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ABSTRACT Owing to the increased video content consumption in recent years, the need for advanced
contextual advertising methods that leverage increasing user engagement and relevance on advertisement-
based video-on-demand platforms has increased. Traditional behavior-based advertisement targeting is
waning, particularly owing to the recent strict privacy policies that favor user consent and privacy. This
study proposes an innovative approach for integrating advanced natural language processingwithmultimodal
analysis for video contextual advertising. To this end, transformer-based architectures, specifically
BERTopic, computer vision techniques, and large language models were used to extract sets of topics
from visual and textual video data automatically and systematically. The proposed framework decodes the
taxonomy of content efficiently through videos in different levels of noise and languages. Empirical analysis
of the YouTube-8M dataset shows the potential for the approach to change the paradigm in video advertising.
Built to be scalable and easily adaptable, this solution can handle multifarious and complex user-generated
content well, suited for a wide range of applications across various media platforms.

INDEX TERMS Natural language processing, video contextual advertisements, multimodal fusion, topic
modeling, BERTopic, contextual taxonomy standards, multi-label classification.

I. INTRODUCTION
Advertisement-based video-on-demand (AVoD) has emerged
as a viable advertisement model owing to the significant
increase in video consumption in recent years [1]. AVoD
platforms earn revenue primarily through advertising via
real-time bidding [2]. Several privacy-friendly advertisement
measurement and targeting methods have been developed
owing to the reduction in behavior-based advertisement tar-
geting brought about by regulations such as the General Data
Protection Regulation (GDPR) and the California Consumer
Privacy Act [3]. These laws advocate for an opt-in consent-
based model, which encourages consumers to move towards
privacy-preserving technologies. This has heightened the
requirement for scalable methods capable of mapping media
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assets to industry taxonomies while ensuring that compliance
and monetization remain effective. Contextual advertising
has emerged as a promising compromise. It operates via
bets placed on a cookie-less uncluttered environment and
delivers advertisements perfectly suited to the type of content
being viewed based on semantic video indexing and deep
learning processes [4]. Given that videos consist of rich
multimodal data, such as audio, visual, and textual data, this
is a new research paradigm for multimodal approaches to
handle various data types [5], [6]. Furthermore, integrating
support for multilingual enablement can extend reach,
allowing users to execute advertising strategies targeting all
relevant languages and regions, without alienating potential
audiences [7].

Some studies have also suggested that thematically congru-
ent advertisements improve both memorability and attitude
toward advertisements in high-arousal contexts [8]. An in-
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depth analysis was conducted to identify broader thematic
elements that are capable of making targeted video classifiers
more efficient at adding value and engaging viewers. This
approach delivers higher memorability and positive viewer
attitudes using explicit and implicit contexts, thereby enhanc-
ing the effectiveness of contextual advertising [9]. Beyond
contextual advertising, topic modeling, which is a natural
language processing (NLP) method, offers the possibility of
inferring explicit and implicit themes [10]. These topics are
aligned with the content taxonomy more precisely to enable
finer targeting in a larger advertising ecosystem.

In this paper, we describe the utilization of transformer-
based architectures, a family of models behind many recent
advances in NLP and computer vision, to decode content
taxonomies. Specifically, we employ distinct BERTopic
models to extract and analyze topics from both image
and textual data embeddings. These models systematically
inferred topics based on visual modalities and multilingual
transcripts. In addition, we leverage large language models
(LLMs) to enhance the coherence and explainability of the
topic representations. The inferred topics were systematically
mapped to pertinent taxonomies, enabling nuanced and
comprehensive analysis of multimodal video data. This tech-
nique effectively handles varying noise levels across video
modalities and flexibly identifies content taxonomy based
on outcomes across multiple video modalities. It exhibits
both flexibility and scalability, particularly when dealing
with user-generated content, which is often inconsistent,
unstructured, and varies significantly in terms of quality.

The deployment of this framework is expected to increase
the precision and engagement efficiency of advertisements
significantly, effectively enabling programmatic advertise-
ments on AVoD platforms. For this purpose, we performed
an empirical analysis of a semi-automated processed sample
dataset, YouTube-8M. Video content intrinsically involves
multiple instances of a class occasionally; therefore, we used
multi-label classifiers to address the complexity of video
data comprising multiple types and categories. This study
represents an advancement in the field ofmodeling contextual
advertisements and video topic modeling.

The remainder of this paper is organized as follows.
Related studies on contextual advertising and video topic
modeling are discussed extensively in Section II. The
proposed methodology, including the data sources and
structure, is described in Section III. The experimental and
analytical results are presented in Section IV. The application
perspectives and directions of future research are discussed
in Section V. Finally, the paper is concluded in Section VI by
summarizing the key contributions and insights of this paper.

II. RELATED WORK
The increasing demand for AVoD services is evident as
major media players, such as Netflix, Rakuten, Discovery,
Amazon, and Comcast, have already launched or plan to
launch such services imminently [11], [12]. Personalized
advertising approaches harness viewer data to display

advertisements that are targeted and, therefore, not intrusive.
This leverages viewers as influencers in the production of
content and the targeting of audiences while monetizing
viewer attention [13]. TheGDPR and similar new regulations,
such as the upcoming Digital Services Act, are expected to
complicate the capture and use of personal data for targeted
advertising by default [14]. One promising alternative is
contextual advertising, which considers the context in which
advertisement media are placed [4].

A. CONTEXTUAL ADVERTISING
VideoSense [15] was introduced for contextual advertise-
ments on video platforms. It utilizes elements such as titles,
tags, queries, and local visual-aural features such as color,
motion, and audio. Okada et al. [16] studied the process
of selecting advertisements for placement on videos. They
considered different forms of textual metadata created by
users and stored them on a host webpage. These included
titles, keywords, descriptions, categories, and comments, and
were used to select relevant advertisements. This avoids the
need to process images and videos elaborately. In Salad
[17], a convolutional neural network (CNN) was adopted
for feature extraction and selection of the most salient
advertisements. It aligns text with visual content, preserving
the context using high-level features obtained from a deep
neural network for optimal relevance of advertisements in
online videos. However, the aforementioned studies relied
on metadata or a set of visual/aural cues without performing
a proper analysis of the video content; therefore, they
did not consider context-specific nuances that are essential
for advertising. Similarly, Zhang et al. [18] conducted
research on online video advertising to optimize the balance
between advertisement intrusiveness and relevance. Their
work incorporated a conventional histogram of oriented
gradient features for generic object detection and deep
CNNs for class-specific tasks, such as gender recognition
in clothing retrieval. Moreover, they considered and rec-
ommended the incorporation of deep neural networks to
enhance object detection performance. Wang et al. [19]
combined hue, saturation, and value color histograms with
Oriented FAST and Rotated BRIEF(ORB) features to offer
users a highly detailed measure of content similarity and,
therefore, focused on the overall relevance of a scene rather
than single objects in the scene. AI advances allow for
deeper semantic analysis, enhancing ad placement. There
have been three contextual factors in ad acceptance that
have been studied: applicability, affective tone, and consumer
engagement [20]. An interesting step forward was made with
the development of the multimodal approach, DEEP-AD
[21], which utilizes a temporal video segmentation algorithm
to relate advertisements with video content semantically.
The algorithm segments videos into stories by analyzing the
visual, audio, and semantic features using a battery of deep
CNNs. In DEEP-AD, the semantic descriptions of both video
scenes and advertisements are employed to ensure contextual
relevance. Object and place recognition methods are applied
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to derive these semantic descriptions, thereby enhancing the
precision of ad placement. Another contextual ad platform,
SemanticAd [22], extends a similar idea and aims at specific
ad placement at semantic boundary positions in a video, not
semantic compatibility alone. Unlike DEEP-AD’s semantic
deep-description direction, SemanticAd utilizes story unit
extraction for ad and video segmentation and ad mapping in
terms of visual, audio, and semantic discontinuity. Further,
Song et al. [23] proposed a multimodal approach combining
various types of CNNs to extract multimodal features and
obtain a unified representation of over 140 movie video
clips based on semantics, objects, scenes, sentiments, colors,
and audio. They modeled topics using a semantics-based
model which is based on an I3D framework. The I3D
framework is suitable for the short shots used in recognition
tasks and precise action recognition. However, it does not
function effectively on long-range videos [24]. Existing video
segmentation methods have predominantly targeted short
videos characterized by clear visual changes and simple
patterns [25]. These unique properties of short videos can
be learned using supervised configurations, yielding models
that are highly resistant to the longer and more subtle
properties of long-form video materials. NLP techniques
are relatively prevalent in traditional advertisement formats,
including search, social, web, and classified advertisements
[26]. Although a few studies considered the use of NLP in
video advertising until 2022 [26], recently, with the growing
importance of video content, an interest in the exploration of
advanced NLP concepts from multiple perspectives has been
observed [20], [27]; hence, deeper insights with innovative
applications are expected in this domain. Finally, Explainable
AI (XAI) is becoming a critical issue in digital marketing,
in a direction to prevent a lack of transparency in AI-
powered ad placement. In [28], a model incorporates CTR
prediction, visual heatmaps, and LLM analysis for brands,
with an objective towards providing increased transparency
in ad targeting. In this work, ad effectiveness is stressed
to be increased with interpretability in terms of audience
engagement through XAI.

B. VIDEO TOPIC MODELING
The NLP method of topic modeling was primarily developed
for text analysis, using popular models such as Latent
Dirichlet Allocation (LDA), which employs probabilistic
approaches to discover hidden themes in large text corpora
[29]. In textual data, a topic is represented as a ‘‘bag
of words’’. For videos, a similar concept can be applied,
with a ‘‘bag of features’’ representing the video content.
From a semantic perspective, a ‘‘topic’’ in video analysis
is represented by objects, behaviors, activities, events, etc.
[30]. To adapt LDA to videos, features extracted from each
frame may be quantized to the nearest visual words in a
predefined dictionary. However, unlike language models,
video analysis does not include predefined words. Therefore,
a global embedding method such as word2vec [31] is not

suitable, which leads to difficulties in semantic measure-
ments. Although several approaches that combine language
and vision have partially addressed this issue, designing
effective information embedding methods for topic-based
video analysis remains challenging [32]. Although BERTopic
[33] was not designed specifically for video topics, its
fundamentals can be applied to analyze key images in videos
using image embeddings and audio transcripts in conjunction
with sentence transformers, because sentence semantics
can capture more powerful and context-rich information
than individual words. Recent works [34] have shown that
BERTopic outperforms other models, such as LDA [29], non-
negative matrix factorization [35] and contextualized topic
models [36], thus placing it as the strongest candidate for
both multimodal and textual topic analysis. This robustness
and semantic depth underpin its selection for video topic
modeling in the present study.

III. PROPOSED SYSTEM
Inspired by recent neural network-based unsupervised
approaches to topic modeling, we propose a model that
accepts, as its input, a video with 1) video frames and 2)
audio transcripts as sentences to derive a representation of
both visual and textual data. This method allows the model to
identify and segment different topics in a video by defining
boundaries for thematic content and content changes. In this
method, all possible themes in a video are to be captured as
topics, avoiding missing critical themes owing to the nature
of the video.

Given: A video Xi with transcript Ai as a sequence
of sentences {s1, s2, . . . , sn} and video frames Vi =

{k1, k2, . . . , km}.
Predict: The set of taxonomies {µ1T1, µ2T2, . . . , µpTp}.

Each taxonomy is associatedwith amultiplierµi representing
term frequency, i.e., the frequency and relevance of taxonomy
based on the mapped topics.

This framework consists of five major components,
as illustrated in Figure 1. The stages include 1. visual topic
model training, 2. textual topic model training, 3. feature
extraction, 4. video topic inference, and 5. industry content
taxonomy association.

Both visual and textual topic models are trained using
BERTopic [33], which leverages embeddings and hierarchi-
cal clustering to create coherent topic representations and
yields robust and interpretable topic models. These key visual
frames and audio transcripts are used as input in the video
topic inference phase. Eventually, these topics are mapped to
the IAB TechLab content taxonomy [37] to enable precise
contextual advertising. Thismethodology provides a thematic
understanding of video content for contextual relevance.

A. TOPIC MODELING WITH BERTOPIC
Two separate BERTopic pipelines were developed for visual
data and audio transcripts based on the modular architecture
of BERTopic, which selects appropriate components to con-
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FIGURE 1. Multimodal embedding architecture for contextual video analysis.

front the challenges presented by each modality. BERTopic
uses embeddings, dimensionality reduction, clustering, and
topic-representation pipelines to generate coherent topics.
Hyperparameter tuning is a significant requirement for
mapping a model with the characteristics of each modality
to achieve coherence topics from each stream.

For each video, Xi, we initially partition the data into visual
and audio components, enabling the use of tailoredmodels for
each modality.

1) COMMON COMPONENTS OF BERTOPIC
• Embedding: Input data were transformed into rich
feature sets using advanced embedding models. These
embeddings capture the essential characteristics of the
data, enabling effective subsequent processing.

• Dimensionality Reduction: The fine-tuning of the Uni-
form Manifold Approximation and Projection (UMAP)
[38] hyperparameters during dimension reduction bal-
ances the simplicity of the data while preserving the
complex structures corresponding to each modality.

• Clustering: Fine-tuned hyperparameters were provided
for Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) [39] to provide
clear and meaningful visual clustering, facilitating the
discovery of heterogeneous thematic content.

• Topic Representation Formation: Topic vectors
{TVi1 ,TVi2 , . . . ,TVin} and {TAi1 ,TAi2 , . . . ,TAin} are
created for visual and audio data, respectively.
In BERTopic, to obtain an accurate representation of
the topics from the bag-of-words matrix, the term
frequency-inverse document frequency (TF-IDF) [40]
is adjusted to work on the cluster level instead of the
document level. This adjusted TF-IDF representation

is called c-TF-IDF, and it considers the essential
differences between documents in different clusters:

wx,c = tfx,c × log
(
1 +

A
fx

)
(1)

where:
tfx,c = frequency of word x in class c
fx = frequency of word x across all classes
A = average number of words per class

2) BERTOPIC(VISUAL DATA)
As depicted in Figure 2, the following steps are tailored for
visual modality.

• Embedding with CLIP-ViT [41]: The ‘‘CLIP-ViT-B-
32’’ embedding model is deployed to transform images
into a rich feature set that is encoded using a Vision
Transformer (ViT) with a base-size (B) architecture and
32 attention heads.
Models such as the ViT [42], ResNet [43] and VGG-
16 [44] tend to excel when it comes to visual features
extracted by clustering. However, these traditional meth-
ods mostly fail [45] to deliver semantically meaningful
clusters even while being quite effective in clustering
visually similar images with approaches such as Nearest
Neighbor Matching [46], [47]. CLIP tries to overcome
this limitation by aligning visual and textual data in
a common feature space, thus enabling clustering that
captures both the visual and semantic relationships.
CLIP has already outperformed over 20 state-of-the-
art visual-model-based methods such as ResNet [45].
With ViT embeddings and semantic richness, CLIP-
ViT ensures that clustering achieves both robustness and
meaningful grouping [48]. This dual capability enhances
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FIGURE 2. Visual data processing workflow using BERTopic.

accuracy and adaptability for complex and nuanced
tasks, solidifying its advantage over other technologies.

• Image Captioning: The ‘‘vit-gpt2-image-captioning’’
model is used to obtain textual representations of the
images, translating the visual details into descriptive
language, thereby bridging the gap between visual
features and textual analysis. The ViT-GPT2 model
combines ViT architecture [42] and a pre-trained GPT-
2 language model [49] for generating image captions;
recent implementations are given by Hugging Face [50].

3) BERTOPIC(AUDIO DATA)
For the audio component shown in Figure 3, the following
process is adopted:

Concurrently, for the audio component Ai of each video Xi,

• Embedding with Multilingual Model [51]: We
use a multilingual embedding model to transform
audio transcripts into a rich feature set. By utilizing
paraphrase-multilingual-MiniLM-L12-v2, a multi-
lingual SBERT [52] variant, we embed the data
effectively while preserving the linguistic nuances and
context inherent in the transcript. Unlike BERT [53]
and RoBERTa [54], these models generate high-quality
sentence embeddings directly, with no complex pooling
mechanism needed [52]. Meanwhile, BERT [53] is
monolingual, and while mBERT [55], though supportive
of 104 languages, is not optimized for sentence-level
tasks; hence, these are performing so poorly and leading
to such high latency.MiniLM-L12-v2, on the other hand,
supports over 50 languages [52] and can capture nuances
in different linguistic variations in multilingual contexts

FIGURE 3. Audio data processing pipeline with BERTopic.

and hence can handle multilingual transcripts. These
reasons make it an ideal choice for our framework,
since it gives a good balance between accuracy and
multilingual efficiency.

B. TOPIC EXPLAINABILITY
Topic representations were refined using c-TF-IDF to
improve the accuracy and alignment of candidate topics
for content taxonomy mapping. To further enhance topic
explainability, we conducted evaluations LLMs to assess
the coherence and interpretability of the generated topics
ensuring stronger alignment with the taxonomy mapping.

We provide prompts in the following customized form:

prompt = """
I have a topic that is described by the

following keywords: [KEYWORDS]
In this topic, the following documents

are a small but representative subset
of all documents in the topic:

[DOCUMENTS]

Based on the information about the topic
above, create a short description of
this topic with few words.

"""

where, particular parameters of the template for the
prompt are ‘‘[KEYWORDS]’’ and ‘‘[DOCUMENTS]’’.
‘‘[KEYWORDS]’’ is to be replaced with specific terms rep-
resenting the topic, whereas in place of ‘‘[DOCUMENTS]’’,
a selection from all the documents representative of the
topic is to be used. With respect to the visual modality,
‘‘[DOCUMENTS]’’ refers to the image captions generated
from the images within each topic.
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C. VIDEO FEATURE EXTRACTION
Video features were extracted by processing audio compo-
nents, which were obtained from audio transcripts, and visual
components, which were obtained from keyframes. Both
features were transmitted to textual and visual models for
topic inference.

For visual data, we extracted keyframes using FFmpeg
[56] at a rate of one frame per second (fps = 1) with a
similarity threshold exceeding 0.45, ensuring the uniqueness
of the captured frames. This method captures the essential
visual dynamics of video content effectively. From the visual
content of Xi, we extracted key images, Vi.

For audio data, OpenAI’s Whisper model [57] was used
to obtain accurate multilingual transcripts, with MP4 files
prepared using FFmpeg for format compatibility. From the
textual content of Xi, we extracted the audio transcript, Ai.

D. VIDEO TOPIC INFERENCE
The goal of this step is to pipe through each Xi with
both visual and textual BERTopic modeling to get the set
of topics identified as {T1,T2, . . . ,Tn}. Each Xi consists
of multimodal components: Vi (visual data—key frames)
and Ai (audio data—multilingual transcripts). The inference
process predicts the topic distribution for each Xi, assigning
a set of probable topics based on previously learned topic
representations.

The predicted topic distribution for the i-th video sample
can be expressed as:

Topic Distribution for Xi = {(Tk , pi,k ) | k = 1, 2, . . . , n}

(2)

where:
• Tk : The k-th topic, represented by a high-level descrip-
tive label generated by a LLM, summarizing the primary
theme or concept of the topic.

• pi,k : The probability of the k-th topic for sample Xi,
indicating the relevance of Tk in describing Xi. Higher
probabilities suggest a stronger alignment between Xi
and topic Tk .

This probability-based representation enables an inter-
pretable assignment of topics to new data samples, driven
from both the visual and textual information. This approach
enables the broad understanding of high-level descriptive
labels for each topic, which characterizes major themes
present in the video sample without referring to individual
terms within each topic.

E. TAXONOMY MAPPING
In the final step of our pipeline, explainable topics were
mapped to their closest semantic representations based on
relevant items in our content taxonomies. Each entry in the
taxonomy [37] includes structured hierarchical information
across Tier 1, Tier 2, Tier 3, and Tier 4, listed in separate
columns for each row. For the purposes of semantic mapping,
we first concatenated these tiers for each row into one

hierarchical keyword string, thus capturing the full semantic
context of the taxonomy.

For every row i, the concatenated taxonomy string Ci is
obtained by concatenating nonempty tier values separated by
a space:

Ci = trim

 n∑
j=1

(
Ti,j + ‘‘′′

)
· I(Ti,j ̸= ‘‘’’)

 (3)

where:
• Ti,j: The taxonomy term at row i and tier j.
• n: The total number of tiers (e.g., n = 4 for Tier 1 to Tier
4).

• I(Ti,j ̸= ’’’’): An indicator function equal to 1 if Ti,j is
non-empty, and 0 otherwise.

• +‘‘′′: Represents the addition of a single space after each
tier Ti,j.

• trim: A function that removes any trailing whitespace in
the final concatenated string.

This formula, the tiers are concatenated in sequence from
Tier 1 through Tier n, in the order of their indices. Further,
all the empty tiers are excluded, Ti,j =

′′′′ in the course of the
concatenation. Then, a space is added after each non-empty
tier to separate the terms in the course of concatenation, and
the function ‘trim()‘ is applied to remove those dispensable
blank spaces at the end of the concatenated result. The output
Ci is therefore a whitespace-free, concatenated string of non-
empty tiers from row i. This method ensures that Ci is well-
formed, free of redundant spaces, and accurately represents
the concatenated terms for the given row.

Each of them combines the tiers and uses the resulting
strings, Ci, in a semantic similarity check against explainable
topics. This will, in turn, enable the mapping of each topic
to the closest content taxonomy entry according to semantic
proximity, hence enabling appropriate topic categorization.

This is computed in terms of cosine similarity, which
measures the cosine of the angle between two vectors. The
cosine similarity between a topic vector Tk and a taxonomy
vector Ci is defined by:

cosine_similarity(Tk ,Ci)

=
Tk · Ci

∥Tk∥∥Ci∥
,

where cosine_similarity(Tk ,Ci) ≥ θ (4)

where:
• Tk : The k-th topic vector.
• Ci: The i-th taxonomy vector.
• θ : A predefined cosine similarity threshold, which filters
out mappings with scores below θ .

• Tk · Ci: The dot product of the vectors Tk and Ci.
• ∥Tk∥ and ∥Ci∥: The magnitudes of the vectors Tk and
Ci, respectively.

Finally, the predicted outcome of taxonomies is:

{µ1T1, µ2T2, . . . , µpTp} (5)
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TABLE 1. Characteristics of the multimodal video analysis dataset.

This outcome is obtained based on given term frequencies
for each taxonomy. Each taxonomy is associated with a
multiplier µi representing term frequency. The multiplier
µi indicates the frequency and relevance of the taxonomy
based on the mapped topics. In this process, we also used
the topic probabilities pi,k derived from Equation (2) during
the process of inference and had a threshold to retain only
higher-probability topics to map onto taxonomies. For the
experiments, it was set to 0.7, where 1 is the highest
confidence. The taxonomy frequencies are then counted
from these filtered topics, making sure only high-confidence
mappings contribute to the final results. This is a parameter
that can be set flexibly within the framework to allow a
trade-off between quality and coverage in the output. These
probabilities represent the taxonomy weights within the
framework.

IV. EXPERIMENTS
A. TEST DATA
Two distinct datasets were used for training and evaluation.
The training dataset, a very rich text corpus, was used to train
and fine-tune the textual topic model. A corresponding set
of images was used to train and fine-tune the image topic
model. The second dataset comprised real-world videos that
were used to evaluate the proposed methodology for video
taxonomy analysis. Subsequently, fine-tuned models with a
rich text corpus and image dataset were applied to a real
video dataset to identify and analyze different topics. Model
training was focused on the food domain using specialized
datasets. For fine-tuning using text, a dataset comprising
180,000 recipes from Food.com obtained from Kaggle was
used for a pretrained BERTopic model. In the case of images,
the Food101 dataset, consisting of 50,000 images, was used
to train a multimodal BERTopic model. The model was tested
on YouTube-8M [58], a dataset comprising videos uploaded
by users and labeled using the ground truth data. One hundred
and thirty-five videos were sampled in the food category as
training data, as described in Table 1. These videos contained
varying levels of noise, languages, and spacings of time
intervals. Wherever necessary, the ground-truth labels were
further refined by fixing the accuracy of the updated ground-
truth labels. Two experts were enlisted in a user study to
assess and select the relevant advertisement taxonomy rows
associated with the video content. Each ground-truth label
was mapped to a particular row in the taxonomy [37], T1,
T2, T3, and T4.

B. EVALUATION METRICS
Measuring the number of topics in videos using multi-label
classification is essential because a video generally involves
more than one category. This has motivated considerable
research on multi-label classification [59]. Important eval-
uation measures include Hamming loss, subset accuracy,
precision, recall, and F1-score [59], [60].
In multi-label classification, each instance belongs to

multiple classes simultaneously. Each binary label can be
considered to be a vector y ∈ {0, 1}L , where 1 represents
the existence of a specific label from a predefined set Y =

{λ1, . . . , λL}, while 0 represents the opposite. For a dataset
D = {x1, x2, . . . , xn} consisting of n videos, we consider
the task of learning the classifier h : X → Y that
produces any input in the appropriate sets of labels. In simple
terms, h(x) provides a subset of preselected labels for each
input, considering an instance with multiple labels. Hamming
loss is defined to be the fraction of the number of labels
predicted incorrectly. It provides an overall error rate for the
classification system [61]. Hamming loss is given by

Hamming Loss =
1

N · L

N∑
i=1

L∑
j=1

1{yij ̸=ŷij} (6)

where N denotes the number of samples, L denotes the
number of labels, yij denotes the true value of the j-th label
for the i-th sample, ŷij denotes the predicted value of the j-th
label for the i-th sample, and 1 denotes the indicator function
that returns 1 if yij ̸= ŷij and 0 otherwise.

Subset accuracy is defined to be the number of correctly
predicted labels divided by the total number of labels, with a
predicted set counted as correct only if it is an exact match of
an actual set [62]. It is defined as follows:

Subset Accuracy =

∑N
i=1 1{yi=ŷi}

N
(7)

where yi denotes the true label for the i-th instance and ŷi
denotes the predicted label for the i-th instance.

We use themicro F1-score to optimize the overall matching
between content taxonomies in the videos. As the micro
F1-score considers the combination of all labels, it is well
suited in scenarios with large numbers of labels, and therefore
represents classifier performance effectively [63].
Micro-Precision, Micro-Recall, and Micro F1-score:

Micro_precision =

∑q
j=1 tpj∑q

j=1 tpj +
∑q

j=1 fpj
(8)

Micro_recall =

∑q
j=1 tpj∑q

j=1 tpj +
∑q

j=1 fnj
(9)

Micro_f1 =
2 × micro_precision × micro_recall
micro_precision + micro_recall

(10)

where:
• tpj: True positives for the j-th class.
• fpj: False positives for the j-th class.
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TABLE 2. Optimal parameter values for topic models.

• fnj: False negatives for the j-th class.
• q: Number of classes.
• Micro_precision: Micro-averaged precision across all
classes.

• Micro_recall: Micro-averaged recall across all classes.
Given by Equations( 8), (9) and (10), these metrics provide

an aggregated measure of performance across all classes by
treating each instance equally irrespective of its class.

C. EXPERIMENTAL CONFIGURATIONS: TAXONOMY
RETRIEVAL
This involved the tuning of hyperparameters that would
enable the training of topic models on the textual and
visual content, thus providing the first set of key steps for
our experiments. These parameters were iteratively adjusted
to capture optimal topic coherence. To ensure a balanced
evaluation and avoid overfitting to coherence scores, we fine-
tuned BERTopic’s hyperparameters to optimize both human-
perceived semantic coherence [64] and diversity in topic
clusters.

The methodology that was followed consisted of various
runs with different hyperparameter settings of UMAP
and HDBSCAN for dimension reduction and clustering,
respectively, systematically attempted to test the effect
they produced on the interpretability and the quality of
topics generated. UMAP parameters are: n_neighbors,
n_components, min_dist, and metric. A list
in HDBSCAN also includes min_cluster_size,
min_samples, and metric. to tune the cluster for
refinement and stability.

The optimal parameters of the text topic model and the
visuals topic model, as shown in Table 2, were informed by
the nature of the datasets.

This might be explained by the complementary nature
of the diverse text corpus and dense image dataset used
in this study. Whereas the text corpus provides semantic
richness and variation that enables embeddings to capture
a wide range of thematic nuances, the dense images ensure
that the features are represented in detail, hence fine-grained
clustering.

These configurations have balanced interpretability and
clustering quality, which meets the model output require-
ments of the experimental objectives and real-world tasks.
Figure 4 summarizes findings for the textual topic model,

FIGURE 4. Topic distribution for audio-based model.

FIGURE 5. Topic distribution for visual-based model.

while Figure 5 summarizes the findings of the visual topic
model. Both figures illustrate the topic distribution at an
optimal point that reflects the coherence achieved with the
best configuration for each modality. The found topics were
explained with the support of a LLM. In our approach
to amplifying LLM selection accuracy, the usage of two
different LLMs in our approach was considered:

• T5-Base model [65]
• PaLM 2 model [66]
Once the model training was complete, the subsequent task

was to apply the trained topic models to infer topics from
a dataset of 135 selected videos. Additionally, the inferred
topics had to bemapped to the predefined content taxonomies
such that they would align with the overall thematic structure.
We also experimented separately with the unimodal and
multimodal methods. These tests enable the comparison of
model performance across unimodal andmultimodal data and
set baselines for further analysis.

• Unimodal Data
– Audio Transcripts data only
– Visual data only

• Multimodal Data
– Combination of audio transcripts and visual data

IAB content taxonomy [37] are divided into several levels
of categorization, namely T1, T2, T3, and T4. Therefore,
our experimental design has tried to test the performance of
the framework at the higher-order(T1) and finest-grade(T4)
levels of the taxonomy spectrum. The results for top-level
taxonomies are shown in Table 3, while in Table 4, the results
for granular-level taxonomies are given.
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TABLE 3. Top-level taxonomies inference results using pre-trained topic models configured with PaLM 2 and T5-Base.

TABLE 4. Granular-level taxonomies inference results using pre-trained topic models configured with PaLM 2 and T5-Base.

D. EXPERIMENTAL CONFIGURATIONS: ROBUSTNESS OF
NOISES IN MODALITIES
To ensure that the evaluation of the proposed framework is
holistic, one such perspective is constituted by the robustness
of the framework under real-world noisy conditions in both
visual and transcript modalities. YouTube-8M dataset, which
inherently varies to a great degree and is noisy in nature due
to being generated by users.

• Visual Noise: Irrelevant frames, misaligned content,
or videos with very short durations and few represen-
tative frames.

• Noisy Language: The incomplete transcripts or back-
ground music or noise interferes with the speech.

• Noisy Combination: Scenarios where the visual
and transcript modalities are both noisy at the
same time.

In particular, we conducted experiments on a curated
subset of 30 videos representing these noise categories
from the YouTube-8M dataset. The performance of inferring
T1 and T4 taxonomies from videos selected for the noise
categories is presented in Tables 5 and 6, respectively.

E. EXPERIMENTAL CONFIGURATIONS: ROBUSTNESS TO
LANGUAGE-SPECIFIC SCENARIOS
Further analysis with respect to the performance of the
proposed framework under language-specific conditions is
performed by dividing the selected 80 videos into subsets
based on the primary language of the transcript. The videos
are categorized as:

• Visuals with English Transcripts: Videos for which the
content of the transcript is completely in English and
visually represented.

• Non-English Transcripts with Visuals: Videos whose
transcript content is mainly composed of non-English
languages but come with visual data.

This division enables a focused evaluation of the frame-
work’s performance across distinct language-specific scenar-
ios, considering both the availability and quality of transcript
data. The results for the T1 and T4 taxonomies, reflecting the
effectiveness of multimodal fusion under these conditions,
are reported in Tables 7 and 8

V. RESULT ANALYSIS AND DISCUSSION
This study assesses the efficiency of the proposed frame-
work by quantifying its ability to generate video explain-
able topics that can be mapped to content taxonomies.
These are highlighted in terms of semantic accuracy,
strength against noisy conditions, versatility across lan-
guages, and qualitative benchmarks against state-of-the-
art methods appealing for scalability and industrial-grade
implementation.

A. SEMANTIC ACCURACY IN VIDEO TOPIC MODELING
This reflects that the framework infers the topics of a video
in a semantically accurate way and maps them to content
taxonomies, as reflected by Tables 3 and 4.

1) TOP-LEVEL TAXONOMIES
From the two sets of evaluation configurations from the
topic modeling framework where either PaLM 2 [66] or T5-
Base [65] was used for topic labeling the performance is
greatly improved by combining transcript and visual inputs.
The highest F1-score and subset accuracy are 0.80 and
0.66, respectively, when using the PaLM 2-configured model.
Whereas the T5-base-configured model achieves an F1-score
of 0.76 and a subset accuracy of 0.54. The main contribution
seen here, particularly of large-parameter models such as
PaLM 2, tends to result in semantically richer and more
interpretable topic labels that lead to better overall framework
performance.

2) GRANULAR TAXONOMIES
At the level of more granular fine-grained distinction and
hence more challenging, results of the PaLM-2-configured
topic model are the F1-score at 0.61, subset accuracy
equal to 0.22; while slightly outperforming is T5-Base-
configured with scores 0.59 and 0.23 correspondingly. At this
level, performance decline is reflected by the fact that no
detailed topic representation exists in these models trained;
hence, further training over more fine-grained data is highly
required to have better coverage of topics. Besides, for
such a topic modeling task with high accuracy, one can
consider hierarchical topic modeling (HTM) [67]. HTM can
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TABLE 5. Top-level taxonomies inference results under noise conditions using pre-trained topic models configured with PaLM 2 and T5-Base.

TABLE 6. Granular-level taxonomies inference results under noise conditions using pre-trained topic models configured with PaLM 2 and T5-Base.

TABLE 7. Top-level taxonomies inference results using transcript language with pre-trained topic models configured with PaLM 2 and T5-Base.

TABLE 8. Granular-level taxonomies inference results using transcript language with pre-trained topic models configured with PaLM 2 and T5-Base.

allow finer grainedness and hence better granularity and
explainability.

Moreover, these results partly reflect the limitations
of using subset accuracy as a measure for multi-label
classification. This measure, since it represents only cases
where all the taxonomies are predicted correctly, does not
account for partially correct predictions, which results in the
subset accuracy generally assuming low values [59], [62].
This is particularly reflected in our results at themore difficult
granular level, where an exact match is often challenging to
get. The F1-score provides a better balance in evaluation for
these models.

B. ROBUSTNESS UNDER NOISY CONDITIONS
The robustness of the framework under different noisy
conditions, as shown in Tables 5 and 6, is crucial
for real-world applications where data quality is highly
variable.

1) TOP-LEVEL TAXONOMIES
On noisy visuals and clean transcripts, PaLM 2-configured
model achieves a F1-score of 0.75 compared with the
baseline score of the T5-base-configured model at 0.68.

Similarly, for noisy transcripts with clean visuals, the best
performance by the PaLM 2-configured model secures an F1-
score of 0.77 outperforming the T5-base-configured model
which performed at 0.71. In the most challenging case, both
transcripts and visuals are noisy the PaLM 2-configured
model achieves an F1-score of 0.53, showing that it can
maintain reasonable performance even when features are
severely limited and noisy. This is slightly better compared to
the T5-base-configured, which records an F1-score of 0.51 in
the same setting.

2) GRANULAR TAXONOMIES
Noise is most evident at the granular level, where fine-grained
differentiations are more sensitive to degradation in data.
It can be observed that for the noisiest condition, both noisy
transcripts and noisy visuals- PaLM 2-configured model
outperforms at 0.28 while the T5-base-configured model at
0.23 F1-score. The performance decline at this level reflects
not just the presence of noise but also that this will have a
ripple effect due to the unavailability of detailed topic rep-
resentations in the trained models, as discussed earlier. This
limitation is further influenced by the nature of YouTube-
8M videos, which are very short in duration, thus providing
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limited data for extracting detailed features under the given
short time span of the videos. However, since the framework’s
primary target is identifying ad opportunities, and real-world
ads are often positioned after longer content, this issue is
likely to be mitigated in real-world conditions, even at a
granular level. Despite the overall decrease in accuracy, the
framework retains reasonable inference capabilities, high-
lighting its resilience under the given short time span of the
videos.

C. MULTILINGUAL ADAPTABILITY
As shown in both Tables 7 and 8, the framework handles
multilingual input effectively by showing adaptability across
non-English transcripts in addition to English.

1) ENGLISH TRANSCRIPTS
The best F1-scores are obtained in the case of English
transcripts when supported by visuals, with up to 0.83 at
the top level, and 0.66 at the granular level, due to the
PaLM 2-configured model. These results reflect the inherent
optimization that this framework has undergone from primary
language, particularly English.

2) NON-ENGLISH TRANSCRIPTS
This demonstrate that it will handle non-English transcripts
well, yielding an F1-score of 0.79 at the top level and
0.59 at the granular level when using the PaLM 2-configured
model. Thus, the system works relatively well on the non-
English transcripts, which proves that this approach could be
more adaptable with regards to multilingual data with slight
degradation in performance.

D. GENERALIZATION ABILITY OF THE FRAMEWORK
Although the current study focuses on a smaller subset
of IAB Tech Lab’s content taxonomies, this subset effec-
tively illustrated the capabilities of the proposed approach.
Notably, the embedding-based approach of BERTopic applies
incremental training to integrate new topics [68] and
is therefore naturally scalable for real-world applications
where new taxonomies have to be inferred by incremental
topic modeling. This reduces the memory needed for
training a topic model. For instance, the tested method
could scale to cover the full spectrum of IAB Tech
Lab’s 700+ content taxonomies [69] by processing the
data in manageable batches. This scalability is achieved
by beginning with initial training on a baseline dataset
using the fit() method but supports partial_fit()
updates incrementally [70], thus allowing dynamic learning
without full retraining. It remembers previously learned
topics while refining or introducing new topics as the data
evolves.

Furthermore, for improved explainability of topics and
generation of descriptions, the inclusion of models such as
PaLM 2 shows reasonable performance gains over T5-Base,
while commercially available LLMs like OpenAI’s GPT-

4 hold even higher promise. While these high-parameter
LLMs are expensive to use for inference, our framework
restricts their usage to training time, making these inference
costs irrelevant for deployment. The approach that makes
effective use of such advanced LLMs during training is to
use the models saved by these in deployment to come up
with accurate and interpretable topic descriptions, improving
taxonomy inference without having to use commercial APIs
constantly.

Once the model is trained with fine tuned parameters,
the inference focuses on two important parameters: topic
probabilities pi,k from Equation (2) and cosine threshold θ

from Equation (4). Whereas lower taxonomy weights will
allow coverage for niche themes, higher weights will prior-
itize dominance of topics, hence precision. Similarly, lower
cosine thresholds widen the matching with diverse content
for wider matching. For instance, general video platform sets
lower weights and thresholds for broader coverage, while a
specialized provider might want to use higher thresholds for
more precision. In our experiments, setting both parameters
to 0.7 resulted in an approach that balanced good coverage
with reasonable confidence. This underlines the flexibility of
the framework to adapt-from general platforms to providers
focused on niches-which shows scalability in real-world
effectiveness.

E. COMPUTATIONAL EFFICIENCY DURING INFERENCE
Because the platform can be extended to process the
videos in batches, rather than taking the whole video as
an input and analyzing it, the computational demands for
the inference of long-form video content are minimal.
Section V-G discusses this further in detail. This aligns
seamlessly with the requirements for ad placements since,
on video platforms, ads are placedwith a structured frequency
to maintain reasonable time blocks. These blocks can be
analyzed independently; hence, computational overheads
will be reduced and efficiency enhanced. Also, a platform
component selection method opted for this purpose provides
its full support while maintaining accuracy uncompromised.
We adopt the multilingual variant of MiniLM [52] for
transcripts, which has a lightweight architecture that ensures
computational efficiency [52]. Its latency is significantly
reduced compared to BERT and mBERT, while still yielding
robust performance for multilingual semantic tasks in terms
of bi-text retrieval [52]. For keyframes, we adopt the CLIP-
ViT-B/32 model for strong performance balanced with speed.
Further, recent improvements, such as Distill-ViT-B/32, have
offered improved embedding efficiency using significantly
fewer resources [71], althoughwe have not applied this model
yet; this might be a promising direction for future work.
In the direction of model inference efficiency, serialization of
a topic model by the safetensors [72] format minimizesmodel
load times while ensuring safety upon deployment [73].
The experiments were conducted on an AWS SageMaker
notebook instance of type ml.t3.xlarge, which has
4 vCPUs and 16 GB of memory. This setup was good enough
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TABLE 9. Qualitative comparison of semantic analysis components.
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FIGURE 6. Evolution of content taxonomy over time in the video.

to perform inference on a 7-minute video for about 3-5
seconds of processing time.

However, Conventional feature extraction from videos,
keyframe generation, and transcription are computation-
ally costly tasks. Hence, our optimization in keyframe
generation includes the selection of unique frames with
a given threshold of similarity 0.45, while our choice is
Whisper [57], a lightweight yet accurate multilingual ASR
model. These optimizations streamlined the preparation of
the input through a reduction in size and complexity of the
data and thus allow for efficient and scalable inference at
minimal computational costs.

F. CONCEPTUAL COMPARISON OF SEMANTIC ANALYSIS
METHODS FOR CONTEXTUAL ADVERTISING
This section provides a conceptual comparison of the
proposed framework against past works in contextual adver-
tising. In order for the comparative analysis to be useful,
attention has been restricted to purely semantic-related
analysis components of the selected past works, given their
direct linkage with the aims of the study. Other factors,
such as sentiment analysis or additional auxiliary features
considered in prior studies, are outside the scope of this
comparison.

The key aspects of semantic understanding, including
robustness to noise, explainability, scalability, and multilin-
gual capability, are analyzed conceptually and illustrated in
Table 9. These aspects are critical to the proposed frame-
work’s ability to deliver explainable, industry-compliant,
and globally adaptable contextual advertising solutions.
By comparing these elements conceptually, the analysis
demonstrates how the proposed approach advances the state-
of-the-art methodologies in semantic analysis for contextual
advertising.

G. BROADER FOCUS OF UPCOMING STUDIES
The explainable video topics for content taxonomy frame-
work opens up avenues for a refined contextual advertising
solution for long-range videos. By effectively tracking
content taxonomies over time, advertisers can dynamically
align advertisements with evolving video themes. To address
a key challenge in long-form video analysis specifically topic
drift where themes evolve or shift over time the framework
segments videos into smaller, time-bound units. The initial
experiment illustrates that the method of segmentation pre-
serves the coherence of the topic within segments and support
the topic drift in longer videos. Furthermore, this strategy
aligns with the computational optimizations discussed in V-E,
enhancing scalability and efficiency while allowing dynamic
adaptation to evolving content.

1) FEASIBILITY SETUP AND INITIAL FINDINGS
Consider a video Xi with the audio transcript Ai, consisting
of a sequence of phrases {p1, p2, . . . , pm} along with their
respective start time codes {start1, start2, . . . , startm} and
end time codes {end1, end2, . . . , endm}, as well as keyframes
{k1, k2, . . . , kn} extracted at specific time intervals within
the video. Each keyframe is associated with a timestamp
{time1, time2, . . . , timen} that correspond to significant visual
content changes in the video.

Video Xi is segmented into several defined time
intervals{G1,G2, . . . ,Gx}, where each group Gi represents
part of the transcript and the associated keyframes cor-
responding to the time bounds of that group. For each
group Gi, the transcript and keyframes {pi1, pi2, . . . , pij} and
{ki1, ki2, . . . , kik}, respectively, were analyzed.

Prediction: The evolution of taxonomies across the seg-
mented groups within the video is represented by

{G1 : [µ11T11, µ12T12, . . . , µ1pT1p],
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G2 : [µ21T21, µ22T22, . . . , µ2pT2p],

. . . ,

Gx : [µx1Tx1, µx2Tx2, . . . , µxpTxp]} (11)

where:
• Gi represents each segment of the video.
• Tij is a specific taxonomy identified within group Gi.
• µij is the multiplier indicating the frequency and
relevance of taxonomy Tij within that specific group.

Thus, the variation of certain taxonomies over a video
were mapped to view the thematic progression dynami-
cally. To illustrate the extension of the framework, it is
applied to theYouTube ‘‘https://www.youtube.com/watch?v=
eIcnvKLdxLU’’ to identify topics evolving in it. The output
generated by the taxonomy over time is depicted in Figure 6.

Although these results showed Figure 6 that dynamic
taxonomy retrieval was feasible across videos, some areas
had more room for improvement. Further video segmentation
techniques should be explored in finding logical boundaries
without using a fixed time interval, as performed in this fea-
sibility study, for more effective execution. These will incor-
porate topic transitions and topic-aware sentiment analysis to
attain accuracy and relevance for the Taxonomies. Moreover,
future research may test these finalized methodologies on
long-range video datasets, because a dataset similar to
YouTube-8M is incomplete in capturing complexities for a
long-range video dataset.

VI. CONCLUSION
This study proposed a novel framework for the multimodal
retrieval approach to industrially compliant contextual adver-
tising through the use of state-of-the-art NLP and multimodal
analysis techniques. Transformer-based models, particularly
the BERTopic and language models, enable the achievement
of video representations aligned with content taxonomies for
targeted and relevant advertisements in a privacy-compliant
manner. Our methodology will be particularly effective for
noisy, multilingual, user-generated content and offer a highly
scalable solution for the advertising industry. It will be
an increasingly relevant solution as the demand for AVoD
services continues to grow, and with traditional behavior-
based targeting becoming less effective because of changing
privacy regulations. This research contributes to the field
of digital marketing by an advancement in techniques of
programmatic advertising and hence provides a scalable
means of improving ad relevancy, user engagement, and total
effectiveness on video platforms.

Building on this research, enhancements in the dynamic
tracking of taxonomy changes over time would be a good
avenue for future work. Such a development would address
one of the most important demands in programmatic adver-
tising: precise ad alignment in the evolution of video content.
To this end, refining video segmentation techniques to capture
logical content boundaries dynamically is a promising
direction. This can be taken further by adding topic-aware
sentiment analysis to provide even richer contextual insight

into the thematic and emotional subtleties of video content.
These efforts go toward making contextual advertising
scalable, accurate, and flexible in driving superior user
engagement and overall efficiency across video platforms.
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