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Abstract: This study introduces a fast and accurate online training method for blood flow index
(BFI) and relative BFI (rBFI) reconstruction in diffuse correlation spectroscopy (DCS). We
implement rigorous mathematical models to simulate the auto-correlation functions (g 2) for
semi-infinite homogeneous and three-layer human brain models. We implemented a fast online
training algorithm known as random vector functional link (RVFL) to reconstruct BFI from
noisy g 2. We extensively evaluated RVFL regarding both speed and accuracy for training and
inference. Moreover, we compared RVFL with extreme learning machine (ELM) architecture, a
conventional convolutional neural network (CNN), and three fitting algorithms. Results from
semi-infinite and three-layer models indicate that RVFL achieves higher accuracy than the other
algorithms, as evidenced by comprehensive metrics. While RVFL offers comparable accuracy to
CNNs, it boosts training speeds that are 3900-fold faster and inference speeds that are 19.8-fold
faster, enhancing its generalizability across different experimental settings. We also used g 2 from
one- and three-layer Monte Carlo (MC)-based in-silico simulations, as well as from analytical
models, to compare the accuracy and consistency of the results obtained from RVFL and ELM.
Furthermore, we discuss how RVFL is more suitable for embedded hardware due to its lower
computational complexity than ELM and CNN for training and inference.
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1. Introduction

Blood flow is a critical clinical indicator, quantitatively reflecting the delivery of nutrients, such
as oxygen, and the removal of metabolic waste in biological tissues. Medical imaging techniques
such as computed tomography (CT) coronary angiography [1], positron emission tomography
(PET) [2], Doppler ultrasound (DU) [3], and magnetic resonance imaging (MRI) [4] provide
visual representations of blood flow dynamics. However, these methods often require ionizing
radiation and the injection of contrast agents, making continuous clinical monitoring challenging.
Diffuse correlation spectroscopy (DCS) [5–7] has emerged as a promising alternative due to
its portability, affordability, and capability for continuous monitoring. DCS measures blood
flow by characterizing rapid speckle intensity fluctuations caused by the multiple scattering of
particles stimulated by coherent near-infrared light. The recorded temporal photon intensity
signal is converted into the normalized intensity autocorrelation function g2 during an acquisition
window. Single-photon detectors [8–10] have been employed due to their high frame rate and
high signal-to-noise ratio (SNR). Blood flow index (BFI, mm2/s) is a related parameter of the
intensity fluctuations. A semi-infinite homogeneous diffusion model has been adopted to extract
the BFI from living tissues [6,11,12] and a liquid phantom [13,14] due to its simplicity. While
the homogeneous model generates data quickly and is accurate for homogeneous media, it
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is unsuitable for multi-layered tissues, such as the human brain, where photons interact with
superficial layers. Photon interaction in superficial layers contradicts the model’s inherent
assumption of tissue homogeneity.

Although the human brain is usually categorized into five-layer slabs—scalp, skull, cere-
brospinal fluid (CSF), gray matter, and white matter—the three-layer model effectively approxi-
mates these five layers by merging the CSF, gray matter, and white matter into one layer [15].
Zhao et al. [15] utilized a three-layer analytical model to generate noiseless g2 and employed a
nonlinear least squares fitting (NLSF) algorithm (fminsearchbnd() in MATLAB) to investigate
the errors in reconstructing the scalp and cerebral blood flow index (SBFI and CBFI), affected
by varying physiological and tissue optical parameters. A CNN-based approach was used to
[16] compare the fitting method with noisy g2 generated using the same analytical model. Both
studies used Monte Carlo (MC) simulations to generate independent data for evaluation, where
the CNN-based approach demonstrated higher accuracy than the fitting methods in terms of
absolute and relative BFI (rBFI). NLSF methods require prior knowledge of optical parameters,
making accuracy sensitive to the initialization of these parameters [15]. Although deep neural
networks (DNNs) have emerged in DCS research [16–20], their accuracy is compromised for
new data due to the dependency on the optical properties of the tissue in a specific setup. Even
with transfer learning [14], it still takes minutes to re-train DNNs on high-performance GPUs,
which hinders real-time monitoring in clinical settings.

To address these challenges, we implemented a single-hidden-layer forward network (SLFN),
known as random vector functional link (RVFL), designed to maintain high accuracy while
eliminating the need for slow re-training. This approach is back-propagation-free and allows for
real-time training. Additionally, training data generation is expedited using analytical models for
both the semi-infinite and three-layer human brain models. Unlike existing work that compares
against only one fitting algorithm, we comprehensively evaluated RVFL’s performance against a
back-propagation-free extreme learning machine (ELM), three iteration-based NLSF methods,
and a CNN architecture.

Figure 1 illustrates the framework of this work. The semi-infinite homogeneous and three-layer
models for continuous-wave diffuse correlation spectroscopy (CW-DCS), shown in Fig. 1(a) and

Fig. 1. (a) and (b) depict examples of the geometries of the target semi-infinite and
three-layer human brain media, with the optical parameters serving as examples from our
evaluation cases. (c) illustrates one training and two test pipelines for both semi-infinite and
three-layer models. The topology of the RVFL is highlighted in the red dashed box, and
the variable annotations are explained in Section 3. Trained parameters (indicated by black
dashed boxes) for the analytical model-generated semi-infinite and three-layer datasets are
saved and used for performance evaluation. These trained parameters were also used for
independent testing on Monte Carlo-generated datasets.
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Fig. 1(b), are utilized for data generation and the implementation of RVFL in Section 3. The
performance assessment is detailed in Section 4.

2. Prior work

2.1. Propagation-free training algorithm for signal processing

RVFL [21] and ELM [22] are similar SLFNs, prevalent for biomedical signal processing due to
their compact architecture and fast training and inference. A combination of CNN and RVFL
[23] has been employed to classify Alzheimer’s disease diagnoses based on MRI and PET
images. RVFL has also been utilized as a classifier for Parkinson’s disease using transcranial
sonography and MRI datasets [24]. ELM and its variants have been applied in the biomedical
field for classifying biometric signals, including EEG [25], ECG [26], and PPG [27]. Besides,
ELM has also been utilized for parameter reconstruction in single-photon detectors and object
classification through heterogeneous fog using a low single-photon avalanche diode (SPAD)
array [28]. Also, ELM has been employed for fluorescence lifetime reconstruction in biomarker-
functionalized cancer cells, utilizing a photomultiplier and a time-correlated single-photon
counting (TCSPC) module [29]. In fluorescence lifetime imaging (FLIM), the current application
of ELM [29] demonstrates superior estimation speed while maintaining comparable accuracy to
DNNs [30], also exhibits promising fast-training advantages for fluorescence lifetime sensing in
flow cytometry [31].

2.2. Algorithms for BFI reconstruction

Fitting measured g2 to extract BFI and β is a challenging and ill-posed regression prob-
lem. Various MATLAB NLSF functions, such as lsqnonlin() (which employs the interior-
reflective Newton method [32]), fminsearch() (the Nelder-Mead simplex algorithm [11]), and
optimset() (the Levenberg-Marquardt method [33]), have been utilized to estimate BFI and
evaluate errors arising from uncertainties in optical properties and tissue thickness. The
Nth-order Taylor polynomial approximation [34] was introduced to facilitate real-time BFI
reconstruction.

Besides fitting, data-driven approaches have gained traction for BFI reconstruction, thanks to
precise analytical modeling and MC simulation of g2. A CNN was initially proposed [17] for
BFI estimation from simulated g2 curves from MCX [35]. A long-short-term memory (LSTM)
was firstly employed for real-time continuous BFI monitoring [18]. Recurrent Neural Network
(RNN)-types DNNs have been implemented to enhance feature extraction capabilities on 1D
data sequences, enabling the inference of absolute BFI [19] and relative BFI (rBFI) [20]. An
LSTM-based RNN was proposed [36] to continuously reconstruct rBFI and oxygen saturation for
multi-wavelength DCS. Another LSTM [37] was presented to separately estimate BFI values
from deep and shallow layers from simulated data and a two-layer phantom. Besides, Wang
et al. [16] proposed a DNN model that retrieves BFI and β from g2 from a three-layer model.
Zang et al. [14] reported a hardware-friendly DNN for BFI and β reconstruction from a semi-
infinite medium, integrating g2 generation from intensity data and BFI inference accelerator on
FPGA.

In contrast to existing data-driven literature in DCS, the novelty of this work is that we
apply RVFL and ELM for BFI estimation. Our approach offers a novel paradigm for real-time
training and inference and automated data generation for DCS without using high-end computing
resources. This contrasts sharply with previous studies, which necessitate lengthy training times
on high-end GPUs and involve complex data generation and collection processes. The compact
network topology saves DCS systems’ computational overhead, while the rapid processing
enables real-time monitoring in practical applications.
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3. Problem definition

3.1. DCS analytical model

We focus on BFI and the coherence factor β reconstruction from the semi-infinite homogeneous
model and the three-layer adult head model for CW-DCS. Our previous study [16] demonstrated
that the analytical models generate g2 curves consistent with MC simulations. Both the analytical
models and the parameters used in the semi-infinite and three-layer media have been elaborated in
our previous review [5], and are summarized here in Table 1. ρ is the source-detector separation,
λDCS is the wavelength, µ′s and µa are the reduced scattering and absorption coefficient, α is the
ratio between dynamic scatters and all scatters, and z0 is the distance between the virtual isotropic
point source and the tissue surface. Reff is the effective reflection coefficient, which depends on
the refractive index of the tissue n0 = ntissue/nair. Tb is the time interval between two lag times,
m is the bin index, t is the integration time, n = ITb is the average number of photons in a time
bin with the photon rate I. Γ is the decay rate of g1, obtained by fitting measured or simulated
g2 according to g2(τ) ≈ 1 + βexp(−2Γτ). δ(τ) is the noise applied to simulated noiseless g2(τ),
adopted from [11,38]. J0 is the zeroth order Bessel function of the first kind, computed by the
MATLAB function besselj(). q is the radial spatial frequency. Ll (l = 1, 2, 3) is the depth of
Layer 1, 2, and 3. DB(l) is the effective diffusion coefficient in the lth layer.

Table 1. Analytical modes of semi-infinite homogenous and three-layer medium.abc

Semi-infinite homogenous model Three-layer human brain model

G1(r⃗,τ)

G1(r⃗,τ) =
3µ′s
4π

(︂
exp(−Kr1)

r1
−

exp(−Kr2)
r2

)︂
,

K =
√︂

3µaµ′s + αµ
′2
s k2

0 ⟨∆r2(τ)⟩,

k0 = 2π/λDCS′ ,

r1 =
√︂
ρ2 + z2

0,

r2 =
√︂
ρ2 + (z0 + 2zb)

2,

z0 = 1/µ′s,

zb =
2(1+Reff )

3µ′s(1−Reff )
,

Reff = −1.440n−2
0 + 0.710n−1

0

+0.668 + 0.0636n0,

n0 ≈ 1.35,

⟨∆r2(τ)⟩ = 6DBτ, a

αDB = BFI, b

α ≈ 1.c

Num = 3µ′s1z0(ϕ1D1 cosh(ϕ1(L1 − zs))

(ϕ2D2 cosh(ϕ2L2) + ϕ3D3 sinh(ϕ2L2))

+ϕ2D2(ϕ3D3 cosh(ϕ2L2) + ϕ2D2sinh(ϕ2D2))

sinh(ϕ1(L1 − zs))),

Denom = ϕ2D2 cosh(ϕ2L2)(ϕ1(D1

+ϕ3D3z0)cosh(ϕ1D1)

+(ϕ3D3 + ϕ
2
1D1z0)sinh(ϕ1D1))

+(ϕ1(ϕ3D1D3 + ϕ
2
2D2

2z0)

cosh(ϕ1D1) + (ϕ
2
2D2

2 + ϕ
2
1ϕ3D1D3z0)

sinh(ϕ1D1))sinh(ϕ2L2),

ϕl = 3µa(l)µ
′
s(l) + 6k2

0µ
′2
s(l)DB(l)τ + q2, l = 1, 2, 3,

Ĝ0(q, z,τ) = Num
Denom ,

G0(r,τ) = 1
2π

∫
dqĜ0(q,τ)qJ0(ρq)

g1(ρ,τ) g1(ρ,τ) = G1(ρ,τ)
G1(ρ,τ=0) g1(ρ,τ) = G0(r,τ)

G0(r,τ=0)

g2(ρ,τ) g2(ρ,τ) = 1 + βg1(ρ,τ)2

Noise model δ(τ) =

√︂
Tb
t

[︃
β2 (1+e−2ΓTb )(1+e−2Γτ )+2m(1−e−2ΓTb )e−2Γτ

1−e−2ΓTb
+ 2⟨n⟩−1β(1 + e−2Γτ ) + ⟨n⟩−2(1 + e−2Γτ )

]︃1/2

a ⟨∆r2(τ)⟩ can be approximated to 6DBτ according to Brownian motion model [39].
bαDB is estimated as a single parameter as BFI for DCS [40,41].
cα ≈ 1 for liquid phantom [41].

3.2. ELM and RVFL

For ELM, the weights between the input layer (IL) and hidden layer (HL) are randomly assigned,
while the weights between the HL and output layer (OL) are trained. In contrast, RVFL differs by
directly connecting the input nodes (IN) not only to the hidden nodes (HN) with random weights
and biases but also directly to the output nodes. The weights between the hidden and output nodes
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in RVFL are trained. The topology of RVFL is depicted in Fig. 1(c). Suppose the training targets
for both ELM and RVFL are yi = [yi1, yi2, . . . , yim] ∈ R

m, where 1 ≤ i ≤ N, and N is the number
of pairs of input data and labels. Suppose the input training samples xi = [xi1, xi2, . . . , xin] ∈ R

n.
L is the number of HNs.

The computational properties of ELM and RVFL are summarized in Table 2, where ⟨·⟩

indicates the inner product. σk is the bias parameter of kth HN. ω is the matrix of parameters to
be trained, connecting the HL and OL. The activation function θ is usually sigmoid(), sine(), and
RBF(). wk is the weight vector connecting INs and ith HN. I is an identity matrix with a dimension
of (n + L, n + L). ξ is the regularization hyper-parameter. H†

ELM indicate the Moore-Penrose
pseudoinverse of matrix of HELM , implemented using pinv() in MATLAB.

3.3. Apply analytical models to training and test dataset generation

We generated g2 samples to train the RVFL and ELM models using analytical models of
semi-infinite and three-layer tissue as described in Table 1. Each sample was calculated using
128 logarithmically spaced lag times, ranging from 10−7 to 10−1 seconds. Corresponding labels
of each g2 curve are BFI and β. The evaluation baseline was set at L= 500, with N = 5,000,
n= 128, m= 2, referring to the variables in Table 2. Additionally, 500 independent g2 curves
were generated for testing. For the semi-infinite model dataset generation, µ′s = 1.6 mm−1 and
µa = 0.0027 mm−1 were adopted from [13] to mimic blood flow in living tissue. For the three-
layer model, µ′s1 = 0.635 mm−1, µ′s2 = 0.851 mm−1, µ′s3 = 1.099 mm−1 and µa1 = 0.019 mm−1,
µa2 = 0.014 mm−1, µa3 = 0.019 mm−1, along with thickness of 5 mm, 7 mm, ∞, for the scalp,
skull, and brain layers, respectively, adopted from [16,42]. Notably, although previous literature
[16,17] used semi-infinite datasets to train neural networks, the accuracy of cerebral blood flow
index (CBFI) and relative CBFI (rCBFI) reconstructions were confounded by extracerebral
layers. In this work, we investigate the error by applying semi-infinite-based neural networks
(RVFL, ELM, and CNN) and fitting algorithms (fminsearch(), lsqnonlin(), and lsqcurvefit(),
implemented in MATLAB) to analyze three-layer datasets. For the two types of datasets with
common experimental settings, ρ = 25 mm, λDCS = 785 nm, n0 = 1.35. Noise parameters, I and T
shown in Table 1, were randomly sampled between [1.5× 104, 2.5× 104] counts per second (cps)
and between [5, 25] seconds, respectively. Figure 1(a) and 1(b) provide an overview of the optical
properties and layer thicknesses of the semi-infinite homogenous and three-layer brain models
used in both MC and analytical simulations. Figure 1(c) illustrates the data flow and RVFL
topology.

4. Performance evaluation

4.1. Evaluation on analytical datasets on semi-infinite and three-layer models

This section evaluates the accuracy and precision of RVFL using datasets generated from the
analytical semi-infinite and three-layer models. For a fair comparison with standard algorithms,
we also implemented three optimization-based fitting methods and a CNN.

In Fig. 2 and Fig. 3, we visualize the reconstructed BFI and β from independent test datasets
generated by the semi-infinite and three-layer models. For the residuals of β reconstruction in
Fig. 2(a), both ELM and RVFL show higher accuracy than CNN and fitting methods, as reflected
by R2. Although the CNN was trained on the same datasets as ELM and RVFL, its R2 is lower,
with a few noticeable outliers. This is because the hyperparameters of the CNN model, such as
learning rate, loss function, and topology, were not fully optimized for fair comparisons. The
performance of CNN can be enhanced by fine-tuning the parameters. The three fitting methods
exhibit similar R2 values. Additionally, we plot the residual distributions for all algorithms. ELM
and RVFL demonstrate smaller absolute means (µabs) and lower standard deviations (σstd) than
CNN and the fitting methods. In terms of BFI reconstruction, shown in Fig. 2(b), lsqcurvefit()
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Fig. 2. Reconstructed distributions of (a) BFI and (b) β from independent semi-infinite test
datasets using algorithms implemented (or trained) with the semi-infinite model.

and lsqnonlin() present higher R2 than fminsearch(), among the three fitting methods. The two
fitting methods also slightly outperform ELM and RVFL regarding R2. CNN achieves the highest
R2 among the three data-driven methods. Regarding the histogram of residuals in Fig. 2(b),
RVFL achieves the highest accuracy (smallest µabs) but slightly lower precision (larger σstd) than
CNN and the fitting methods.

Unlike our previous study [16], where a DNN model was trained using a semi-infinite-based
dataset to infer BFI for a three-layer g2, we trained ELM, RVFL, and CNN models separately
using both semi-infinite and three-layer datasets. This approach aims to enhance BFI estimation
in deep tissue covered by superficial layers. Figure 3 depicts the performance on three-layer
datasets. For β reconstruction, the fitting algorithms, ELM, and RVFL achieve higher accuracy
than CNN. Similarly, ELM and RVFL present the highest accuracy (µabs) and precision (σstd)
compared to the others. For BFI (Layer-3) reconstruction, ELM and RVFL also outperform
the other models with higher R2 and smaller µabs. The lsqnonlin() and lsqcurvefit() algorithms
achieve nearly the same R2, which is higher than that of fminsearch(). Like the evaluation on
semi-infinite datasets, CNN is not fully optimized for a fair comparison and still holds potential
for performance enhancement. For both β and BFI reconstruction, ELM and RVFL produce
overall slightly smaller predicted values, as indicated by negative µabs values. In contrast, CNN
and the fitting algorithms produce slightly larger predicted values, as indicated by positive µabs
values. This phenomenon also occurs in the evaluation on semi-infinite datasets, as shown in
Fig. 2.

For clearer visualization of the regression performance of each algorithm on semi-infinite and
three-layer test datasets, quantity-versus-quantity (Q-Q) plots are presented in Fig. S1 and Fig.
S2 in the Supplement 1.

https://doi.org/10.6084/m9.figshare.28406882
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Fig. 3. Reconstructed distributions of (a) BFI (CBFI for Layer-3) and (b) β from independent
three-layer test datasets using algorithms implemented (or trained) with the three-layer
model.

4.2. Evaluation of in-silico datasets on semi-infinite and three-layer models

This section investigates the performance differences between two RVFL models—semi-RVFL
and tl-RVFL—trained using semi-infinite and three-layer datasets, respectively, for processing
MC-three-layer datasets. A previous study [15] explored the accuracy of a fitting method based
on the three-layer analytical model, which tested clear MC-simulated g2 curves. However, real
g2 data is always subject to noise. Therefore, in this work, noise was added to the MC-generated
g2 according to the noise model described in Table 1. Optical parameters mentioned in Section
3.3 were implemented in a MATLAB script. The generation process for 500 g2 curves takes
approximately 30 minutes with GPU acceleration on an NVIDIA RTX 2000 Ada, with an
initialized photon count of 107.

As existing literature [6,17,43] assumes the tissue under test is a one-layer semi-infinite
homogeneous model for simplicity, estimation errors are induced when testing tissues with
complex geometries, such as the brain or arm. In this study, we introduce fast dataset generation and
neural network training pipelines that enhance accuracy while preserving simplicity. Therefore,
we also compared the performance of the semi-RVFL and tl-RVFL models, trained with analytical
semi-infinite and three-layer datasets, respectively, to estimate outcomes on independent MC-
generated three-layer datasets. The values of β and CBFI for both models in the test datasets
were randomly assigned from the ranges [0.01, 1], and [10−8, 10−5] mm2/s, respectively. Figure 4
depicts the scatter plots of Error%, the mean of Error% (µ), and the 95% confidence interval
(CI) for both. For MC-simulation in Fig. 4(a), tl-RVFL yields higher accuracy for CBFI and
β reconstruction than semi-RVFL, as indicated by smaller absolute µ and CI. Similarly in the
analytical simulation shown in Fig. 4(b), the accuracy of β and CBFI reconstruction from tl-RVFL
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Fig. 4. Evaluation of semi-RVFL and tl-RVFL, tested with (a) three-layer MC datasets and
(b) three-layer analytical simulation datasets.

Fig. 5. CBFI reconstruction from three data-driven algorithms trained by three-layer MC
simulated data, evaluated by (a) I- and (b) T-controlled noise added to g2. Solid dots and
bars in each violin are means and 95% CI.

significantly surpasses that of semi-RVFL. These results indicate that using semi-RVFL leads
to substantial errors in three-layer media, whereas applying the three-layer analytical model
enhances reconstruction accuracy.

Since tl-RVFL demonstrates superior BFI reconstruction than semi-RVFL, we further evaluated
the three-layer model, under various noise levels. For this evaluation, we included tl-RVFL,
tl-ELM, and tl-CNN. The CNN architecture was adopted from a previous study [14], utilizing the
same hyperparameters and topology. Identical to the previous study [14], an early-stop function
with 35 patient epochs was integrated during training. This saved the pre-trained model with
the smallest validation error to prevent overfitting. According to the noise model in Table 1, the
noise’s magnitude can be controlled by photon intensity I and total averaging time T. We set I
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and T with a range of [5,000, 35,000] with 20 intervals (100 g2 curves per interval), and T within
[1, 20] seconds with 20 intervals (100 curves per interval), respectively. T and I were fixed to 20
s and 25,000 cps for evaluation of I and T, respectively. BFIs and β for three layers were fixed at
10−6, 0, 6× 10−6 mm2/s, and 0.5 for T- and I-oriented noise evaluation. As shown in Fig. 5(a),
tl-CNN and tl-ELM exhibit lower and higher means of reconstructed CBFI across all I values,
respectively. Additionally, tl-CNN demonstrates higher standard deviations (std) than tl-ELM
and tl-RVFL. The stds converge as I increases. Interestingly, the means of tl-RVFL remain stable
across all I values, whereas the means of tl-ELM and tl-CNN show a converging trend toward the
ground truth (GT) value as I increases. Among the three models, tl-RVFL achieves the highest
mean accuracy and the smallest stds across all I values. In the evaluation of T-controlled noise,
shown in Fig. 5(b), tl-CNN and tl-RVFL display similarly accurate CBFI reconstruction, while
tl-ELM exhibits a higher mean than both. Unlike Fig. 5(a), tl-ELM shows the highest stds across
different I values.

4.3. Relative BFI evaluation

We adopted an open-source BFI waveform [44] from an adult for forehead sensing to evaluate
the applicability of our model in realistic rBFI reconstruction. Using the BFI values from the
waveform as a reference, we generated g2 curves using MCX [35] and the noise model in Table 1.
The dataset from the literature [44] consists of 44 windows of trials, each containing 301 BFI
data points. For testing, we selected one of these windows. The rBFI equation is given by
rBFI = BFI

BFI0 , where BFI0 is the initial BFI (7.75× 10−6 mm2/s) in the window. The 301 BFIs

Fig. 6. rBFI evaluation. (a) 301 rBFI points over 15 seconds from the public datasets,
including GT rBFI (blue line), estimated rBFI from semi-RVFL (red line), and tl-RVFL
(yellow line). (b). Residual errors of reconstructed rBFI values from semi-RVFL and
th-RVFL, annotated with mean and std. (c). Generated noisy g2 curves using MCX from
the GT BFI values in the datasets.
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were used to generate g2 curves with fixed β = 0.5. The reference rBFI (blue lines) are depicted
in Fig. 6. In Fig. 6(a), the estimated rBFI waveform from the tl-RVFL (shown in yellow) exhibits
a similar fluctuation pattern to the GT. However, there is a notable difference in magnitude
between the two waveforms. The GT BFIs were retrieved using a semi-infinite homogeneous
fitting model from the literature [44], which did not account for the interference of superficial
layers. In contrast, tl-RVFL was trained with a three-layer model that includes the effects of
the scalp and skull layers, resulting in subtle changes in the rBFI. Despite these differences, the
rBFI waveform retrieved from tl-RVFL closely mirrors the changes observed in the GT. For
better visualization, we have shown the normalized rBFI waveforms accordingly in Fig. 6(a).
Conversely, the semi-RVFL model demonstrates inaccurate waveforms, with lower accuracy
and precision, as illustrated in Fig. 6(a) and (b), respectively. The MC-simulated 301 g2 curves
derived from the BFI points in the public datasets are depicted in Fig. 6(c).

4.4. Computational evaluations

We explored the influence of tuning the hyper-parameters of RVFL for accuracy and computing
speed, providing the optimal combination. Firstly, we evaluated the computational performance
and training accuracy of BFI and β. Also, we assessed the effect of the hyperparameter inference.

Fig. 7. Performance evaluation of ELM and RVFL for (a-b) semi-infinite and (d-e) three-
layer model wrt. L, in terms of MAE and training time consumption. (c) and (f) show the
relationship between accuracy and λ for training and test datasets.

 
Fig. 8. Performance evaluation of accuracy versus the number of training samples was
conducted on semi-infinite test datasets for (a) RVFL and (b) ELM, respectively. Similarly,
the evaluation was performed on three-layer test datasets for (c) RVFL and (d) ELM,
respectively.
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As shown in Fig. 7(a), we investigated how L affects the three-layer model’s training accuracy
for BFI and β. For a small L, RVFL presents higher accuracy. As L increases, ELM and RVFL
converge to a similar MAE, although RVFL still exhibits slightly higher accuracy than ELM. We
further explored the relationship between L and computing time, shown in Fig. 7(b). Figure 7(a)
and (d) also reflect that there is no overfitting issue in our cases. Because ELM and RVFL training
use matrix inversion, overfitting can occur when L is unnecessarily large [45]. We used L= 500
for all test cases, which is smaller than the maximum L in Fig. 7(a) and (b), where no accuracy
degradation occurs until L= 550. Therefore, overfitting is avoided. The time consumption of
ELM grows faster than RVFL when L increases. This is primarily because RVFL involves only
matrix multiplications and division during training and inference. In contrast, ELM requires the
inversion of a large pseudo-matrix, which typically involves QR or singular value decomposition.
The accuracy and time consumption for the three-layer test datasets, as affected by L, shown in
Fig. 7(d) and (e), exhibit a similar trend and comparison to the semi-infinite test datasets. In
RVFL, the hyper-parameter λ prevents overfitting yet affects RVFL’s accuracy. We investigated
the effect of varying λ on accuracy for training and test datasets. As shown in Fig. 7(c), the
range of λ in our test is [1× 10−6, 0.1]. The MAE for both training and testing for BFI (Layer-3)
and β increases as λ increases. The MAE is the smallest when λ = 10−6. In Fig. 7(c) and (f),
although, the MAEs of the reconstructed β from three-layer datasets are overall smaller than the
semi-infinite case, the MAEs of the reconstructed BFI for three-layer datasets are around 3-fold
higher than the semi-infinite case.

We also investigated how the size of training datasets affects training and test accuracy, as well
as time consumption. The range of the number of training datasets (#Tr) is [100, 5000], divided
into 20 intervals. Since there is no validation process during the training of RVFL and ELM, the
number of test datasets (#Te) for each interval is set to 10% of the corresponding training datasets.
Starting with the evaluation of semi-infinite datasets, as shown in Fig. 8(a), there is significant
underfitting during the first eight intervals, where the training MAE is very small while the test
MAE is large and does not converge until the 9th interval. The MAE is calculated as the sum
of the predicted BFI and β. Compared to RVFL, ELM exhibits more pronounced underfitting,
as indicated by a higher MAE before the 8th interval, and ELM’s time consumption increases
more rapidly as #Tr increases. For the three-layer test datasets, as shown in Fig. 8(b), a similar
underfitting issue is observed during the first eight intervals. Therefore, selecting #Tr= 5,000 is
appropriate for our training cases, as it demonstrates convergence between the training and test
MAE.

Table 3 compares the existing DNN-based BFI reconstruction methods in terms of FLOPs,
number of parameters (# Param.), number of layers (# Layers), training time with the number of
samples used in the literature, inference time per sample, and ρ′s reconfigurability. Although
Nakabayashi et al.’s model [37] used the fewest samples, the length of each g2 curve is 501, longer
than 128 in our g2 curves. Therefore, RVFL and ELM equivalently require the smallest volume
of training samples, potentially reducing the time required for data generation and collection.
RVFL achieves faster training times than other methods, even with less powerful computing
hardware. Apart from [16] and [37], the ρ values in the other studies are fixed during inference
and require re-training if the environment setup changes. Thanks to its fast training, RVFL can
swiftly adjust to new setups. Although LSTM [18] has the fewest #FLOPs and #Param., its
inference time is slower than our methods. Additionally, unlike regularized matrix multiplication
and additions, LSTM blocks involve several skip connections, and the data dependency hinders
the parallelization on embedded hardware. Between RVFL and ELM, RVFL is faster than ELM
in training yet slower than ELM in inference. RVFL shows smaller MAEs than ELM in training
and inference.
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Fig. 9. The relationship between accuracy and lag time length was evaluated on RVFL and
ELM, tested using (a) a semi-infinite dataset and (b) a three-layer dataset.

5. Discussion

This work uses consistent µ′s, µa, and ρ for training networks rather than using parameter ranges,
as we found that training accuracy is significantly affected when parameters vary, apart from
BFI and β. The generalization of RVFL is impacted by these consistent parameters (µ′s, µa, and
ρ) if the experiment setup alters. To enhance generalization, we linearly assigned 50 values for
µa and 50 values for µ′s within the ranges of [0.5, 1.6] mm−1 and [0.001, 1] mm−1, respectively.
Additionally, we linearly assigned 10 ρ values in the range of [10, 35] mm. For each combination
of µ′s and µa we assigned 5,000 samples. Therefore, for each ρ, we generated 50 × 50 × 5,000
samples to cover the most common settings. With these standby datasets, we can swiftly re-train
the model with the appropriate parameter combination if the experimental setup changes. To
evaluate the robustness of RVFL and ELM models to varying lag time lengths—arising from
hardware correlators producing different lag time durations—we maintained a constant total lag
time range during the analysis, from 10−7 to 10−1 seconds, while varying the length from 64 to
128 in 20 intervals. As shown in Fig. 9, the training and test accuracy of RVFL and ELM remain
unaffected by the lag time length, showing the practical applicability.

Here, we outline three critical areas for future work:

1. Although RVFL running on a CPU already achieves real-time performance, g2 curves
generated from the hardware autocorrelator still need to be transferred to a PC for post-
processing. Almeida et al. proposed a parallelized OS-RVFL [46], demonstrating that
the training phase can be parallelized into sequential learning for each sample, instead of
relying on the pseudo-inversion of a large matrix HRVFL as shown in Table 1. This makes
it feasible to implement OS-RVFL directly on hardware and integrate it with the hardware
correlator, forming an encapsulated module and reducing the post-processing overhead.

2. Although this work focuses on the semi-infinite and three-layer models for CW-DCS,
it would be worthwhile to implement analytical models with different geometries, such
as two-layer models, and evaluate RVFL’s accuracy and consistency between analytical
results and MC simulations. Furthermore, beyond CW-DCS, applying RVFL to analyze
and evaluate time-domain [40] and frequency-domain [47,48] DCS numerically also
warrants investigation.

3. We plan to apply data generation and model training pipelines to real phantoms or tissues
with characterized optical parameters to evaluate our algorithm in a practical setting.
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6. Conclusion

This work presents an online training and inference RVFL for BFI and β reconstruction in
CW-DCS, addressing the challenges of long training times in DNNs and the low accuracy of
NLSF methods. This study highlights the potential of RVFL-based models in clinical DCS
systems. Testing semi-RVFL with three-layer data reveals that semi-RVFL is less suitable
than tl-RVFL due to lower accuracy and precision. Additionally, we discussed the potential of
hardware-embedded RVFL and the integration with hardware correlators, thanks to RVFL’s
compact architecture and regularized computations. This hardware integration can further
enhance the portability of DCS systems by eliminating the need for post-processing.
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