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Data approximation by neural nets for the MRE inverse problem in the
frequency and time domains
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‘Stacked’ matrix approximation methods for computing the shear modulus in the magnetic resonance
elastography (MRE) inverse problem have been shown to work well in both the frequency and time
domain formulations, and are robust to moderate levels of noise. However, when finite differences are
used to approximate derivatives of the measured displacement, the algorithms can break down at high
noise levels. Here we show that if instead a neural network is used to approximate the derivatives of the
noisy displacement data, then the overall MRE algorithms become much more robust to noise pollution.
Extensive tests indicate that the new methods perform extremely well even in the presence of very high
levels of noise, and no additional processing or smoothing of the data is required.

Keywords: magnetic resonance elastography (MRE); elasticity; biomechanics; inverse problem; neural
networks.

1. Introduction

New methods for magnetic resonance elastography (MRE) are presented in Davies et al. (2019) (for
the frequency domain problem) and Davies & Sack (2020) (for the time domain problem), and shown to
work well when there are low to moderate levels of noise in the experimental measurements/simulations.
However, because these methods use finite differences to approximate derivatives, they do not work well
at high noise levels (see (Davies et al., 2019; Davies & Sack, 2020) for more details and (Hanke &
Scherzer, 2001) for a related discussion of numerical stability and sensitivity). The aim of this short
update is to show how these algorithms can be made robust (even to very high levels of noise) by
exploiting the excellent function approximation properties of neural networks (NNs) (see e.g. (Lu et al.,
2021, Section 2.4) and the references therein). The key step is to use automatic differentiation of an
NN representation of the measured displacement data instead of a finite difference approximation.
We show that the resulting method works remarkably well, with no additional data processing or
smoothing required. Note that this is intended as a ‘proof of concept’ rather than a detailed investigation
of the best way to approximate the displacement derivative in MRE algorithms. Other function and
derivative approximations may also work well, but focusing on the NN approach here is a deliberate
choice because there are many easily accessible NN codes available (via open source or in common
programming environments such as Matlab) that applied mathematicians can use for function or
derivative approximation. The appendix contains a short sample code based on Matlab’s Deep Learning
Toolbox.

MRE involves the noninvasive evaluation of a tissue’s elastic shear modulus, with applications in
disease diagnosis (as described e.g. by (McLaughlin et al., 2010; Doyley, 2012; Dittmann et al., 2016;
Barnhill et al., 2018)). A typical experimental scenario is to induce elastic waves in tissue by external
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mechanical excitation (e.g. the patient lies on on a vibrating table) and measure the resulting displacement
at fixed sites within the tissue using phase-contrast MRI. This provides a far richer data source than
methods which measure displacement or strain at the tissue surface, but it is still an extremely challenging
inverse problem, with many different methods proposed (see e.g. (Manduca et al., 2001; Park & Maniatty,
2006; McLaughlin et al., 2010; Sánchez et al., 2010; Doyley, 2012; Barnhill et al., 2018)).

The MRE approximation methods of Davies et al. (2019) and Davies & Sack (2020) involve
combining measurements taken at different underlying mechanical oscillation frequencies into an over-
determined least-squares system for μ, the reconstructed values of the shear modulus at equispaced points
within the tissue. Extensive tests on ‘synthetic’ data in 1D and 2D space and experimental measurements
in 3D space (in full 3D and also evaluated as 2D spatial slices) show very similar performance for both the
frequency domain and time domain, with results tending to be better in higher space dimensions. In all
cases, the methods work well when there are low to moderate levels of noise in the measured/simulated
displacements, but high levels of noise results in the computed value of μ being far too low—this is
a well-known phenomenon in MRE, as noted in e.g. Arunachalam et al. (2017). The reason for this is
explained in Davies & Sack (2020): the vector μ (of shear modulus values at points in space) solves a
least-squares system of the form

min
μ∈Rn

{‖AS μ − bS‖
}

, (1.1)

where the over-determined matrix AS is sparse, and all its nonzero entries involve derivatives of the
measured displacement. For example, in the frequency domain problem in 1D space considered in
(Davies et al., 2019, Section 4), the underlying equation is

(
v′(x) μ(x)

)′ = −ω2 v(x) , x ∈ (0, 1) , (1.2)

where v(x) is the (measured/simulated) displacement, μ(x) the shear modulus (which is to be found), ω a
nondimensionalized frequency proportional to the frequency of the underlying mechanical oscillations,
and where a prime denotes a derivative with respect to x. The measured displacement is the average over
an interval of length Δx = 1/J, and AS in (1.1) is formed of a small number (typically around 5) of
matrices A(k) ∈ R

(J−2)×(J−1) stacked vertically. Each matrix A(k) is bidiagonal with the nonzero entries

in row j being aj and −aj+1 with aj =
(

v(xj+1/2) − v(xj−1/2)
)

/Δx ≈ v′(xj). If the error in the measured

displacement values is typically of size ε, then the error in the nonzero entries of AS in (1.1) will be around
ε/Δx, and so the method’s error increases as either ε grows or the mesh Δx is refined, and in either case
the components of the calculated solution μ are reduced. An additional but less serious drawback of the
‘stacked frequency’ approach of Davies et al. (2019) and Davies & Sack (2020) is that it assumes that
the underlying model is purely elastic—if it is not, then the measured shear modulus can depend on the
oscillation frequency, and blending different frequencies into a single calculation obscures this.

The new MRE approximation proposed here is a stacked matrix method that

(i) uses the same underlying oscillation frequency for each matrix A(k), and

(ii) takes advantage of the excellent function approximation properties of NNs with a single hidden
layer (see e.g. (Lu et al., 2021, Section 2.4) and the references therein) to approximate the
noisy measured/simulated data whose first derivatives can then be evaluated by automatic
differentiation.



NEURAL NETS FOR THE MRE INVERSE PROBLEM 3

Point (ii) is the most significant new development and results in a system (1.1) for which the error
in the nonzero components of each A(k) is no longer proportional to 1/Δx. As well as being a lot more
accurate for noisy data, it also means that the method’s accuracy improves as the mesh is refined (methods
which use finite differences for the terms aj become less accurate as the mesh is refined unless the
noise level is very low). This is important because it means that future advances in MRI technology that
provide higher resolution measurements will directly translate into more accurate results for medical
practitioners. Point (i) means that the shear modulus can be calculated from (separate) measurements at
the same mechanical oscillation frequency, which will enable thorough testing at different frequencies to
determine whether or not a tissue’s shear modulus is frequency-dependent. If so, then appropriate viscous
terms can be added in to the underlying mathematical model to provide a more accurate representation.

Because the aim here is to show the potential of the new method, we will restrict attention to model
problems in 1D space as a prototype (noting that the methods of Davies et al. (2019) and Davies & Sack
(2020) tend to work better as the number of space dimensions increases). We begin the next section
with a brief summary of the stacked matrix approach for the new frequency and time domain versions
of the 1D problem together with extensive numerical tests which show that they perform extremely well
even at very high noise levels, and neither version requires pre-smoothing. The NN approach used to
approximate the data and derivatives is described in Section 3. Its implementation using standard NN
packages is straightforward, and a short code using Matlab’s Deep Learning Toolbox is appended.

2. Underlying model and approximation methods

The time-dependent 1D model problem considered in Davies & Sack (2020) is to find the shear modulus
μ(x) given measured values of the 2π time-periodic function u(x, t) such that

(
ux μ

)
x = ω2 ü , x ∈ (0, 1) , t ∈ (0, 2π) , (2.1)

where an overdot denotes a derivative with respect to time t and a subscript x denotes a space derivative.
The problem has been nondimensionalized and ω is proportional to the underlying mechanical oscillation
frequency (which is of the order of 30–100 Hz).

2.1 Stacked matrix approximation for the frequency domain problem

We first outline the solution algorithm for the frequency domain version (1.2) of this problem by setting
u(x, t) = v(x) cos t (see (Davies et al., 2019) for full details). The underlying approximation of (1.2)
uses finite volumes based on a staggered grid, with v recorded at interval midpoints xj−1/2 for j = 1 : J,
and its derivative a(x) = v′(x) and μ(x) evaluated at the interior nodes xj for j = 1 : J − 1 (where
xr = r Δx). This gives the underdetermined linear system

A μ = b (2.2)

for μ = (μ1, . . . , μJ−1)
T , where bj = ω2 Δx v(xj+1/2) for j = 1 : J − 2 and A ∈ R

(J−2)×(J−1) is the
bidiagonal matrix with entries

A =

⎛
⎜⎜⎜⎝

a1 −a2 0 0 . . . 0 0
0 a2 −a3 0 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . aJ−2 −aJ−1

⎞
⎟⎟⎟⎠
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with aj ≈ v′(xj) . The least-squares system (1.1) (with n = J −1) is obtained by stacking up several such
A and b, each calculated from different simulated measurements of v(x). As noted above the method in
Davies et al. (2019) uses a different frequency ω for each simulation and the aj are obtained from central
finite difference approximations; here we use the same value of ω for each simulation (with randomly
varying boundary values) and use the derivative of an NN to evaluate the aj. The algorithm to compute
AS and bS in the simulation is as follows:

• Choose ω, J, the exact shear modulus μ(x), the size ε of noise and the number q of matrices/vectors
to stack.

• For each individual simulation choose random boundary values for v(0) and v(1) in the interval
[−1, 1] and calculate a very accurate forward solution v(x) of (1.2) at the interval midpoints xj−1/2
(either numerically, or it can be done exactly if μ(x) is piecewise constant). Then add noise to each
component, replacing vj−1/2 by vj−1/2 + εj for pseudo-random εj ∈ [−ε, ε].

• Calculate aj ≈ v′(xj): this is done as a first central difference approximation in Davies et al. (2019),
but here we use an NN approximation (described in Section 3). Then construct A and b for this
simulation and add them into the stacked versions AS and bS.

• After q runs the system matrix AS and vector bS are complete, then solve the least-squares system
AS μ = bS for the calculated shear modulus (evaluated at the interior nodes) and compare it with the
exact value μ(x) at the nodepoints xj, j = 1 : J − 1.

2.1.1 Numerical results (frequency domain). For easy comparison with Davies et al. (2019), we show
results obtained from a stacked system of q = 5 submatrices with nondimensionalized frequency ω = 40
(this is typically the lowest value of ω used in Davies et al. (2019)). The red solid line in Fig. 1 is the
calculated value of μ with J = 64 (top) and J = 256 (bottom) with a small amount of added noise
(ε = 0.05) using the NN approach. The exact shear modulus μ(x) is the piecewise constant shape shown
by the black dotted line, and the blue dashed line shows the shear modulus calculated using the method
of Davies et al. (2019) but with all the submatrices found at this single frequency (there appears to
be no difference in results between the multi-frequency approach of Davies et al. (2019) and using a
single frequency). As described above, the method (Davies et al., 2019) is about as effective as our new
approach when the mesh is coarse (with this level of added noise), but refining the mesh at a fixed noise
level destroys its performance, as is clearly shown in the figure.

Increasing the size of added noise destroys the performance of the finite-difference approach of
Davies et al. (2019) but not the new NN method, as illustrated in Fig. 2. Here the mesh is fixed at
J = 128, and both methods perform similarly with no added noise (top plot), but adding even a small
amount of noise (ε = 0.1) stops the method of Davies et al. (2019) working. There is no degradation
in the performance of the new NN method, and it continues to be remarkably robust for extremely high
values of added noise. For example, the top plot of Fig. 3 compares the new NN method with no added
noise (red solid) to that with ε = 3 (red dashed). The bottom plot shows the exact (black dotted) and noisy
(red dashed) values of the displacement v(x) used for one of the five stacked matrix simulations—the
amplitude of the exact v(x) used for each simulation varies (it depends on the random boundary values),
but it is an O(1) quantity, and typically in the range 3–8.

All these numerical tests use Matlab’s default NN training configuration of one hidden layer with 10
parameters (see Section 3 for more details) and this works well with low or moderate forcing frequencies
ω, but a more highly oscillatory displacement function v(x) will require more than this for a good
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FIG. 1. Plot of calculated μ (red solid line) obtained using the frequency domain NN method with a stacked system of q = 5
submatrices with ω = 40 when J = 64 (top), J = 256 (bottom) and added noise-level ε = 0.05. The exact value μ(x) is shown as
a black dotted line and the blue dashed line shows μ calculated using the method of Davies et al. (2019).

FIG. 2. Plot of calculated μ (red solid line) obtained using the frequency domain NN method with a stacked system of q = 5
submatrices with ω = 40 when J = 128 with no added noise (top) and added noise-level ε = 0.1 (bottom). The exact value μ(x)
is shown as a black dotted line and the blue dashed line shows μ calculated using the method of Davies et al. (2019).



6 P. J. DAVIES

FIG. 3. Top: calculated μ obtained using the frequency domain NN method with a stacked system of q = 5 submatrices with
ω = 40 when J = 128 with no added noise (red solid line) and added noise-level ε = 3 (red dashed line). Bottom: exact (black
dotted) and noisy (red dashed) values of the displacement v(x) used for one of the five stacked-matrix simulations.

approximation. In practice, the mechanical oscillation frequency cannot be too high, for patient comfort,
and it is more important to develop methods which work well at lower frequencies.

2.2 Stacked matrix approximation for the time domain problem

The exact solution of (2.1) with appropriate initial and boundary conditions is u(x, t) = v(x) cos t,
where v(x) can be calculated very accurately and efficiently for a given ‘exact’ shear modulus μ(x) as
described in Davies & Sack (2020). The noisy simulated solution on a space-time observation mesh with
size Δx = 1/J and h = 2π/M (where typically M = 8) is then

um
j = v(xj−1/2) cos(tm) + εm

j , j = 1 : J , m = 0 : M − 1 ,

where again xr = r Δx, tm = mh and each εm
j ∈ [−ε, ε] is a pseudo-random error term. The usual

solution method is to take the discrete Fourier transform (DFT) in time of the measured displacement u
in (2.1) and throw away all but one of the two dominant DFT components, but as discussed in Davies &
Sack (2020), both dominant components should be kept (they are complex conjugates). Discretising in
space then leads to a system like (2.2) in which the matrix A ∈ C

2 (J−2)×(J−1) is block diagonal and the
entries aj are now column vectors of length 2 (the two components are complex conjugates). Similarly
the right-hand side vector b is now complex, and of length 2 (J−2), formed of consecutive entries that are
complex conjugates. This matrix-vector system is again stacked (as described for the frequency domain
problem above), giving the least-squares formulation

min
μ∈Cn

{‖AS μ − bS‖
}
, (2.3)
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FIG. 4. Plot of calculated μ (red solid line) obtained for the time-domain problem (2.1) using the new NN method with M = 8
time samples per period, a stacked system of q = 5 submatrices with ω = 40 when J = 64 (top) J = 256 (bottom) and added
noise-level ε = 0.03. The exact value μ(x) is shown as a black dotted line and the blue dashed line shows μ calculated using the
method of Davies & Sack (2020).

in terms of the complex 2-norm. It is shown in Davies & Sack (2020) that the structure of this problem
results in the computed shear modulus μ being real up to rounding error—it satisfies the normal equation

AH
S AS μ = AH

S bS .

As for the frequency domain case above we use an NN approximation instead of computing the
entries of the matrix A by finite differences. The details are given in Section 3, but the key point is to
separately calculate an NN approximation in space of the real and imaginary parts (and their derivatives)
of the dominant DFT component of u, and form the pairs of rows of A and b from this and its complex
conjugate.

2.2.1 Numerical results (time domain). We show results obtained from a stacked system of q = 5
submatrices with M = 8 time samples a period, and using the single nondimensionalized frequency
ω = 40 (there appears to be no difference in results between Davies & Sack (2020) and using a single
frequency for the stacked matrices). The behaviour of the new NN time-domain approximation is very
similar to that of the frequency domain problem described above. Figure 4 shows that its performance
does not degrade as the space mesh is refined, unlike the method of Davies & Sack (2020), whose
solution is close to zero when J = 256 even with a very small amount of added noise. Its robustness
with a small amount of added noise (when J = 128) is shown in Fig. 5 –although note that the solution
calculated using the method of Davies & Sack (2020) is more accurate in the top plot with no added noise.
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FIG. 5. Plot of calculated μ (red solid line) obtained using the time domain NN method for a stacked system of q = 5 submatrices
with ω = 40 and M = 8 when J = 128 with no added noise (top) and added noise-level ε = 0.1 (bottom). The exact value μ(x)
is shown as a black dotted line and the blue dashed line shows μ calculated using the method of Davies & Sack (2020).

FIG. 6. Plot of calculated μ obtained using the time domain NN method for a stacked system of q = 5 submatrices with ω = 40
and M = 8 when J = 128 with no added noise (red solid line) and added noise-level ε = 3 (red dashed line).

The time domain version of the new method is also robust to extremely high noise levels, as shown in
Fig. 6 in which the added noise has ε = 3.

3. Neural net approximation of the measured data and its derivatives

This section is aimed at applied mathematicians who are interested in using off-the-shelf software to
easily obtain good approximations from noisy data, rather than at experts in NNs or deep learning. The
appendix contains a short code based on Matlab’s Deep Learning Toolbox, but lots of other platforms
are available, e.g. the Python library DeepXDE is described in the excellent review (Lu et al., 2021). The
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article (Higham & Higham, 2019) is also an excellent introduction to the subject, and clearly explains
how an NN is ‘trained’.

In the frequency domain problem of Section 2.1, the aim is to find a function y(x) to approximate

the noisy data
{
(xj−1/2, vj−1/2)

}J

j=1
and then use automatic differentiation to evaluate aj = y′(xj). This

is straightforward using an NN with one hidden layer and a single output. In this case the function fit
is obtained using 3 N + 1 parameters, comprised of two weight vectors (the columns W1 and W2 of
the matrix W ∈ R

N×2), one bias (column) vector B ∈ R
N and the real scalar bias BL (all calculations

reported here use the default of N = 10, so there are 31 parameters). It is common to first affinely

map the two data intervals [x1/2, xJ−1/2] and [vL, vR] (where vL = min
{

vj−1/2, j = 1 : J
}

and vR =
max

{
vj−1/2, j = 1 : J

}
) onto [−1, 1]. These maps are respectively Sx(t) = αx t+βx and Sy(t) = αy t+βy

for

αx = 2

xJ−1
, βx = − xJ

xJ−1
, αy = 2

vR − vL
, βy = − (vR + vL)

vR − vL
.

The data-fitted approximation at x ∈ [x1/2, xJ−1/2] is y(x) obtained in the following steps:

x̂ = Sx(x) ∈ [−1, 1] (scale x − values)

Z = W1 x̂ + B ∈ R
N (hidden layer calculation on scaled values)

ŷ = WT
2 σ(Z) + BL ∈ R (scaled output)

y = S−1
y (̂y) ∈ R (reverse the scaling of the fitted output) ,

where the ‘cut-off’ function σ is applied componentwise and regarded as a column vector (here σ is
the hyperbolic tangent, tanh, although other choices are available as described in Higham & Higham
(2019)). In component form, the middle two terms give

ŷ = BL +
N∑

k=1

Wk2 σ
(
Wk1 x̂ + Bk

)
.

Training the network involves optimising the distance
∣∣∣vj−1/2 − y(xj−1/2)

∣∣∣, j = 1 : J over the

parameters. There are various possibilities for this, and the examples shown in the previous sections
all use the Levenberg–Marquardt backpropagation option in the toolbox. Once the parameters have been
obtained, it is straightforward to calculate the derivative y′(x) using the chain rule on the above steps
(this is termed ‘automatic differentiation’; see (Lu et al., 2021) for more details). That is

dy

dx
= dy

d̂y

d̂y

d̂x

d̂x

dx
= αx

αy

d̂y

d̂x
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and if σ is the hyperbolic tangent function, then

d̂y

d̂x
=

N∑
k=1

Wk1 Wk2 sech2 (
Wk1 x̂ + Bk

)
.

The derivatives are evaluated at the interior nodes xj and the entries aj = y′(xj) are used in the matrix
A of Section 2.1. Data fitting for the time domain problem of Section 2.2 is very similar, although now
the derivative is taken of components of the DFT of the noisy data, which are complex. This is done by
finding separate NN approximations for the real and imaginary parts (yR and yI , respectively) of one of
the dominant DFT components and then the two-component column vector aj used for the matrix A of
Section 2.2 is

aj =
(

y′
R(xj) + i y′

I(xj)

y′
R(xj) − i y′

I(xj)

)
for j = 1 : J.

A short Matlab code that uses built-in routines to calculate the fitted function and its derivative (at a
vector of points) to a noisy version of y = x2 is given in the Appendix.

4. Discussion and conclusions

The numerical results for the 1D model problems in both the frequency (1.2) and time (2.1) domain are
very encouraging. In particular, they show that off-the-shelf packages for NNs with one hidden layer
can provide a good enough approximation of the derivative of very noisy displacement data to give
good results when combined with the (robust) stacked MRE algorithms of Davies et al. (2019) and
Davies & Sack (2020). The new methods need no other data processing or smoothing, and the results
improve as the spatial mesh is refined. The results presented here are intended as a ‘proof of concept’
rather than a detailed investigation of the best way to approximate the displacement derivative, and have
focused on the NN approach because there are many easily accessible NN codes available. Also, because
the individual matrices stacked into the over-determined systems (1.1) and (2.3) can be obtained using
the same underlying oscillation frequency, the new approach could be used to investigate frequency
dependence.

The much improved performance of the new NN-based approach for these 1D prototype problems
indicates that it is well worth investigating a similar approach for 2D and 3D problems. The 2D and
3D versions of the stacked (finite difference) MRE algorithms are described and tested in detail in
Davies et al. (2019) and Davies & Sack (2020), and developing algorithms that instead use use an NN
approximation to calculate the space derivatives of 2D or 3D displacement data is the focus of ongoing
research.
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A. Appendix: calculating the derivative of fitted data

The following short code uses Matlab’s Deep Learning Toolbox to calculate the derivative of the NN fit
to a noisy approximation of y = x2. The input parameters are the vector x of length J of interval midpoint
values in (0, 1) and the noisy data is ydat

j−1/2 = x2
j−1/2 +εj where each error component εj ∈ [−ε, ε]. The

code calculates and plots the NN approximation yfit (top plot) to the noisy data and its derivative (lower
plot) at the vector of interior nodes xj for j = 1 : J − 1. The blue dashed ‘F diff’ line in the lower plot is
the finite difference approximation of the derivative of the fitted data yfit—it confirms that the derivative
is correctly calculated (for a sufficiently fine mesh size J; in this case, its plot will be indistinguishable
from that of the derivative).
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