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Scientific Significance Statement

The productivity–biodiversity relationship (PBR) is highly controversial, yet insights into marine microzooplankton under
varying anthropogenic nutrient inputs have been limited. We verified that PBRs varied across contrasting levels of anthropo-
genic nutrient input, and high productivity promoted greater diversity under low to medium levels than under high levels of
anthropogenic nutrient input. Compared to conventional species richness, functional and phylogenetic diversity respond
more quickly to nutrient changes and differently to productivity in both long-term and monthly trends, which deliver more
information on PBRs and the underlying ecological processes. We also empirically addressed the previous concern regarding
methodological inconsistencies in the meta-analysis of PBRs, providing one of the first consistent observational datasets on
PBRs in marine unicellular secondary producers. Our study contributes to a comprehensive understanding of PBRs in
microzooplankton under contrasting anthropogenic nutrient input conditions.

Abstract
Although the productivity–biodiversity relationship (PBR) has been a hot topic, few studies have considered
how anthropogenic pressures affect PBRs in marine microzooplankton. Here, we provide the first insights into
PBRs in tintinnid assemblages using 18-yr data from Jiaozhou Bay, a typical coastal bay in the Yellow Sea. We
hypothesized and verified that PBRs vary across contrasting anthropogenic nutrient inputs and that functional
and phylogenetic diversity would deliver more information than conventional species richness. High productiv-
ity promotes more diversity under low to medium rather than high anthropogenic nutrient inputs. Compared
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to species richness, functional and phylogenetic diversity reveal more PBR patterns and respond more quickly
in response to varying anthropogenic inputs. A concave+ PBR is revealed for functional diversity in the ecozone
with highly active water exchange. Our study contributes to the understanding of PBR in marine unicellular
secondary producers and their responses to anthropogenic nutrient inputs in coastal ecosystems.

The productivity–biodiversity relationship (PBR) has been
highly controversial over the past few decades (Whittaker
2010; Adler et al. 2011; Willig 2011; Grace et al. 2016; Brun
et al. 2019). Five general patterns of PBRs have been distilled,
including increasing (positive), humped (unimodal, con-
cave�), decreasing (negative), U-shaped (concave+), and no
relationship; however, these patterns, along with their causal
processes, face critique (Gillman and Wright 2006; Whitta-
ker 2010). Meta-analyses have been employed to discern the
mechanisms underlying these patterns (Mittelbach et al.
2001; Gillman and Wright 2006), but they have raised new
problems such as methodological inconsistencies, generating
highly divergent outcomes, inconsistent classification of data
sets, and mega-mistakes from one meta-analysis to the next
(Whittaker 2010).

Biodiversity encompasses multiple attributes such as taxo-
nomic, phylogenetic, and functional diversities, which may
have contrasting effects on productivity (Naeem et al. 2016;
Le Bagousse-Pinguet et al. 2019). Conventional biodiversity
indices (e.g., species richness and Shannon index) without
considering species similarity may lead to suspicion about
their ecological significance, as species differ in their func-
tions and ecological strategies (Stirling 2007; Leinster and
Cobbold 2012). The niches and competitive abilities of spe-
cies within a community are often reflected in functional
and phylogenetic differences, suggesting that functional
and phylogenetic diversity may provide a deeper under-
standing of PBRs (Mayfield and Levine 2010; Brun
et al. 2019). These dimensions of biodiversity can reveal
underlying ecological processes, such as environmental fil-
tering, competitive exclusion, and evolutionary context
(Mayfield and Levine 2010; Brun et al. 2019), as well as
responses to nutrient availability and anthropogenic inputs
(Prowe et al. 2012; Gamfeldt et al. 2015; Lehtinen
et al. 2017), and further support the biodiversity–ecosystem
multifunctionality relationship (Flynn et al. 2011; Naeem
et al. 2016; Le Bagousse-Pinguet et al. 2019).

Most previous PBR studies have focused on terrestrial mac-
roorganisms, especially multicellular plants, that is, primary
producers (e.g., Adler et al. 2011; Willig 2011; Grace
et al. 2016; Brun et al. 2019), whereas data on vast marine
unicellular plankton remain limited (e.g., Irigoien et al. 2004;
Witman et al. 2008). For marine phytoplankton, there is less
data available, but a few large-scale studies also suggest that
humped PBRs, with maximum diversity occurring at interme-
diate productivity levels (Li 2002; Irigoien et al. 2004;
Smith 2007; Vallina et al. 2014), exhibit significant spatial
and temporal variation and relate to nutrient availability

(Vadrucci et al. 2003; Lehtinen et al. 2017) or in some cases,
show no relationship (Cermeño et al. 2013).

In contrast, current knowledge regarding the PBRs for
microzooplankton (20–200 μm in size) remains limited. As the
main consumers of marine primary production, microzo-
oplankton can grow and reproduce rapidly, may respond more
quickly to environmental changes, and are better coupled to
ecological processes than slow-responding metazoans (Calbet
and Landry 2004). However, PBRs of microzooplankton remain
hitherto unexplored and highly fragmentary and are mainly
based on meta-analyses and sensitive to heterogeneous datasets
(Irigoien et al. 2004; Ibarbalz et al. 2019). As a model of plank-
ton ecology, tintinnids are an ideal tool for microzooplankton
to explore PBRs with functional and phylogenetic diversity,
attributed to their loricae, which are of taxonomic significance
and related to ecological characteristics and functional
responses (Dolan et al. 2013). Tintinnids have been increas-
ingly used as bioindicators of anthropogenic impacts and envi-
ronmental changes in plankton ecosystems (e.g., Dolan
et al. 2016; Al-Yamani et al. 2019; Wang et al. 2024).

Our study provides one of the first empirical assessments
of how PBRs incorporating multidimensional biodiversity
respond to contrasting anthropogenic nutrient inputs
(e.g., dissolved inorganic nitrogen and phosphate) in
tintinnids over an 18-yr cycle. In addition to conventional
species richness, we employed functional and phylogenetic
diversity indices following Brun et al. (2019). Compared to
the terrestrial multicellular primary producers studied by
Brun et al. (2019), our work offers a new perspective on
PBR patterns for marine unicellular secondary producers
(microzooplankton) and examines their responses to
anthropogenic nutrient inputs. To obtain convincing evi-
dence, we used consistent, continuous observational sam-
pling in a semi-enclosed coastal bay. Our study contributes
to a comprehensive understanding of PBRs in marine
microzooplankton, particularly in the context of varying
anthropogenic nutrient inputs to temperate coastal
ecosystems.

Methods
Study site

We examined tintinnid assemblages in 1280 continuous
samples from Jiaozhou Bay Marine Ecosystem Research Sta-
tion (https://jzw.qdio.cas.cn/) at 22 sites in Jiaozhou Bay (JZB,
120�040E–120�230E, 35�380N–36�180N, Fig. 1) from May 2003
to December 2020. Jiaozhou Bay is a semi-enclosed coastal
bay with a narrow channel (about 3 km) connecting to the
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Yellow Sea (Liu et al. 2004). With heavy anthropogenic
impacts and frequent red tides, JZB has served as an ideal
model system to explore the effects of ongoing climate
changes and anthropogenic inputs on marine ecosystems
(e.g., Feng et al. 2015; Guo et al. 2021; Wang et al. 2023).
Anthropogenic nutrient inputs contribute more nutrients to
JZB, primarily by rivers, than atmospheric deposition,
accounting for most dissolved inorganic nitrogen and phos-
phate (Liu et al. 2005; Xu et al. 2020). The JZB witnessed the
sharp decline of anthropogenic nutrient inputs in 2008
(Xu et al. 2020), with the decreasing phytoplankton, increas-
ing zooplankton, and miniaturization of copepods during
2002–2016 (Wang et al. 2023). We split the sampling sites
according to four levels of anthropogenic nutrient inputs
based on the division of Zhao et al. (2020) from lowest AP1
to highest AP4 (Fig. 1, Table 1). Anthropogenic nutrient
inputs were lowest in AP1 in the open waters outside the bay
farthest from the rivers. The hydrodynamic condition was
unique for AP2 in the bay mouth with highly active water
exchange. Anthropogenic nutrient inputs were relatively
high in AP3 surrounded by many seasonal rivers (medium
level) and peaked in AP4 in the bay with the primary region
for shellfish and algae farming and the largest river, Dagu
River, flowing into.

Data collections and calculation
The sampling, identification, and enumeration of tintin-

nids were conducted and summarized in Part 1 in the

Supporting Information. The counting effort ranged from 1 to
330 individuals per sample. We used biomass as a proxy for
plankton productivity, consistent with most empirical studies
(e.g., Groner and Novoplansky 2003; Vadrucci et al. 2003;
Irigoien et al. 2004; Smith 2007; Vallina et al. 2014).
Tintinnid biomass was calculated using the equation: C (pg)
= 444.5 + 0.053 LV (Lorica Volume, Verity and Lan-
gdon 1984) μg carbon per L (Table S1). Functional traits and
phylogenetic information of tintinnids were summarized
(Tables S1, S2) based on microscope observations in this
study with reference to the literature (Zhang et al. 2012;
Dolan et al. 2013; Santoferrara and Mcmanus 2020; Agatha
and Bartel 2022), encompassing vulnerability traits, life his-
tory traits, and habitat use.

For diversity, we focused on the common indices, includ-
ing species richness and quadratic entropies of functional and
phylogenetic diversity. To calculate functional and phyloge-
netic diversity, we employed the workflow of biodiversity
space following Brun et al. (2019), by successively defining
the scale of species similarity (δ), type of similarity (α), and
species dominance effect (q) using functional traits and phylo-
genetic information (Tables S1, S2). We derived LCfunct (δ = 1,
α = 1, q = 2) and LCphylo (δ = 1, α = 0, q = 2) for functional
and phylogenetic diversity, respectively, following Leinster
and Cobbold (2012) and Chen and Grinfeld (2024), with
detailed procedures in Part 1 in the Supporting Information.
All steps were repeated for different groups of communities
under four levels of anthropogenic nutrient inputs.

Fig. 1. Study area considering contrasting anthropogenic nutrient inputs in the coastal bay, Jiaozhou Bay (JZB) in the Yellow Sea in northern China from
2003 to 2020. Jiaozhou Bay is a semi-enclosed water body (390 km2, averaged depth of 7 m) with a narrow channel (about 3 km) connecting to the Yel-
low Sea (Liu et al. 2004). Anthropogenic nutrient inputs were lowest in AP1 in the open waters outside the bay farthest from the rivers, increased from
AP1 to AP4, and were heaviest in AP4 in the bay where the largest river, Dagu River, flows into (Zhao et al. 2020). The hydrodynamic condition was
unique for AP2 in the bay mouth with highly active water exchange. Details are provided in Table 1.
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Functional traits and phylogenetic information of
tintinnids were summarized (Tables S1, S2) based on micro-
scope observations conducted in this study, with reference to
the literature (Zhang et al. 2012; Dolan et al. 2013;
Santoferrara and Mcmanus 2020; Agatha and Bartel 2022).
These summaries encompassed vulnerability traits, life history
traits, and habitat use.

Statistical analyses
We first assessed the significant long-term trends for pro-

ductivity (biomass) and biodiversity with the Mann–Kendall
test using the R package “Kendall” (Frenken et al. 2023). Then
we explored the PBRs using generalized additive models
(GAMs, see details in Part 1 in the Supporting Information) in
R after checking for the outliers (Adler et al. 2011). MANOVA
was applied to test the effects of anthropogenic nutrient
inputs on productivity and biodiversity. Akaike’s Information
Criterion (AIC) and explained variances were deployed to
evaluate the models, excluding variables with high concurvity
(the GAM equivalent of collinearity). No significant spatial
autocorrelation was found after including latitude and longi-
tude as extra predictors in the models, following Le Bagousse-
Pinguet et al. (2019).

We used REML to estimate model coefficients. The PBRs
were then classified into different classes based on the good-
ness of fit (R2) and curve shape criteria (Table S5) according to
Brun et al. (2019). Those curves with R2 <0.15 were labeled as
non-significant as per Brun et al. (2019).

Results
General variations of productivity and biodiversity

The productivity and three focal diversity measures of the
tintinnid assemblages varied significantly across the four
levels of anthropogenic nutrient inputs (MANOVA, p < 0.01).
Tintinnids under the highest anthropogenic nutrient input
(AP4) showed relatively low productivity and diversity com-
pared to those under medium levels (AP2 and AP3), with sig-
nificant differences in productivity (p < 0.01) and species
richness (p < 0.05). However, no significant differences were
observed in the functional or phylogenetic diversity (Table 1;
p > 0.05). In contrast, at the lowest anthropogenic input level
(AP1), tintinnids exhibited significantly lower productivity
than at medium levels (AP2 and AP3, p < 0.01), but higher
values at all three biodiversity levels than at other levels. Sig-
nificant differences were observed in terms of functional
diversity between AP1 and each of the other three levels
(p < 0.001) but only between AP1 and AP4 in terms of species
richness (p < 0.01).

In addition, the GAM results revealed that temporal vari-
ability (both long-term and monthly) affected the productiv-
ity and diversity of tintinnid assemblages (Table S3). Similar
to productivity, species richness and phylogenetic diversity
showed a small peak in 2008, followed by a general decrease,

whereas functional diversity showed a general increase
(Fig. S1).

Effect of anthropogenic nutrient inputs on the PBRs
As for the PBRs, the GAM results (Table S4) showed that

levels of anthropogenic nutrient inputs and the interaction
effects of productivity, month, and year were all significant
predictors of species richness (R2 = 0.64; deviance explained
65%), functional diversity (R2 = 0.22; deviance explained 23%),
and functional diversity (R2 = 0.34; deviance explained 36%).
Similar trends in the interaction between productivity and
month were revealed for the three biodiversity indices, showing
greater effects on diversity in August, with the highest produc-
tivity. In contrast, functional and phylogenetic diversity
responded quickly to the sharp decline in anthropogenic nutri-
ent inputs in 2008, with the former increasing (Fig. 2d) and the
latter decreasing (Fig. 2f). Species richness responded more
slowly and increased only after 2010 (Fig. 2b).

After keeping the other parameters constant, the relation-
ships between productivity and the three biodiversity indices
displayed contrasting patterns across different levels of
anthropogenic nutrient input (Fig. 3). For species richness,
increasing PBRs prevailed at low to medium levels of anthro-
pogenic nutrient inputs (Fig. 3a–c), whereas a concave� PBR
was revealed in AP4, which had the highest anthropogenic
nutrient inputs (Fig. 3d). Similarly, under the highest level of
anthropogenic nutrient input, concave� PBRs were found for
both functional and phylogenetic diversity (Fig. 3h,l). All
three diversity indices showed a concave� PBR at the highest
level, revealing that high anthropogenic nutrient inputs pro-
moted decreased diversity at high productivity.

Compared to species richness, functional and phylogenetic
diversity revealed a new perspective on PBRs under different
levels of anthropogenic nutrient inputs. Species richness failed
to show evident changes in PBRs (all increasing) between AP1
and AP3; however, both functional and phylogenetic diversity
revealed different PBRs. For AP1, under the lowest anthropo-
genic inputs, both functional and phylogenetic diversity rev-
ealed a concave� PBR (Fig. 3e,i), showing decreasing
functional and phylogenetic diversity along with increasing
species richness at high productivity. Notably, functional
diversity revealed a distinct PBR pattern from others, concave
+ PBRs, in AP2 at the bay mouth with highly active water
exchange and medium anthropogenic inputs, showing low
functional diversity at intermediate levels of productivity
(Fig. 3f).

The interaction between productivity and month signifi-
cantly affected diversity (Table S4; p < 0.01), with its effects
varying across the four levels of anthropogenic nutrient input
(Fig. 4). For species richness, a pronounced effect was observed
around August, coinciding with high productivity. In con-
trast, the effects were broader for functional and phylogenetic
diversity, particularly for functional diversity at high levels of
anthropogenic nutrient input (Fig. 4h) and phylogenetic
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diversity at medium to high levels of anthropogenic nutrient
input (Fig. 4k,l).

Discussion
Our study firstly verified that PBRs varied across contrasting

levels of anthropogenic nutrient input in unicellular
microzooplankton assemblages in coastal marine ecosystems.
We found that increasing PBRs prevail at low to medium
levels of anthropogenic nutrient input for species richness,
indicating that high productivity promotes diverse communi-
ties with low to medium levels of anthropogenic nutrient
input. This corresponds to the niche differentiation and limit-
ing similarity hypotheses, which assume that competitive
exclusion favors complementary strategies and promotes
assemblages with diverse traits (Pacala and Tilman 1994; Brun
et al. 2019).

In contrast, concave� (humped) PBRs prevailed in AP4 for
all three diversity indices, indicating that with high anthropo-
genic nutrient inputs, diversity increased at low productivity
and decreased at high productivity. This is consistent with the

speculation that humped PBRs in marine zooplankton result
from a balance between food limitations at low population
levels and selective predation at high population levels
(Irigoien et al. 2004; Vallina et al. 2014). According to the
most prominent historical hypothesis, biodiversity is low in
unproductive environments because of environmental filter-
ing, increases with increasing resource supply until it reaches
the coexistence limits at high productivity, and declines
because of increased competition and competitive exclusion
(Grime 1973; Al-Mufti et al. 1977; Grace et al. 2016; Brun
et al. 2019). Productive communities are less diverse with high
anthropogenic nutrient inputs, probably because competition
can eliminate more distinct and less related taxa (Mayfield
and Levine 2010). In addition, this result may provide another
possible explanation for the negative PBRs of global marine
plankton (Ibarbalz et al. 2019), since they used phylogenetic
diversity, rather than taxonomic diversity, which is more
related to previously reported functional traits.

We further verified that, in response to varying anthropo-
genic nutrient inputs, functional and phylogenetic diversity
offers more insights into PBRs and underlying ecological
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Fig. 2. Generalized additive model response of diversity to the interactions between productivity and month, year, and levels of anthropogenic nutrient
inputs (AP) in Jiaozhou Bay during the studied period. Biomass (log-transformed, μg/L) was used as a proxy of productivity following Irigoien et al.
(2004). Diversity including species richness (a–b), functional diversity (LCfunct, c–d), and phylogenetic diversity (LCphylo, e–f) are compared among
months and years. Overlaid curves show the partial effect of productivity (log-transformed biomass) on the diversity in GAM fits with 95% confidence
intervals. LCfunct and LCphylo represent functional and phylogenetic diversity using LC biodiversity values at (δ = 1, α = 1, q = 2) and (δ = 1, α = 0,
q = 2), respectively.
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processes than conventional species richness, especially at low
to medium levels of anthropogenic nutrient inputs. We found
more PBR patterns in functional and phylogenetic diversity at
low to medium levels of anthropogenic nutrient input, which
were not revealed for species richness. Furthermore, func-
tional and phylogenetic diversity responded faster than spe-
cies richness to the reduction in anthropogenic nutrient loads
around 2008. This is consistent with the expected importance
of functional and phylogenetic diversity in supporting the
biodiversity–ecosystem multifunctionality relationship (Flynn
et al. 2011; Le Bagousse-Pinguet et al. 2019).

Notably, the concave+ (U-shaped) PBR in AP2 had not
been extensively discussed before the meta-analysis work by
Mittelbach et al. (2001), and the interaction of productivity-

driven processes with other processes may be a probable
explanation (Scheiner and Jones 2002). This also explains
why we only found the concave+ PBR in AP2, the ecozone of
all the other three levels of anthropogenic nutrient inputs
and highly active water exchange. Nevertheless, different
scales and statistical methods have been reported to lead to
different classifications of concave+ PBRs (Mittelbach
et al. 2001), and some have been classified as humped or hav-
ing no relationship (Mittelbach et al. 2001; Gillman and
Wright 2006; Whittaker 2010). The classification and causal
processes of PBRs remain highly controversial (Gillman and
Wright 2006). Most of the associated hypotheses on PBRs are
derived from terrestrial systems and are probably limited
when applied to marine systems.
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Anthropogenic nutrient inputs would affect the PBRs of
plankton communities through trophic links, including top-
down and bottom-up controls (Vallina et al. 2014). Serving as
secondary producers and key links between phytoplankton
and copepods, tintinnid communities decreased in productiv-
ity, species richness, and phylogenetic diversity, in line with
generally decreasing nutrients and phytoplankton, and
increasing zooplankton during the investigated period (Wang
et al. 2023). However, our study also found increasing func-
tional diversity for tintinnids, especially after 2008; that is,
tintinnids were more diverse in ecological functions and less
diverse in richness and phylogeny, which might be due to the
generally decreasing abundance ratio of large-sized copepods.
The competition vulnerability trade-off (top-down control)
allows stable predator-mediated coexistence of species within
and across functional groups, whereas the growth-affinity
trade-off (bottom-up control) allows the non-equilibrium
coexistence of functional groups ranging from nutrient spe-
cialists to nutrient opportunists, resulting in humped PBRs in
phytoplankton (Vallina et al. 2014). The positive effect of
nutrient supply on species diversity only occurred in the pres-
ence of predators because the two processes do not act in iso-
lation (Worm et al. 2002). Other processes should be
considered to explain the potential contrasting responses of
PBRs to anthropogenic nutrient inputs, including the

sampling regime, scale of analysis, and processes such as com-
munity assembly.

We acknowledge the limitation of the use of tintinnid bio-
mass as a productivity proxy. In PBR studies, productivity is
estimated either directly from the organisms’ biomass or
energy, or indirectly through lower trophic level productivity
and surrogates, with the PBR pattern being sensitive to the
directness of productivity estimates in animal studies but not
in plant studies (Groner and Novoplansky 2003). Herein we
used biomass as a productivity proxy, consistent with most
empirical studies (e.g., Irigoien et al. 2004; Vallina et al. 2014),
but there are limitations to this approach. We stressed bio-
mass (for more contribution in the productivity) rather than
rate, among the three aspects of productivity (Clarke
et al. 1946), because rate relies on empirical data and tempera-
ture and might introduce more bias in the productivity esti-
mation in our long-term samples spanning large temperature
ranges. Rate (production rate) is also important for tintinnid
productivity, calculated as the product of biomass and empiri-
cally specific growth rates (g) for tintinnids (Godhantaraman
2002). However, g was derived from freshwater ciliates, which
differ from marine tintinnids in our study in thermal perfor-
mance and growth rates (Luki�c et al. 2022). Furthermore,
growth rates differ between tintinnids and ciliates: they
increase allometrically with cellular biomass for tintinnids
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(Heinbokel 1978; Stoecker et al. 1983; Verity 1985, 1986;
Godhantaraman 2002), but not for all planktonic ciliates
(Luki�c et al. 2022; Weisse 2024). Allometric considerations
remain important in planktonic food webs, as direct
methods for measuring tintinnid growth in natural assem-
blages are still limited (Dolan et al. 2013). In summary, this
proxy should be used with caution, and additional field
data are needed for more robust conclusions on tintinnids
and other microzooplankton.

Additionally, meta-analyses have been increasingly empl-
oyed as powerful tools for PBR studies, but they have also
been criticized for relying on data collected from previous
studies using inconsistent methods (Whittaker 2010; Adler
et al. 2011). Our study provides one of the first insights into
PBRs in marine microzooplankton using continuous data
obtained by conducting consistent and continuous observa-
tional sampling, which further empirically contributes to
addressing methodological inconsistencies and convincing
conclusions. Nevertheless, it is important to acknowledge that
standardized observational studies have limitations, such as
uncontrolled environmental factors, which restrict the analy-
sis to correlations rather than causations and fail to address
the paradox: Is diversity the cause or consequence of produc-
tivity? (Cardinale et al. 2009). Additionally, in relation to
resource use strategies and ecological processes, the functional
traits in our study were limited, lacking aspects such as tro-
phic structure and disturbance (Hillebrand and Mat-
thiessen 2009; Grace et al. 2016), which also led to limitations
in the statistical analysis. Further exploration and integrative
modeling are required to confirm our findings and explore the
variation in PBRs under anthropogenic impacts in coastal
marine ecosystems.
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