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Programmable Photonic Extreme Learning Machines
José Roberto Rausell-Campo,* Antonio Hurtado, Daniel Pérez-López, and José Capmany
Francoy

Photonic neural networks offer a promising alternative to traditional electronic
systems for machine learning accelerators due to their low latency and energy
efficiency. However, the challenge of implementing the backpropagation
algorithm during training has limited their development. To address this,
alternative machine learning schemes, such as extreme learning machines
(ELMs), are proposed. ELMs use a random hidden layer to increase the
feature space dimensionality, requiring only the output layer to be trained
through linear regression, thus reducing training complexity. Here, a
programmable photonic extreme learning machine (PPELM) is experimentally
demonstrated using a hexagonal waveguide mesh, and which enables to
program directly on chip the input feature vector and the random hidden
layer. This system also permits to apply the nonlinearity directly on-chip by
using the system’s integrated photodetecting elements. Using the PPELM,
three different complex classification tasks are solved successfully.
Additionally, two techniques are also proposed and demonstrated to increase
the accuracy of the models and reduce their variability using an evolutionary
algorithm and a wavelength division multiplexing approach, obtaining
excellent performance. These results show that programmable photonic
processors may become a feasible way to train competitive machine learning
models on a versatile and compact platform.

1. Introduction

In recent years, artificial intelligence algorithms have gained in-
creasing attention due to the development of more powerful and
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complex architectures.[1,2] This exponen-
tial increase in the size and number of re-
quired parameters has led to a higher de-
mand for computational resources. Tra-
ditional electronic processors have been
the backbone of these advancements, but
they present limitations in bandwidth
and energy efficiency. Consequently, al-
ternative computing paradigms that ad-
dress these issues have started to at-
tract increasing research attention.[3–6]

In this context, photonics has emerged
as a viable alternative for machine learn-
ing hardware by exploiting the unique
features of light-based computing,
including complex-valued, multidimen-
sional, and parallel operations.[7–9]

These systems promise to deliver
high bandwidth, low latency process-
ing and low power consumption.[10]

There have been several implementa-
tions of feed-forward neural networks
(FF-NN) using free-space optics with
spatial light modulators and diffractive
elements.[11,12] Moreover, the integra-
tion of photonic devices on-chip has
enabled the development of FF-NN

using wavelength division multiplexing (WDM) with micror-
ing resonators (MRRs)[13,14] and coherent systems with Mach–
Zehnder interferometers (MZIs).[15,16] However, a main chal-
lenge for these approaches arises during the training stage,
where implementing the widely used backpropagation algo-
rithm, requires very complex architectures, which are very dif-
ficult to scale.[17,18]

Another interesting option is to use unconventional machine
learning architectures that require fewer resources for train-
ing. Spiking neural networks have shown their potential using
photonic systems to increase the efficiency of AI systems.[19–21]

Moreover, photonic reservoir computing has been experimentally
demonstrated to solve time-dependent problems using recurrent
systems with physical or virtual nodes.[22–24]

Extreme learning machines (ELMs)[25,26] are also and appeal-
ing alternative to traditional neural networks by simplifying its
training process. ELMs are a type of FF-NN in which only the
output layer weights are trained, while the while the connections
of the input and hidden layer are randomly assigned and remain
fixed. The idea is to randomly increase the dimensionality of an
input vector to a new feature space where the data can be lin-
early separated. This methodology not only accelerates the train-
ing phase but also reduces the overall computational cost. ELMs
are particularly well-suited for their photonic implementation on

Laser Photonics Rev. 2025, 2400870 2400870 (1 of 10) © 2025 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.lpr-journal.org
mailto:joraucam@upv.es
https://doi.org/10.1002/lpor.202400870
http://creativecommons.org/licenses/by/4.0/


www.advancedsciencenews.com www.lpr-journal.org

devices and systems that can inherently map the input optical
signal into a higher dimensional space. Experimental demonstra-
tion of photonic ELMs (PELMs) using bulky systems have been
already published using free-space propagation,[27,28] speckle
patterns[29] and frequency multiplexed fibers.[30] ELMs in pho-
tonic integrated circuits have been also demonstrated by process-
ing the scattered light of gratings coupled to microresonators.[31]

This approach reduces the size of the PELM but still requires
an external camera to record the hidden outputs. Moreover, the
state of the random transformation of the photonic circuit is fixed
which reduces the versatility of the PELM.
Here, we report a programmable photonic extreme learn-

ing machine (PPELM) using a general-purpose programmable
processor.[32–35] The programmable processor consists of a mesh
of photonic tunable couplers in a hexagonal topology.We demon-
strate how data can be encoded in both amplitude and phase us-
ing the tunable units. The processor can also be configured to
adapt the number of inputs and outputs, making it suitable for
different complex computational tasks. Numerous random ma-
trices can be implemented on-chip by randomly setting the states
of its building blocks. Furthermore, the inclusion of integrated
photodetectors in the system allows the implementation of the
nonlinear function directly on-chip. The final layer is trained and
tested digitally revealing excellent performance in different com-
plex tasks. In particular, the PPELM is experimentally validated
using the Smartlight processor of iPronics on three classifica-
tion tasks: the recognition of headers in a bit pattern, the catego-
rization of iris flowers specimens, and the authentication of ban-
knotes. Finally, we leverage the programmability of the PPELM
to introduce methods to increase the accuracy of the models by
optimizing the random hidden layer using an evolutionary algo-
rithm and applying an ensemble technique where different mod-
els are trained in parallel thanks to a wavelength division multi-
plexing approach.

2. Results

2.1. Extreme Learning Machines

Extreme learning machines base their performance in the ran-
dom projection of the input feature vector X that belongs to a
space ℝNf into a higher-dimensional space ℝNH where the target
classes can be linearly separated.Nf refers to the number of input
features and NH is the number of hidden nodes in the network.
Mathematically, an input state X is first multiplied by a random
matrixW and a set of biases b are added. To achieve a nonlinear
random projection, an activation function f(.) is applied:

H = f (WX + b) (1)

where H is the nonlinear random projection of the input state.
The projected features are then linearly combined with a train-
able weight matrix 𝜷 to obtain the predicted outputs O. Layer 𝜷
can be trained using an analytical formula:

𝜷 = H†T (2)

where T is the ground-truth target matrix of the training dataset.

Figure 1. Programmable photonic extreme learning machines: a) Dia-
gram of the architecture of the extreme learningmachines, b) Schematic of
the experimental setup for the implementation of programmable photonic
extreme learning machines. The hexagonal mesh is programmed to mul-
tiply the input data by the randommatrix and apply the nonlinear function
using the square law of the photodetectors. The trainable weight matrix is
multiplied on the CPU and, c) different states of the PUCs on the hexago-
nal waveguide mesh.

2.2. Programmable Photonic Circuit as an Extreme Learning
Machine

We proposed the use of the Smartlight processor from IPronics
Programmable Photonics[36] for the implementation of extreme
learning machines in the photonic domain. Smartlight is a com-
mercially available general-purpose programmable photonic in-
tegrated circuit with a hexagonal topology that can be tuned via
software to create different photonic structures on the same plat-
form. It comprises 72 programmable unit cells (balanced Mach–
Zehnder interferometers) with 28 input–output optical ports. On-
chip integrated photodetectors enable the conversion of the op-
tical output power into the electronic domain through a readout
layer. Further details on the characteristics of the chip and the
hardware and software layers can be found in the Experimen-
tal Section.
A schematic of the programmable photonic extreme learning

machine (PPELM) is shown in Figure 1. Light is coupled into the
photonic integrated chip using an optical fiber array. The pro-
grammable unit cells (PUCs) in green are tuned to create a split-
ter tree that divides the light into four paths. The black PUCs,
with a modulated wave on them, encode the input data into the
amplitude of the light by changing their coupling ratio. Data has
been previously normalized between –1 and 1, and the sign is
encoded by changing the phase term of the PUCs, which is set
to 0 for positive and 𝜋 for negative numbers. Additional infor-
mation of the data encoding is presented in Appendix A. In our
system, the maximum size of the input vector is 6, where we en-
code the features. The remainder of the chip is programmed to
implement a random transformation of the optical field. PUCs

Laser Photonics Rev. 2025, 2400870 2400870 (2 of 10) © 2025 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Table 1. Test accuracy (%) of the PPELM on three classification tasks with
different number of hidden nodes.

Nodes 4 6 8 10

Header recognition 93.6 ± 1.2 94.5 ± 2.4 96.2 ± 3.0 98.6 ± 2.5

Iris 88.5 ± 4.2 93.0 ± 2.8 95.0 ± 1.5 95.8 ± 1.4

Banknote 80.4 ± 8.2 84.0 ± 6.2 87.1 ± 4.7 90.3 ± 2.6

in red and gold are kept in bar and cross states respectively to
avoid resonant structures inside the mesh when using a single-
wavelength approach. As it will be explained later, the creation
of resonators inside the mesh can be harnessed to increase the
capabilities of our system when WDM is used. PUCs in blue
are set as tunable, which means that their coupling ratio can
be any number between [0, 1] and the phase term is sampled
from a uniform distribution between [0,𝜋]. Once the input data
is randomly projected, the nonlinear function is applied using
the square law of the integrated photodetectors. Given the pro-
grammed structure light can be detected in up to 10 of the avail-
able photodetectors. During the experiments, we changed the
state of the latest PUCs to use different numbers of outputs to
measure the impact of the architecture’s complexity. The mea-
sured currents were recorded using a CPU, where the addition of
the bias term, training and application of the 𝛽 layer was carried
out.

2.3. PPELM on Classification Tasks

We employed the PPELM to solve three different classification
tasks: the IRIS flower and the banknote datasets classification
tasks as well as header recognition task. For all three problems,
70% of the dataset was used for training and 30% for testing. The
training of the models was performed as follows: first, we sam-
pled the coupling ratios and phase terms of the tunable elements
from a uniform distribution to create the randommatrix. Second,
data was normalized, encoded on the corresponding PUCs, and
then multiplied by the random linear transformation.
The nonlinear high-dimensional representation of the features

was stored in the matrix Htrain of size N × NH, where N is the
number of points in the training dataset and NH is the number
of hidden layer nodes. For each task, we repeated the experiments
with 4, 6, 8, and 10 nodes. For every node count value, the ran-
dom architecture was slightly modified to guide the light into the
desired photodetectors and lose the minimum amount of light
through non-monitored ports. Following Equation (2), the ma-
trix Htrain was used to calculate the weights of the 𝛽 layer. Once
the model was trained, we encoded the test set into the PPELM,
multiplied it by the same randommatrix, and obtainedHtest. This
matrix wasmultiplied by the final layer and the predicted outputs
O were obtained. These results were compared with the expected
targets T to measure the performance of the models. All train-
ings were repeated 40 times using different random projections.
The models were also trained using ridge regression from scikit-
learn with built-in cross-validation, but no noticeable improve-
ment was observed. A summary of the obtained mean accuracies
is presented in Table 1.

2.3.1. Header Recognition Classification Task

The header classification task aims at recognizing a set of 4 bits
within a data stream of 6000 points. We generated a random se-
quence of 1s and 0s, and classified each group of four bits as 1
if they matched the desired sequence, or 0 if they did not. In our
case, we chose the sequence [1, 0, 0, 0] as the target. The results
for the different number of nodes are shown in Figure 2a which
presents a boxplot of the accuracy obtained from the 40 models
that we ran. The boxes cover the range from the first to the third
quartile, with a line at the median. The whiskers extend to the
last data point within 1.5 times the distance between the first and
the third quartile. We can see how the accuracy increases with
the number of nodes. As this is a simple task, a 100% accuracy
can be obtained with 8 and 10 nodes.

2.3.2. Iris Flower Dataset Classification Task

The objective of the Iris Flower dataset task is to classify a set of
flower specimens into three different subspecies: setosa, versi-
color, and virginica. It comprises 150 feature vectors with 4 dis-
tinct characteristics: sepal length, sepal width, petal length, and
petal width. Figure 2b reveals that the PPELM was able to suc-
cessfully perform this complex task with high accuracy. In par-
ticular, 2b, shows the accuracy obtained for each number of hid-
den nodes. This is a more complex task than the header recog-
nition task, and we can see how the variance in the results is
reduced as the number of nodes increases, with the mean ac-
curacy converging to a value close to 97% which matches the per-
formance of other PELM proposals with a higher total network
node count.[30,31]

2.3.3. Banknote Dataset Classification Task

The banknote dataset is a collection of 1372 instances with 4 at-
tributes: variance, skewness, kurtosis, and entropy of the ban-
knote images, aiming to distinguish between genuine and forged
banknotes. The results for the different models are shown in
Figure 2c, where accuracies over 90% are achieved in this com-
plex task. This problem illustrates the importance of the initial
random matrix. We can see that with all the hidden node sizes,
there are models with high accuracies, but the variance is higher
as the number of hidden nodes decreases. In the following sec-
tion, we will introduce a method to find the optimal initial ran-
dom matrix, thereby reducing the necessary length of the hid-
den layer in the PPELM. Moreover, the obtained mean accuracy
is slightly lower than that presented by other PELMs. This is a
consequence of the reduced number of hidden nodes. However,
we will show how we can update the presented PPELM to match
the accuracies of more complex photonic systems.

2.4. Evolutionary PPELM

The results obtained from the three classification tasks highlight
a key challenge in extreme learning machines: the variance in
achieved accuracies due to the randomness in the hidden layer
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Figure 2. Accuracy of the of the PPELM in the a) Header recognition task, the b) Iris Flower and c) Banknote Authentication Datasets Classification
tasks when using 4, 6, 8, and 10 hidden nodes. In blue are the results of the train and in orange of the test set for 40 different random initializations.

weight matrix. While this issue is inherent to ELM models, its
consequences are particularly significant in photonic systems.
One option to mitigate the variance in model accuracy is to in-
crease the number of hidden neurons, which in turn increases
complexity, power consumption, and accumulated losses in pho-
tonic ELMs, thereby reducing their scalability. An alternative to
increase the size of the system is to use a differential evolution
algorithm (DE-PPELM) to find the optimal initialization of the
random linear transformation.[37] The programmability of our
hexagonal mesh allows for the direct application of this approach
into our system by optimizing the applied phases on the tun-
able PUCs.
To apply the differential evolution algorithm, at first, a set of N

phase vectors is chosen as the initial candidates:

𝚯G = {𝜽i,G|i = 1,…N} (3)

where 𝜽i,G = [𝜃0, 𝜃1,… , 𝜃NTPUCs
] corresponds to the ith array with

the phase value for all the tunable PUCs during generation G.
The total number of vectors N is referred to as the population
size. For each of these vectors, the performance of the PPELM is
evaluated using a cost function CF. In our case, the cost function
CF is 1 minus the accuracy of the model on a validation set. The
validation set is an extra division of the dataset (train - val - test)
that allows for monitoring the algorithm’s performance during
training while leaving the test set untouched. The second step of
the algorithm is the mutation, where three of the current candi-
dates are combined using a control factor F as follows:

vi,G+1 = 𝜽a,G + F(𝜽b,G − 𝜽c,G) (4)

where a, b and c are independent random indices. By selecting
elements from the candidate and mutant sets, a new set of trial

vectors ui,G+1 is built. These elements are chosen by sampling a
random number b ∈ [0, 1]. If b is lower than a crossover factor
CR then the vector is picked from the mutation set VG+1, oth-
erwise the vector is chosen from the set of candidates 𝚯G. The
performance of the model with the trial vectors is evaluated and
compared to that achieved by the previous candidates. If a trial
vector uj,G+1 presents a better CF than the candidate 𝜽j,G+1 then
the the trial vector replaces the candidate in the new generation.
Otherwise, the new generation remains unchanged. If the differ-
ence between the two cost functions is less than 0.001, then we
compare the norm of the trainable matrix 𝜷 for both models and
choose the solution with the lower norm. This is done because a
lower norm in the second layer is related to a better generaliza-
tion of the model.[38]

We evaluate the DE-PPELM on the Iris Flower and the Ban-
knote Authentication dataset classification tasks. For this sec-
tion we avoid the header recognition dataset as it presented
very high accuracies for all the for all network hidden node
counts investigated. As previously explained, for these exper-
iments we divided the dataset into training, test and valida-
tion sets. We used 70 % of the dataset points for training, 15%
for validation and 15% for testing. For each dataset, we ini-
tialized the random matrix using the differential evolution al-
gorithm for all previous hidden node sizes. We used a popu-
lation size of 10 for both tasks, a control factor F = 1 and a
crossover term CR = 0.5. The DE-PPELM was trained during
35 iterations for all models. As the dataset sizes are small, es-
pecially the Iris Flower dataset, it is highly likely that high accu-
racies are achieved during the first iteration (which corresponds
to 10 evaluations of the PPELM). To show how the algorithm
can improve the accuracy of ill-conditioned random layers, we
chose suboptimal candidates as a starting point during the first
iteration.
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Figure 3. Evolution of the training and validation accuracy during 35 itera-
tions of the DE-PPELM when using a) 4, b) 6, c) 8, and d) 10 hidden nodes
in the Iris Flower Dataset classification task.

The evolution of the accuracies during the DE-PPELM train-
ing for the Iris flower dataset classification task is depicted in
Figure 3. We can observe how the validation curve rapidly reaches
a 100% accuracy, primarily due to the small size of the validation
set. However, the algorithm continues to learn by attempting to
reduce the norm of the output layer 𝜷. Fluctuations in the train-
ing set are influenced by two factors. First, we aim to optimize
the validation accuracy rather than the test accuracy, acting as a
form of regularization for the training curve. Second, the small
dataset size introduces higher divergences between the valida-
tion and training curves. For the Banknote dataset classification
tasks, the evolution of the accuracies is presented in Figure 4.
Here, we notice that, except for the 10-nodemodel, the algorithm
requires more steps to converge compared to the Iris task as a
consequence of the larger dataset size. Additionally, in this case,
the validation and training curves are more similar during the
training of the algorithm.
The final results after 35 iterations obtained on the test set

are presented in Table 2 for both classification tasks. For the Iris
flower dataset classification task, we observe that for all hidden
node sizes, the accuracy achieved on the test set is equal to or
greater than themaximumaccuracy obtainedwith the bestmodel

Figure 4. Evolution of the training and validation accuracy during 35 iter-
ations of the DE-PPELM when using a) 4 b) 6 c) 8 and d) 10 hidden nodes
in the Banknote authentication dataset classification task.

Table 2. Test accuracy (%) of the DE-PPELM on two classification tasks
with different number of hidden nodes.

Hidden Nodes 4 6 8 10

Iris 95.5 97.0 97.0 98.5

Banknote 91.5 91.5 92.0 93.0

in the first experiment shown in Figure 2. Regarding the Ban-
knote task, we achieved accuracies exceeding 91% regardless of
the number of hidden nodes. These results surpass the best re-
sults obtained during the first experiments in which a random
hidden node weightmatrix was set, hence demonstrating the piv-
otal contribution of the DE-PPELM algorithm for performance
optimisation. Finally, it is essential to highlight how we were able
to achieve high accuracies even with a reduced number of total
network node count. This capability enables training highly com-
plex computational tasks on a more compact photonic hardware
than that required if the initial layer was directly sampled from a
random distribution.

2.5. WDM Based Ensemble for Increased Accuracy

In the previous section, we introduced an optimization algo-
rithm to mitigate the impact of the random initialization of the
internal layer of the ELM. Here, we propose an alternative ap-
proach to increase the accuracy of these systems by combining
the predictions of a set of low accuracymodels leveraging awidely
studied technique called ensemble learning.[39] In classical ELM
approaches,[40,41] ensembling has demonstrated its ability to in-
crease the efficacy in boosting accuracy on test sets while re-
ducing overfitting. In our approach, we suggest taking advan-
tage of the reconfigurability of our programmable photonic pro-
cessor to train different models simultaneously in the photonic
domain. Subsequently, we combine the results of the trained
models to generate the final classification prediction. The pro-
posed architecture uses WDM and is shown in Figure 5. Using
WDM to increase capacity by performing parallel computation
has been proposed in the literature for photonic deep learning
accelerators.[42–44]

The architecture works as follows: Initially, different wave-
lengths are multiplexed into a single-mode fiber (SMF) and con-
nected into the photonic chip using the same procedure as in
our previous approaches. Second, both the training and testing
sets are encoded on each of the wavelengths. Then, the random
matrix architecture is modified by transitioning some of the di-
agonal PUCs from a cross to a tunable state. This adjustment
facilitates the generation of resonant structures within the chip,
thereby making the transfer function of the system wavelength-
dependent. Following the random linear transformation, each
output is demultiplexed, resulting in N hidden output states cor-
responding to each of the N input wavelengths. Subsequently,
N models are trained on a computer by computing the output
matrix 𝛽. Each model undergoes training using a the same par-
tition of the training and testing sets. Finally, the ensemble step
involves combining the predictions of each model into a single
array. This combined array is then utilized to compute the final
prediction by training a final layer using Equation (2).

Laser Photonics Rev. 2025, 2400870 2400870 (5 of 10) © 2025 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Figure 5. Ensembled extreme learning machines using WDM.

Table 3. Accuracy (%) of the WDM-Ensemble on the Iris Flower classifica-
tion task for different number of wavelengths.

#𝜆 Mean Train Mean Test Ensemble Train Ensemble Test

4 (Parallel WDM) 95.1 93.6 98.2 97.3

5 95.7 93.4 96.4 96.4

10 96.4 95.5 99.1 97.3

15 95.8 94.0 1.0 98.1

20 95.3 93.3 1.0 98.1

Table 4. Accuracy (%) of the WDM-Ensemble on the Banknote classifica-
tion task for different number of wavelengths.

#𝜆 Mean Train Mean Test Ensemble Train Ensemble Test

4 (Parallel WDM) 91.6 90.6 94.8 93.9

5 91.3 89.4 93.1 92.3

10 88.8 87.4 95.3 93.1

15 89.6 88.2 97.9 97.5

20 89.1 87.8 99.1 99.1

As a proof of concept, we initially performed the experi-
ment using a 4-channel CWDM operating in the range of 1531–
1591 nm, with a channel spacing of 20 nm. The four wave-
lengths were multiplexed and fed into the Smartlight proces-
sor. At one of the system’s outputs, we used a DEMUX to sep-
arate the wavelengths and measured their optical power with
an external power meter. We recorded the results for both the
Iris flower and Banknote classification tasks. Subsequently, we
repeated the same process at the remaining outputs. Through-
out the experiment, the state of the photonic processor was
kept constant for each classification task. The results are sum-
marized in Tables 3 and 4 in the 𝜆 = 4 (parallel) row, show-
ing improved performance compared to the single-wavelength
approach.
In order to increase the number of available wavelengths, we

substituted the MUX and DEMUX by a sequential process. We
used a tunable laser and set one wavelength. We conducted the

Figure A1. Programmable unit cell.

vector matrix multiplication and stored the results. This process
was repeated with 40 wavelengths ranging from 1540 to 1560
nm, with a spacing of 0.5 nm between them. In Figure 5, a
graph with the resonant response of the system is illustrated.
Each of the four represented colors in the inset in Figure 5 cor-
responds to a different output of the mesh. The recorded re-
sults were used to derive the output matrix of each model, and
the predicted outputs were aggregated for the final classifica-
tion results. The results with varying numbers of used wave-
lengths are presented in Tables 3 and 4, where we compare
the mean accuracy of the independent models with the ensem-
ble results (𝜆 = 5–20). Across all cases and classification tasks,
the ensemble results consistently outperformed the mean ac-
curacies during both training and testing. As in the evolution-
ary PPELM, the Iris flower classification task reaches its maxi-
mum accuracy with a low number of wavelengths as a conse-
quence of the simplicity of the task. For the banknote classifica-
tion task, it is important to highlight that we were able to ob-
tain higher accuracies than the maximum level achieved with
the random PPELM and with the evolutionary PPELM, with at-
tained accuracies higher than 99%when 25 ormore wavelengths
are used.
The results are slightly better in the parallel case com-

pared to those obtained using the sequential approach. This
is primarily due to the random initialization of the reso-
nant structures, which we have seen that greatly impacts the
performance of the PELM. This highlights the potential of
combining WDM with the evolutionary PELM to enhance
model performance while minimizing the number of nodes
required.
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Figure B1. Comparison of matrix configurations, a feedforward and b res-
onant.

3. Discussion and Conclusion

We have demonstrated the implementation of photonic ex-
treme learning machines (ELMs) using an integrated photonic
programmable circuit. While previous photonic approaches re-
lied on free-space propagation of light or application-specific
photonic integrated circuits,[27,29–31] our solution is based on a
general-purpose programmable photonic integrated platform. To
implement the programmable photonic ELMs, we first defined a
splitter tree to divide the light into the number of dimensions of
the input vector of the PPELM. Programming the splitter on-chip
allowed us to maintain coherence inside the mesh, enabling us
to exploit the complex-valued nature of the photonic devices in
the integrated system. The normalized input vector was encoded
in the amplitude of the light by adjusting the coupling of an array
of PUCs, while the sign was encoded in the phase by simultane-
ously tuning both actuators of the PUC.
We incorporated the random layer of the ELMs by randomly

selecting the coupling coefficient and phase terms of the tunable
PUCs. We configured the state of the remaining PUCs to avoid
resonant structures and ensure unidirectional light propagation.
The nonlinear activation function was implemented using the
square law of the integrated photodetectors. Finally, the output
layer was calculated and digitally implemented using an analytic
formula, similar to previous approaches.
In an initial approach, we experimentally solved three clas-

sification tasks using an in-house created header recognition
dataset, as well as the Iris flower and Banknote authentication
datasets.We repeated all the experiments 20 times using network
architectures with 4, 6, 8, and 10 hidden layer nodes. We showed
how increasing the number of hidden nodes reduces the vari-
ability of the classification results that arises as a consequence
of the random nature of the hidden layer. For the case of 10 hid-
den nodes we obtained mean accuracies of 98.6 ± 2.5, 95.8 ± 1.4
and 90.3 ± 2.6, for the Iris Flower and Banknote dataset classifi-
cation tasks, respectively. Increasing the number of the number
of hidden nodes may not always be the optimal solution as the
scalability of photonic devices is limited and precision could be

degraded.[45] As an approximation, the dynamic range at the out-
puts is:

Pin − ILcoupling − N ∗ ILPUC − NFPD (5)

where Pin is the input power, ILcoupling is the coupling instertion
loss, N is the minimum number of PUCs from the input to the
photodetectors ILPUC are the insertion losses of the PUCs and
NFPD is the noise floor of the photodetectors. Assuming ILcoupling
= 6 dB, ILPUC = 0.5 dB, NFPD = −35 dBm, N = 15 and Pin = 13
dBm the dynamic range is 34.5 dB.
As an alternative, we propose two solutions to enhance the

classification accuracy of PELMs with a low number of hidden
nodes. The first approach leverages the programmability of our
system. We apply a differential evolution (DE) algorithm to opti-
mize the hidden layer of the PELM. Our results demonstrate that
this technique achieves accuracies equal to or better than the best
values obtained for all network node sizes investigated, without
the DE algorithm. Additionally, we find that fewer hidden nodes
can be utilized with only a slight reduction in model accuracy.
The main drawback of this solution is the increased computa-
tional resources and time required during the training of the evo-
lutionary algorithm. Specifically, each iteration requires updating
the state of the PUCs, which, in the case of thermo-optic phase
shifters, is limited to microseconds. However, once the optimal
random layer is determined and themodel is trained, the weights
remain fixed during inference, avoiding any additional overhead
compared to the standard PPELM.
The second enhancement involves using an ensemble of mod-

els enabled by WDM techniques.. By manipulating part of the
hexagonal mesh, we enable the creation of resonant structures
with a wavelength-dependent transfer function. Multiple vector-
matrixmultiplications can then be performed simultaneously ap-
plying different wavelengths into the system. The results from
each wavelength model are then ensembled to derive a final clas-
sification prediction. First, we showed a parallel implementa-
tion using a MUX/DEMUX system with 4 channels and then
we extended the number of available wavelengths using a se-
quential approach. This method yields promising results, sur-
passing those obtained in previous experiments. For instance,
we achieved a 98.1% accuracy on the Iris classification task us-
ing 15 wavelengths and 8 outputs, and a 99.1% accuracy on the
Banknote classification task using 20 wavelengths and 8 outputs.
When compared to other experimental proposals, a bulky sys-
tem based on frequency multiplexing,[30] achieved a 97.7% accu-
racy on the Iris classification task and 99.5% on the Banknote
classification task using 31 hidden nodes. Using an integrated
approach based on microring resonators,[31] accuracies of 97.2%
and 97.92%were achieved for the Iris and Banknote classification
tasks, respectively, with 18 physical nodes. An additional 126 vir-
tual nodes were utilized to increase the accuracy of the Banknote
task to 99%.
In conclusion, we have shown how ELMs can benefit from

the advantages of the photonic systems using an integrated pro-
grammable processor. Thanks to the latter’s programmability we
were able to test different random layers and proposed twometh-
ods to improve the performance of the models using and evolu-
tionary algorithm and a WDM approach.
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Figure B2. a) Insertion losses and b) bit precision as a function of the matrix size and MZI losses.

4. Experimental Section
The Smartlight processor comprises a photonic chip manufactured in

a standard 220-nm Silicon Photonics (SiPh) platform. The system inte-
grates thermo-optical phase shifters with under-etched waveguides. Light
input and output are facilitated using fiber arrays with edge coupling fea-
turing a 127 𝜇m pitch. On-chip photodetection utilizes Germanium on
silicon photodetectors. On-chip electrical pads are wirebonded to a PCB
to enable the control of the phase actuators and themonitoring of the pho-
todetectors. The photonic processor is controlled via software using the
Smartlight python package provided by iPronics, allowing for full control
of the state of each of the actuators.

For the single-wavelength and evolutionary PELM experiments, we uti-
lized the ORTEL 10481S-FA laser with a fixed optical output power of 9.8
dBm operating at 1557 nm. For the 4 channel WDM experiment, we used
a CWDM from Accelink operating in the range of 1531–1591 nm, with a
channel spacing of 20 nm. The wavelengths at 1531 and 1551 nm corre-
spond to two IQS-2400 WDM laser sources from EXFO, while the wave-
lengths at 1571 and 1591 nm correspond to two TUNICS T100S-HP/CLU
tunable lasers from Yenista. For the WDM sequential experiments, we em-
ployed the tunable laser TUNICS T100S-HP/CLU with a wavelength range
from 1500 to 1680 nm and an output optical power of 13 dBm.

Training of the output layer of the PPELM was conducted on an Intel
Core i5-10400H 2.6 GHz CPU with 16 GB of RAM.

Appendix A: Data Encoding in the Smartlight
Processor

Each feature is encoded on a programmable unit cell by changing the
amplitude and phase of the optical signal. An schematic of the building
block is presented in Figure A1 and its transfer function is the following:

iei
𝜃1+𝜃2

2

(
sin( 𝜃1−𝜃2

2
) cos( 𝜃1−𝜃2

2
)

cos( 𝜃1−𝜃2
2

) −sin( 𝜃1−𝜃2
2

)

)
(A1)

The first step is to program the amplitude of the light. To do so, we need to
know that the information will input the upper arm of the PUC and output
the bottom arm, and thus, the output amplitude is:

Aout = Aincos(
𝜃1 − 𝜃2

2
) (A2)

Without losing generality, we can assume Ain = 1 and Aout = |f |, where |.|
is the modulus and f is the feature value normalized between -1 and 1.
Then:

ΔΘ = 𝜃1 − 𝜃2 = 2 ∗ arccos(|f |) (A3)

Once the phase difference required for a certain amplitude is defined, then
we need to include the output phase angle(f ) using the exponential term
in A1:

𝜃1 + 𝜃2 = 2 ∗ angle(f ) (A4)

Combining A3 and A4 we get the require phase values to encode a certain
amplitude and phase:

𝜃1 = angle(f ) + arccos(|f |) (A5)

𝜃2 = angle(f ) − arccos(|f |) (A6)

Appendix B: Scalability of the Programmable PELM

The scalability of the programmable photonic extreme learning ma-
chine (PELM) is primarily determined by the insertion losses of the ba-
sic tunable elements, implemented as Mach–Zehnder interferometers
(MZIs). These losses can be divided into two main components.

First, the splitter tree, where MZIs are tuned to equally distribute light
among the input paths. The insertion losses in this stage are propor-
tional to the number of input features (NIN) and correspond toNIN ⋅ ILMZI,
where ILMZI represents the insertion loss per MZI.

The second component involves the random matrix multiplication
stage. Assuming a worst-case scenario where the number of inputs equals
the number of outputs, all inputs must combine within the mesh. This re-
quires light to traverse 2NIN MZIs, leading to insertion losses of 2NIN ⋅
ILMZI.

To mitigate these losses, resonant structures can be introduced, en-
abling faster interaction between light paths compared to feedforward
meshes. This approach reduces the required number of MZIs. As illus-
trated in Figure 2, the worst-case feedforward configuration (Figure B1a)
can be improved using resonant structures (Figure B1b), where light tra-
verses only NIN MZIs in the best-case scenario.

Based on these scenarios, the insertion losses of the system were cal-
culated as a function of the matrix size (N ×N) and are presented in
Figure B2a. For anMZI insertion loss of 0.1 dB[46] bit precisions of approx-
imately 5 bits or more can be achieved, as shown in Figure B2b, where we
assumed an input light power of 15 dBm. By incorporating additional de-
grees of freedom, such as time multiplexing used in reservoir computing
or other photonic neural networks,[47] the node count can be scaled to the
order of thousands.
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