex hulls performing the best and ABC-SMC with adaptive 
weight performing worst.

This time, however, the circular accuracy monotonically increases in the simula-
tion count, which corresponds to the ABC-posterior distributions becoming more 
and more isotropic. The residual approach results in the highest circular accuracy, 
with GP-ABC with convex hulls coming second. The two standard semi-automatic 
algorithms perform relatively poor in this case.

(32)AC
i
=

√
(MSED)i × (MSE�)i

((MSED)i + (MSE�)i)
2
, i = 1,… ,N�.
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Large T

For T = 500 s , GP-ABC with convex hulls again delivers the highest harmonic accu-
racy, with the standard GP-ABC being second-best. Interestingly, ABC-SMC with 

Fig. 20   Accuracies against the simulation count for ABC-SMC with adaptive weights (black line with 
asterisks), semi-automatic ABC with MVLR (blue line with circles), GP-ABC (red line with crosses), 
GP-ABC with convex hulls (green line with squares) and residual ABC (cyan line with triangles) for the 
three different values of T 
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adaptive weights works relatively well in this case. This is due to the ABC-posterior 
for this method being relatively tight in � , especially compared with semi-automatic 
ABC with MVLR (also see Table 4).

As far as the circular accuracy is concerned, the semi-automatic approaches 
clearly outperform ABC-SMC with adaptive weights. Among the former, the resid-
ual approach results in the highest circular accuracy overall, which reflects the most 
isotropic ABC-posterior distribution for this algorithm.

Conclusions

We find that the two semi-automatic schemes proposed in this paper (Sect.  3.4) 
result in the highest accuracy measures for the three values of T. When it comes 
to accurately inferring the practically identifiable parameter, GP-ABC with convex 
hulls performs best, as quantified by the highest values of the harmonic accuracy 
for this algorithm. As for inferring both parameters simultaneously, the residual 
approach is generally superior, with the largest circular accuracy values (except for 
long simulations for T = 0.05 s , where it becomes overtaken by the ABC-SMC algo-
rithms with adaptive weights).
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