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Abstract
This paper proposes and presents the first experimental demonstration of a high‐
precision indoor 2D and 3D visible light positioning (VLP) system using an imaging
multiple‐input multiple‐output (MIMO) configuration with supervised artificial neural
network. The proposed system utilises four distributed transmitters and receiver with four
photodiodes and an imaging optics. The experiments are conducted in a typical indoor
environment with transmitter separations of 300 mm and a link distance of 1400 mm.
The experimental results show 2D and 3D positioning accuracies of 3.7 and 51 mm,
respectively. A simulation model is also developed for the VLP system to validate the
experimental results. Further optimisation of the VLP system in the simulation platform
leads to improved 2D and 3D positioning accuracies of 2 and 14.7 mm, respectively. The
proposed system can be seamlessly integrated with existing lighting infrastructures and is
also compatible with the MIMO visible light communication system, indicating the po-
tential for practical implementation in integrated communications and positioning
applications.
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1 | INTRODUCTION

Over the past decade, visible light communication (VLC) has
emerged as a complementary technology to traditional radio
frequency (RF)‐based wireless communications for high‐speed
access networks. VLC leverages existing solid‐state lighting
infrastructure for high‐speed wireless communication, thus
offering advantages such as unlicensed spectrum operation,
low power consumption, and cost‐effective implementation
[1]. Thus, VLC is expected to play a key role in upcoming 6G

networks, demonstrating high‐speed transmission capabilities
for aerial, submarine, and indoor networks and compatibility
with various communication systems [2]. Among its many
applications, indoor and outdoor visible light positioning
(VLP) and navigation are promising areas.

Positioning technologies have recently attracted significant
attention due to their applications in wide‐ranging monitoring,
surveillance, or tracking. Compared to RF positioning tech-
nologies, VLP offers unique advantages of high‐accuracy due
to shorter wavelengths and less sensitivity to multipath
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propagation, zero electromagnetic interference (EMI), and dual
functionalities of illumination and positioning [1].

VLP systems utilise photodiodes (PDs) or image sensors
(IS) receivers to provide indoor positioning solutions. PD‐
based VLP systems offer advantages such as fast response
times, compatibility with communications, and suitability for
real‐time applications and varying lighting conditions. Existing
VLP techniques can be classified into two main categories:
distance‐based and distance‐free [3, 4]. Distance‐based tech-
niques include the use of received signal strength (RSS) to
estimate the distance between the receiver (Rx) and the
transmitter (Tx) [5]. Other distance‐based techniques employ
time of arrival (TOA) [6] and time difference of arrival
(TDOA) [7]; both require precise synchronisation between
transmitters and receivers, resulting in increased system
complexity. Furthermore, angle of arrival‐(AOA)based tech-
niques require diversified angles and a relatively large number
of receiver devices to operate effectively [8]. Distance‐free
techniques are independent of geometric distance measure-
ments but often require more complex hardware and config-
uration. One commonly adopted distance‐free technique uses
RSS values as fingerprint features for indoor positioning [9].

In contrast to PD‐based VLP systems, IS‐based VLP
systems capture the images of the modulated intensity of LED
luminaires and subsequently process them using image pro-
cessing algorithms to estimate the position [10]. Most of these
systems rely on complementary metal oxide semiconductor
(CMOS) IS, which consists of a dense pixel grid optimised for
capturing images This architecture enables the extraction of
detailed features, the improvement in interference rejection,
and the mitigation of multipath reflections [11]. In contrast
with CMOS‐based IS, the imaging multiple‐input multiple‐
output (MIMO) receiver employed in this work is based on
an array of PDs combined with a lens system designed for
high‐speed communications and positioning. Furthermore,
cameras are extensively incorporated into consumer devices,
such as smartphones, enabling VLP systems to use existing
hardware. However, these systems face inherent challenges for
achieving high‐speed communication due to frame rates con-
straints. While the techniques such as rolling shutter, associated
with complementary metal‐oxide‐semiconductor (CMOS)
sensor, can enhance data transmission rates, they remain
constrained by factors such as the exposure time and electronic
components used for signal processing. Furthermore, the
number of symbols observed at the receiver is also influenced
by the resolution of the image sensor, pixel clock, exposure
time, and the size of the region of interest. These limitations,
typically transmission speeds, are restricted to several kbps to a
few Mbps [12], making such systems less suitable for high‐
speed communications and in certain scenarios.

Advanced solutions for improving VLP accuracy have
been proposed based on machine learning and deep learning
(ML/DL), that is, linear or higher‐order regression [13].
Various algorithms, such as K‐nearest neighbour (KNN),
support vector machine, and artificial neural network (ANN)
[14], are showcasing promising outcomes and achieving mm
levels of accuracy. These techniques are often used in

fingerprint‐based systems, where a database of RSS values and
their corresponding coordinates is pre‐collected. ANNs, for
instance, are using offline fingerprint data. Once trained,
ANNs can accurately predict a user's location in real‐time
based on new RSS measurements. The multi‐layer percep-
tron (MLP) network, often configured with a single hidden
layer, is a commonly chosen ANN architecture for conducting
localisation tasks [15, 16].

The spatial diversity provided by multiple PDs improves
the robustness of the positioning system against obstacles and
interference, which are common challenges in indoor envi-
ronments [17]. Moreover, the use of multiple PDs improves
positioning accuracy, as detailed in Table 1. For example, tilted
PDs were proposed to improve the accuracy of VLP systems
[18], where a localisation error of 35 mm was obtained.
Furthermore, a ML technique is combined with multiple de-
tectors to provide higher accuracy. In ref. [19], four PDs and
RSS‐based fingerprinting with a weighted K‐nearest neighbour
(WkNN) algorithm were employed to demonstrate positioning
errors of 8.3 and 20.45 mm with four and two luminaires,
respectively. AVLP system based on a single LED and multiple
silicon solar cells employing AOA and a long short‐term
memory neural network model has achieved an average posi-
tioning error of 17.8 mm, and 90% of the experimental data
had a positioning error less than 29 mm [20]. Systems utilising
angular diversity photodetectors or silicon solar cells prioritise
the accuracy of positioning over the performance of commu-
nication. A theoretical approach based on 16 LED lamps and a
grid of 361 receivers with three ANNs to estimate 3D posi-
tioning from RSS has achieved an average positioning error of
0.4 mm [21]. In ref. [22], a VLP system based on four evenly
distributed LED emitters and a MLP achieved 2D positioning
root‐mean‐square (RMS) errors of 10.3 and 13.3 mm for LOS
and non‐LOS links, and 3D localisation error of 19.8 and
21 mm. In ref. [23], the authors propose a deep residual
shrinkage network with a single LED and 4‐PDs, achieving
90% of positioning errors below 23.5 mm in simulations and
below 100 mm in experiments.

The LiFi‐based integrated communication and positioning
paradigm is expected to be a key technology for 6G networks
[24]. In VLC/LiFi technologies, numerous studies have shown
high‐speed communications utilising MIMO configurations
and accurate VLP positioning facilitated by a distributed illu-
mination infrastructure [25]. The optical MIMO receiver can
be realised using imaging and non‐imaging configurations [26].
Imaging MIMO systems are preferred over non‐imaging
MIMO configurations due to enhanced data rate scalability,
compactness, and a well‐conditioned channel H‐matrix [26,
27]. These features not only improve communication perfor-
mance but also make imaging MIMO systems particularly
suited for dual functionality in communication and positioning
applications. However, to the best of the authors' knowledge,
there has been no previously published work demonstrating
imaging MIMO configurations for highly accurate VLP. This
paper is the first attempt to showcase highly accurate 2D/3D
VLP using imaging MIMO setups. While this paper primarily
focuses on proof‐of‐concept demonstrations of VLP using
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such configurations, the overarching objective is to exhibit
integrated communications and positioning in future iterations.

Hence, the novelty and original contributions of this paper
are as follows:

� To the best of the authors' knowledge, this is the first
experimental demonstration and simulation study of imag-
ing optical MIMO configuration for 2D/3D positioning.
Furthermore, this is the first study of utilising the supervised
ANN with imaging MIMO for VLP.

� This paper provides a study of the impact of defocusing the
lens at the receiver on VLP performance; clearly demon-
strating the trade‐off between the field of view (FOV) and
positioning accuracy.

� This is the first experimental demonstration to verify the
improved 2D and 3D positioning accuracy due to imaging
spatial diversity provided by multiple PDs.

� This work demonstrates the potential of imaging MIMO
VLP configuration for integrated sensing and communica-
tion applications, aligning with future 6G network
requirements.

The subsequent sections of this work are organised as
follows: Section 2 provides a detailed description of the pro-
posed VLC positioning system, including the experimental
setup and the signal processing for the ANN algorithm. Sec-
tion 3 presents the results obtained from both laboratory
measurements and simulations evaluating the accuracy of the
2D/3D positioning system. Finally, Section 4 presents the

conclusions of this work by summarising the feasibility and
accuracy of the proposed 2D/3D VLP system and identifying
the main challenges for further research.

2 | SYSTEM DESCRIPTION AND
EXPERIMENTAL SETUP

Figure 1a depicts the experimental setup of the proposed VLP
system, including the Tx and Rx configurations, the signal
processing procedure at the Rx, and position estimation based
on ANN, which will be described in detail in this section. The
experimental parameters are summarised in Table 2. Similar to
imaging MIMO‐VLC systems [28, 29], the proposed VLP
system employs a 4 � 4 imaging MIMO configuration that
utilises white LEDs as Txs and an Rx with a PD array, and
imaging optics.

2.1 | Transmitter

The VLP system utilises four symmetrically distributed Txs,
spaced 300 mm apart, serving as illumination sources and
signal transmitters for position estimation. Each transmitter
comprises an LED (Samsung LM561C) and a reflector (LEDiL
EMILY‐W), producing a 40° beam divergence. The LED
operates with an average bias current of 75 mA, creating a
luminous flux of 46 lumens. Modulating signals are generated
by four arbitrary waveform generators (AWGs), whose outputs

TABLE 1 Key experimental parameters for the imaging VLP system overview of diversity receiver‐based VLP systems and original contribution of the
proposed work.

Reference/
year Technique Type of study

Number
of Txs

Number
of PDs

Room dimensions
(mm £ mm £ mm)
L £ W £ H 3D

Compatible with
communications

Accuracy
@90% CDF

[17], 2018 RSS Simulation 1 4 3000 � 3000 � 1250 No No 35.0 mm

[18], 2021 RSS fingerprinting with
fabricated data and ML

Experimental 4 4 1200 � 1200 � 1600 No No 8.3 mm

[19], 2022 AOA with LSTMNN Experimental 1 4 400 � 400 No No 29.0 mm

[20], 2018 Three different ANNs
(one for each axis)

Simulation 16 361
(19 �19)

4000 � 4000 � 3000 Yes No 0.4 mm

[21], 2022 RSS fingerprinting
(ML) ANN

Simulation 4 1–4 5000 � 5000 � 5000 Yes No 19.8 mm
(LOS‐3D)

10.3 mm
(LOS‐2D)

[22], 2024 Deep residual shrinkage
network (DRSN)

Experimental &
simulation

1 4 3600 � 3600 � 3000 Yes No 23.5 mm
(simulation)

100 mm
(experimental)

Our work RSS fingerprinting MLP‐
ANN with imaging
receiver

Experimental &
simulation

4 4 410 � 410 Yes Yes 3.7 mm/51 mm
(2D/3D,
experimental)

540 � 540 � 120 2 mm/14. 7 mm
(2D/3D,
simulation)
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are converted into unipolar signals adding DC voltages using
bias‐Tees (MINI‐CIRCUITS, ZFBT‐4R2GW‐FTþ). Thus, a
non‐negative amplitude of the signal is ensured to modulate
the intensity of each LED.

2.2 | Receiver

The imaging MIMO VLP configuration employs a plano‐
convex aspheric singlet lens (THORLABS, ACL2520U) with
a 25 mm diameter and a 20.1 mm focal length as the imaging
optics. A PD array with four individually addressable elements
is used as the Rx, as shown in Figure 1. As stated in ref. [30],
the FoV can be improved by defocusing (i.e. placing receivers
at the offset distance ( foffset) towards the lens from the focal
plane) instead of placing the receiver at the focal plane. Then,
the receiver can achieve a wider FoV to support improved
localisation while maintaining a sufficient signal‐to‐noise ratio
(SNR) for a reliable positioning operation. Hence, we utilised
the focal offset ( foffset) of 4 mm, providing a FoV of 37.5°,
which closely matches the transmitter beam divergence of 40°.
The signal output from each PD is independently amplified by
a trans‐impedance amplifier (TIA) (MAX3665) followed by a
low‐noise amplifier (LNA) with a 20‐dB gain (MINI‐CIR-
CUITS, ZFL‐1000LNþ). A 4‐channel digital oscilloscope
captures the signal, with each channel corresponding to each

amplified PD output, followed by offline processing. The
maximum SNR in our setup is measured as 51.9 dB.

2.3 | VLP channel

For the MIMO configuration with NTx transmitters and MRx
receivers, the received signal can be calculated as follows:

S¼HXþ n; ð1Þ

where H is the NTx � MRx channel matrix; X is the NTx � 1
transmitted signal vector; n is the MRx � 1 noise vector and S
is the MRx � 1 received signal vector. Note that for the im-
aging optical MIMO communication system, MRx ≥ NTx.

F I GURE 1 Multi‐PD visible light positioning system with an imaging
receiver: (a) schematic diagram; (b) photograph of the laboratory setup. The
insets show the geometrical distribution of the transmitters and receivers.

TABLE 2 Key experimental parameters for the imaging VLP system.

Parameter Value

LED SAMSUNG LM561C

Bias current Ib 75 mA

Bias voltage VDC 3.3 V

Flux 43 lm @75 mA

Reflector LEDiL CA11934_EMILY‐W

External diameter Ø 26 mm

FWHM 40°

RX lens Thorlabs ACL2520U‐A

Diameter Ø25 mm

Focal length fc 20.1 mm

Back focal length fb 12mm

PD First sensor QP5.8‐6‐TO5

Number of elements 4

Active area of
each PD

1.44 mm2

Responsivity 0.4 A/W @632 nm

Element gap 50 µm

Amplifier Mini‐circuits ZFL‐1000LNþ

Gain 19.9 dB

Noise Figure 2.9 dB

General

Discrete frequencies 200, 400, 600, and 800 kHz

No. of
transmitters, MTx

4

No. of
receivers, NRx

4

2D Test area 410 � 410 mm2

Link distance 1400 mm

3D Test volume 540 � 540 � 120 mm3

Link distance 1280–1400 mm
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However, such a requirement is not necessary for the VLP‐
only applications, though a higher number of Rx improves
the positioning accuracy, as detailed in Section 3. The channel
gain from each Tx to each Rx, known as the channelH‐matrix,
is given by

H¼

2

6
6
4

h11 h12
h21 h22

⋯ h1NTx

… h2NTx

⋮ ⋮
hMRx1 hMRx2

⋱ ⋮
… hMRxNTx

3

7
7
5; ð2Þ

where hij is the channel gain from the jth transmitter to the ith
receiver element. For the line‐of‐sight (LOS) link with Lam-
bertian emission, the channel gain from the jth transmitter to
ith receiver is given by

where m ¼ − 1
log2 ðcos Φ1=2Þ

is the Lambertian order, APD is the

active area of the photodiode, dij is the distance between the
transmitter and the receiver, ϕij is the radiance angle of the
transmitter, ψ ij is the angle of incidence with respect to the axis
normal to the receiver surface, Ts is the filter transmission
coefficient, and g and ψFOV are the concentrator gain and
FOV, respectively. The optical concentrator gain at the receiver
is given by

g
�

ψ ij

�
¼

8
><

>:

n2

sin2ψ ij
0 ≤ ψ ij ≤ ψFOV ;

0 Otherwise:

ð4Þ

where n2 is the refractive index of the optical concentrator.
The channel gain information is related to RSS and can be used
for positioning estimation. In line with other experimental
VLP work [13], we have employed frequency division multi-
plexing (FDM) with four discrete frequencies to distinguish the
signals from individual LEDs instead of time division multi-
plexing (TDM), where a low‐frequency sinusoid signal is
transmitted in a time sequence from each transmitter [28].Such
frequencies generated by AWGs ensure that each transmitter is
uniquely identified, enabling their effective separation during
pre‐processing. The amplified photodiode signals are captured
using an oscilloscope and sent to MATLAB, where fast Fourier
transform (FFT) is applied to decompose the composite signal
and extract the individual RSS values. The FFT is applied to

the received signal to compute the RSS corresponding to each
transmitter. This operation is necessary to separate the FDM
signals from multiple transmitters and prepare the inputs to the
ANN for further processing.

2.4 | Artificial neural network model

As shown in Figure 2, a fully connected feedforward back-
propagation supervised MLP ANN with one input layer, one
hidden layer, and one output layer is implemented for 2D/3D
positioning estimation. The number of neurons in the input
layer equals MRx � NTx corresponding to the channel H‐
matrix for a particular position in Equation (2). The output
layer has a linear transfer function with two/three neurons
corresponding to 2D/3D positioning, respectively. A detailed

description of the ANN structure and corresponding training
algorithm, including the optimisation process for the hidden
layer, can be found in ref. [22]. Based on the optimisation, the
hidden layer has 32 neurons with a sigmoid transfer function.
The sigmoid transfer function is selected for its capacity to
introduce non‐linearities into the model, enabling the network
to learn from the training data. The dataset used to train the
ANN containing different RSS matrices paired with their
corresponding positions is used to train the ANN, which
jointly represents the spatial distribution of RSS and their
variations due to the relative positions of the transmitters and
receivers. During training, the network adjusts its weights to
minimise errors between the estimated and actual positions.
This is achieved by backpropagation, where the error gradient
is propagated backward through the network, allowing the
optimisation of the neural network parameters [31]. While
various algorithms can be used with backpropagation to update
the weights and biases of the MLP‐ANN, we specifically use
the Levenberg–Marquardt algorithm due to its superior
convergence speed and minimal epoch requirements compared
to alternative methods [32].

3 | RESULTS AND DISCUSSION

3.1 | Experimental results

The experiment aimed to evaluate the accuracy of the proposed
2D/3D positioning system by conducting measurements

hij ¼

8
><

>:

ðmþ 1ÞAPD

2πd2ij
cosm

�
∅ij
�
Ts

�
ψ ij

�
g
�

ψ ij

�
cos
�

ψ ij

�
0 ≤ ψ ij ≤ ψFOV

0 Otherwise:

ð3Þ
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within the predefined areas. The important experimental pa-
rameters are summarised in Table 2.

3.1.1 | 2D VLP

A grid of 2D points with a geometric spacing of 15 mm was
created to evaluate the positioning accuracy. This geometric
spacing was chosen to balance a detailed spatial analysis with
the practical constraints of measurement time. Hence, by
measurements, we collected 784 points within a
410 � 410 mm2 area and a distance between the ceiling and
the detector plane fixed at 1400 mm. The area under the test
is chosen to have a representative coverage for the proof‐of‐
concept demonstrations while still keeping a reasonable
amount of data for training and testing. The system was
evaluated based on the geometrical error's cumulative distri-
bution function (CDF). Unless otherwise specified, we will
use a CDF of 0.9 to specify the positioning error throughout
the paper.

Figure 3a shows the empirical CDF of the positioning
error for different numbers of ANN training data. Note that
training is performed offline before the VLP system oper-
ation, so no real‐time constraints are imposed in the pro-
posed approach. Training ANN with 80% of the dataset
(627 points) resulted in a positioning error of 3.7 mm.
Conversely, reducing the number of training data to 60%,
40%, and 20% of the dataset resulted in positioning errors
of 4.9 mm, 12.6 mm, and 31.6 mm, respectively. Figures 3b,
c present the spatial distributions of errors across the test
area. The figures compare the actual locations (denoted by
crosses) with the locations estimated by the proposed system
(represented by points). In Figure 3b, 627 training points
were employed, and a smaller spread of the estimated po-
sitions around the actual positions is observed, indicating a
higher overall positioning accuracy. In comparison, Figure 3c
shows the results when 157 training points were used,
representing 20% of the dataset. This figure shows a sparser
distribution of estimated positions, reflecting the degradation
in system performance due to the smaller training dataset
size.

3.1.2 | 3D VLP

To assess the 3D positioning accuracy, measurements were
conducted within a 540 � 540 � 120 mm³ volume to validate
the proposed system as a proof‐of‐concept. The link distance
of 1400 mm was considered as the base and was varied by
moving the detector plane up to 120 mm closer to the ceiling
(i.e. the transmitter–receiver distance ranged from 1400 to
1280 mm). The grid is structured by points spaced 30 mm
apart, with 361 points for each 2D plane and five different
vertical levels, that is, five 2D planes spaced 30 mm apart. The
dataset comprises 1805 measurement points, 80% of which
were used to train the ANN, and the remaining 20% were used
to test and validate the algorithm.

Figure 4 shows the geometric error in the x‐, y‐ and z‐
planes, as well as the combined 3D error, for both experi-
mental (dashed lines) and simulation results (solid lines). The
positioning accuracies in the x‐ and y‐planes are comparable,
where the error is close to 15 mm. As expected, the accuracy in
x‐ and y‐planes is similar to the value in 2D positioning ex-
periments presented in Figure 3 for a similar number of
training points (314). In contrast, the z‐plane has a significantly
higher error of ~51 mm. This difference in error between the
dimensions is due to the reduced number of training points in
the z‐plane, which results in lower positioning accuracy. The
inset in Figure 4 visually compares 30 test points (crosses) and
the estimated positions (dots) in that plane.

3.1.3 | Impact of number of receivers

Figure 5 demonstrates the impact of the receiver diversity on
the accuracy of 2D and 3D positioning. In the case of 2D
positioning, the positioning errors are 30 mm, 6 mm, 5 mm,

F I GURE 2 Schematic diagram of artificial neural network model for
visible light positioning.

F I GURE 3 (a) Cumulative distribution function of geometrical error
of the proposed 2D visible light positioning system using different numbers
of training points. Location of the measured and estimated points by the
artificial neural network algorithm using different numbers of points:
(b) 627 and (c) 157.
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and 3.7 mm for one, two, three, and four PDs, respectively (see
Figure 5a). Similarly, Figure 5b shows that the 3D positioning
errors are 78 mm, 61 mm, 60 mm, and 51 mm for one, two,
three, and four PDs, respectively. This clearly illustrates the
advantage of a PD array receiver system with imaging optics in
enhancing positioning accuracy. We anticipate further en-
hancements in 3D positioning by increasing the number of
training points along the z‐plane, as shown in the following
section.

3.2 | Simulation results

The ZEMAX OpticStudio software is employed to verify and
further extend the experimental results. The simulation

scenarios replicate the experimental configurations and com-
ponents described in the previous section, whereas optical
powers and shot noise are adjusted to match the laboratory
measurement conditions. As described in ref. [29], there is
gain‐FoV trade‐off, and hence the imaging optics system was
optimised by varying foffset, that is, distance of the lens from its
focal point towards the detectors to modify the size of the
image formed at the receiver and to study the impact on
positioning accuracy.

Figure 6a presents the CDF of the positioning error of the
2D‐VLP system for foffset ranging from 0 to 6 mm. As in the
case of experimental work, 80% of the dataset is used to train
the ANN, and the remaining 20% is used for testing. The solid
line represents the CDF obtained from laboratory measure-
ments, showing excellent agreement with simulation results,
with a positioning error of 3.7 mm at foffset = 4 mm. This
correspondence validates the accuracy of the simulation model
in replicating the experimental setup, allowing further exten-
sion of the experimental findings. The positioning error
initially decreases with increasing foffset, reaching a minimum
error of approximately 2.6 mm at foffset = 2 mm; beyond this
point, the error begins to increase. For instance, the posi-
tioning errors for foffset of 3 and 4 mm are ~2.9 and 3.5 mm,
respectively.

Figures 6b–d show the spatial distributions of the geo-
metric error for an offset of 4 mm, 2 mm, and 0 mm,
respectively. Figures 6b,c reveal a relatively uniform

F I GURE 4 Cumulative distribution function of geometrical error of
the proposed 3D visible light positioning system, including the detail of
individual x‐, y‐, and z‐plane in the 3D positioning. Solid lines represent the
simulation model. The inset shows the 3D scatter plot of the test and
estimated positioning points.

F I GURE 5 Cumulative distribution function of the geometrical error
of the proposed VLP system with different diversity orders NRx = 1–4 for:
(a) 2D VLP and (b) 3D VLP. VLP, visible light positioning.

F I GURE 6 (a) Cumulative distribution function of geometrical error
from simulations for different focal offsets between the lens and the
photodetectors (black curve corresponds to experimental results). Spatial
distribution of the geometrical error for: (b) foffset = 4 mm (c) foffset = 2 mm
and (d) foffset = 0 mm. The yellow circles represent the location of the four
transmitters.
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distribution of positioning errors across the measured area. In
contrast, Figure 6d corresponding to foffset = 0 mm shows a
notable variation in error distribution, with certain regions
exhibiting significantly higher errors, particularly in the centre.
These areas of increased error are due to lower received signal
intensity, as the image of Tx does not fall into any of the PDs
due to narrow FoV (discussed further below).

Figure 7 provides a further analysis of the imaging MIMO
VLP system. The simulation of the spatial intensity distribu-
tion (incoherent irradiance W/m2) depicts the received optical
intensity at the image plane. The red lines represent the PD
array in the image plane. The first row (Figures 7a–c) depicts
the images formed when the detector is located at the
geometrical centre formed by the transmitters. The second
row (Figures 7d–f) represents the images formed when the
receiver is positioned directly below one of the transmitters.
Each column represents a foffset of 4 mm, 2 and 0 mm (from
left to right). As observed, the focal offset significantly im-
pacts the spatial distribution of intensity. The clearest image is
formed when the receiver plane is at the focal point
( foffset = 0 mm). However, the images from the transmitters
are outside the PDs, significantly reducing the received power.
On the other hand, at foffset = 4 mm, the images formed
from the transmitters overlap significantly and are difficult to
distinguish (this overlap leads to substantial inter‐channel
interference, resulting in a higher condition number for the
MIMO H‐matrix). In contrast, foffset = 2 mm proves to be
the optimal configuration, showing a clearly separated image
from the four transmitters. Hence, as in the case of the im-
aging MIMO‐VLC system [31], the condition number of
channel H‐matrix affected the positioning accuracy, and
optimisation of the optic system is necessary to obtain the
best condition number.

Furthermore, the impact of SNR on the VLP performance
is shown in Figure 8, where the position accuracy has been
estimated for the best‐case configuration foffset = 2 mm under

an SNR range of 25–60 dB. As expected, the accuracy of the
system decreases as the SNR decreases. In particular, the ac-
curacy decreases from ~2 to ~16.9 mm when the maximum
SNR reduces from 60.9 to 25.9 dB. However, the SNR has
only a marginal impact on the positioning at high SNR, for
example, position accuracy decreases from 2 to 2.4 mm when
SNRs are 60.9 and 50.9 dB, respectively. The insets illustrate
the SNR distribution over the measurement area for a single
transmitter and a single PD from the array. Note the significant
drops in SNRs towards the edge of coverage areas.

Finally, simulations for 3D positioning were carried out in
an enlarged volume of 540 � 540 � 240 mm3 under the same
configuration as employed in the laboratory ( foffset = 4 mm)
for estimating the potential accuracy of the experimental 3D
positioning system with a larger number of dataset points. The
simulation grid is structured by points spaced 15 mm apart in
the horizontal and vertical dimensions. This configuration re-
sults in a total of 1369 points in each of the 2D planes. The
grid was divided vertically into 17 different levels (�120 mm
from the 2D level); thus, the simulation dataset comprises
23273 points for 3D. As in all other cases, 80% of the dataset
(18618) is used to train the ANN, and the remaining 20% is
used for testing (4655). Figure 9 displays the CDF of the 3D
positioning along the x‐, y‐ and z‐planes, as well as the com-
bined total positioning error.

The x‐ and y‐planes errors are similar and relatively low,
with positioning errors of ~5.9 mm. The z‐plane, on the other
hand, exhibits a greater error of 13.5 mm. The total 3D
positioning error, which combines the errors of all three axes,

F I GURE 7 Simulation of the image formed by the transmitters at the
detector plane for different foffset and different locations. First row: The
receiver is at the geometric centre of the four transmitters and foffset is
(a) 4 mm, (b) 2 mm, and (c) 0 mm. Second row: The receiver is located
directly under one of the transmitters and foffset is (d) 4 mm, (e) 2 mm, and
(f) 0 mm. The red lines represent the PD array of four elements at the
imaging plane.

F I GURE 8 Cumulative distribution function of the geometric error
from simulations with a configuration of foffset = 2 mm and 1513 dataset
points for different SNR = 60.9–25.9 dB. Insets show the SNR distribution
within the measurement area for one LED and one PD from the array for
the best‐case scenario of: (i) 60.9 dBm and (ii) 30.9 dBm.
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is 14.7 mm, which is significantly lower than the experimental
results of 51 mm. This improvement is due to the higher
density of training points in the z‐plane in the simulation,
which allows for a more accurate representation of the mea-
surement space and shows the potential of our approach for
further improvement under larger training schemes.

4 | CONCLUSIONS

This paper presents an experimental demonstration of a high‐
accuracy 2D and 3D VLP system using an optical imaging
MIMO system with supervised ANN. Experimental results
show the impact of the number of training points and the
spatial diversity on positioning accuracy, leading to 3.7 and
51 mm for 2D and 3D positioning accuracy, respectively.

The experimental work is validated and further extended
by simulations. The simulation results allow to estimate the
required number of training points and evaluate the impact of
the system noise. Furthermore, the study underscores the
critical role of optimising the imaging optics, particularly the
focal offset, in achieving high‐accuracy positioning. Using the
experimental parameters under an optimised system configu-
ration, the simulations results demonstrated a 2D positioning
error of 2.6 mm, that can be reduced to 2.0 mm with 10 dB
higher SNR. For 3D positioning, simulations employing
experimental parameters over an extended volume show an
error of 14.7 mm. Therefore, high‐accuracy 2D/3D posi-
tioning has been demonstrated in a scalable imaging MIMO
configuration as a promising solution for integrated posi-
tioning and communications applications. These advantages
lead to the proposed VLP imaging MIMO system as a
promising solution for future 6G networks requiring high‐
precision indoor positioning capabilities.
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