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the Iowa gambling task in
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The Iowa gambling task is widely employed to assess the evaluation of risk versus

reward contingencies, and how the evaluations are implemented to gain

advantageous returns. The cognitive processes involved can be compromised

in psychiatric conditions, leading to the development of analogous tasks with

translational value for use in rodents. The rodent touchscreen apparatus

maximises the degree of similarity with the human task, and in this review we

provide an outline of the use of rodent touchscreen gambling tasks in preclinical

studies of psychiatric conditions. In particular, we describe how the basic task has

been adapted to probe the relative contributions of different neurotransmitter

systems, and specific aspects of cognition. We then offer a perspective on how

the task might be employed most beneficially in future studies.
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Introduction

The ability to make sound decisions is critical in everyday life and is influenced by

cognitive control and emotional systems, underpinned by shifting influences of cortico-

striato-thalamo-cortical networks. During decision-making, individuals evaluate the

probabilities and risks associated with different options, and this includes during

recreational pastimes such as gambling. Whilst gambling is often a harmless pursuit, for

some decision making can become maladaptive, leading to a diagnosis of Gambling

disorder, which is identified as a behavioural addiction under DSM-5 (1).

The Iowa gambling task (IGT) developed ~30 years ago by Bechara and co-workers (2),

captures ‘real world’ decision making performance under ambiguous and risky conditions

in a clinical laboratory setting. The IGT involves probabilistic learning via monetary reward

and punishment. Participants choose from 4 decks of cards. Unbeknown to them, some

decks are advantageous in the short term (large wins) but disadvantageous in the long term

(large frequent losses) whereas others are less attractive in the short term (small wins) but
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advantageous over time (small, less frequent losses). This induces a

conflict between immediate high rewards and long-term gains.

Hence, the optimal strategy to maximise earnings on the task is

to select cards that yield smaller gains over time but lower penalties

and avoid the ‘high risk, high reward’ decks.

The dynamics of decision making in the IGT are complex and

involve a range of neurophysiological processes, each underpinned

by distinct neural networks. Participants must learn and remember

the different contingencies as the task progresses, integrate affective

and cognitive information over time into future strategy, along with

inhibiting attractive but risky choices. Early ‘exploratory’ stages of

the task that involve decision-making under uncertainty likely

recruit the ‘emotional system’ and as the task progresses the

‘cognitive control’ system orchestrates instrumental behaviour to

enable the best long-term option (3). As elegantly summarised

throughout this Special Edition, the IGT has proved an important

tool for probing aspects of cognitive function related to the

perception and experience of risk and reward.
Rodent models of the IGT

Rodent models of decision-making processes akin to the IGT

are important in translational research, as these have the potential

to increase understanding of the neurobiological mechanisms

involved, which in turn can inform new treatments. The validity

of animal models is frequently assessed against criteria of face,

predictive and construct validity (4). Face validity is the similarity of

what is observed in the animal model compared to human

symptoms, predictive validity relates to the model’s potential to

predict human processes, often with respect to identifying drug

treatments, and construct validity signifies the extent to which the

model has similar neurobiological processes to those in humans.

Several rodent versions of the IGT (rGT) have evolved, with an

initial focus on maze-based non operant tasks and automated

operant tasks in adapted 5-hole operant chambers (for reviews

see (3, 5, 6). More recently, automated touchscreen operant tasks of

the rGT have been adopted (7–11). In terms of satisfying criteria for

animal models, these models exhibit good face validity despite

differences in task features, training, single and multiple session

learning processes and end point assessments (Table 1). Hence

animals can make decisions in the face of uncertainty (similar to the

human IGT) in the sense that they are able to evaluate which

options are advantageous in the long-term and adapt their

behaviour by avoiding risky options typically associated with

larger rewards. All studies report that rats and mice successfully

learn the task and show clear preference for the most optimal

option. However, assessment of construct and predictive validity is

more difficult to assess in these models, given the incomplete

knowledge of the neurobiological processes in decision making

and the lack of pharmacological treatments available for gambling.

Features of construct validity will be discussed when relevant in

evaluation of the tasks below. Nonetheless, the RDoC and

CNTRICS initiatives have confirmed that the rGT has an

important role to play in cross species translation (from rodent to

human) of decision-making processes (12).
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The first rGT protocol to be established was a non-automated 4

arm maze-based task for rats and mice (13, 14). The task measures

choices between two goal arms for obtaining differing amounts of

sugar pellet reward or punishment (bitter-tasting quinine pellet).

For choices in the ‘advantageous’ arm there are low immediate

rewards but with a net gain over time, whereas for choices in the

‘disadvantageous’ arm the chance of high immediate rewards is

offset by high net loss in the long-term. Hence this task shows good

face-validity as there is conflict between short-term and long-term

pay off of choices as in the human IGT. Interestingly, there was a

similar sex difference in reward-related decision making in this rat

task as has been shown in humans (13). By comparison with

operant based models and the human IGT, this paradigm does

not differentiate between long-term outcome and frequency of

options of reward/punishment. Variations of this non-operant

maze-based task have been developed in mice (15, 16) with

suggestions that the inter-individual differences in decision

making offer good face-validity.

With the introduction of operant based automated tasks, there

is the opportunity to investigate a wide range of neurocognitive

parameters concurrently that are relevant to human gambling such

as impulsivity, compulsivity and cognitive inflexibility The operant

chamber rGT model introduced by Zeeb et al. (17) utilises the

standard five-hole operant chamber typically used for the five-

choice serial reaction time task adapted such that only four holes are

used in the task. Since features of this task protocol have been

adopted in recent touchscreen tasks for rats and mice, a brief

resume of the face, predictive and construct validity of this task is

described here. Animals have a choice between four distinct options

which are similar to the four decks of cards in the IGT (face

validity). The options differ in frequency and magnitude of reward/

punishment possibilities. Nose poking in the two options which

result in small numbers of sucrose pellets as rewards and short

unpredictable penalties are ultimately advantageous compared to

nose poking in the other two holes which result in higher numbers

of rewards but higher unpredictable penalties (disadvantageous

options). In this task, penalties are ‘time-out’ periods during

which time no reward can be obtained and have been likened to

‘loss’ in the human task (18).

In this operant task, animals are first trained to make a basic

operant response (nose-poke response) into an illuminated hole

within a short timeframe, in order to receive a reward. Animals are

then trained to experience four reinforcement contingencies in

forced choice sessions before undertaking the decision-making

tests. The advantage of this approach is that it ensures that all

animals have equal exposure to the four different reinforcement

contingencies and minimises any biases due to inadequate

sampling. Thereafter the impact of manipulations (e.g. drugs or

lesions) can be evaluated robustly using a “within subjects” design.

Whilst it could be argued that task performance may relate more to

the later phase of the IGT when contingencies are known

(exploitation), the finding that choice options vary between

sessions earlier in training suggests that exploration learning does

occur. A further advantage of this rGT task is that, in addition to

decision-making processes related to ‘risk/reward’ evaluation,

output measures, including gambling-related premature responses
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TABLE 1 Comparison of the characteristics of maze-based and operant rodent gambling tasks (5-hole chamber and Touchscreen) with the human IGT.

on Features of Task

00 trials) Decision making under uncertainty; conflict between
immediate gratification and long-term gains. Card choices
from 4 decks of cards which result in winning or losing
hypothetical money.
Unbeknown to subjects, two card decks are ‘risky’ (large
wins but larger losses) and two decks are ‘safe’ (gradual
accumulation of wins and negligible losses). Magnitude and
frequency of losses varies between the 2 “risky” and between
the 2 “safe” decks

Conflict between probability of high reward vs punishment
(quinine). Uncertainty represented by varying sequence/
position of sugar and quinine presentation between blocks
of trials

n operant
d by 5
s in maze

Similar protocol to van den Bos 2006.
Choice between two disadvantageous (quinine coated pellets)
arms and two advantageous (palatable pellets) arms.

aze
ily test
(20

Choice between two disadvantageous arms and two
advantageous arms, varying proportions of palatable and
quinine-treated pellets).

llowed by
ion of

Assess preference for infrequent large amount of food reward
compared to more frequent, smaller amount of reinforcer.
Similar amounts of total reward over the trial period. Assess
shift in preference for reward contingencies associated with
levers over single probe trial.

llowed by
n of 1 hr

Deduce by trial and error among 4 options the 2 that are
most advantageous in the long term.
2 options – bigger immediate reward with higher
unpredictable penalties (time-out) and 2 options with
smaller rewards but shorter unpredictable penalties

s followed
ions
)

As with Rivalon et al., 2009 but with differences in duration
of training and reinforcement contingencies associated with
the 4 options. Probability of receiving reward or punishment
for each option remains constant throughout session.
Multiple test sessions enable assessments of pharmacological
agents/other manipulations.
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Ref Equipment Species No of
Choices

Reward Punishment Reward
occurrence

Task Durat

Bechara et al., 1994 (2) Card game
(now
computerised)

Human 4 Money gain Money loss Each Trial Single session (1

Van den Bos et al., 2006 (13) Manually
operated 8
arm maze

Rat
and mouse

4 arms Sucrose
(sweet) pellets

Quinine
(bitter) pellets

Alternating
with punishment

12 daily session
(10-20 trials)

Pittaras et al., 2020 (15) 4 arm maze Mouse 4 arms Food pellets Quinine pellets Each trial
(immediate
reward) followed
by delayed reward
(palatable
or quinine)

Habituation in
chamber follow
daily test session
(20 trials/day)

Cabeza et al., 2020 (16) 4 arm maze Mouse 4 arms Food pellets Quinine pellets Each trial
(immediate
reward) followed
by delayed reward
(palatable
or quinine)

Habituation in
followed by 5 d
sessions in maz
trials/day)

Pais-Veira et al., 2007 (20) 2 lever
operant chamber

Rat 2 chambers
-each
with lever

Sucrose
pellets

No reward Alternating
with punishment

Training days fo
single probe ses
90 trials

Rivalan et al., 2009 (18) Automated Five
hole
operant chamber

Rat 4 Holes
(central hole
blocked)
Nose pocks
into holes.

Food pellets Time-outs
6-12s or
222-444s

Each trial Training days fo
single test sessio

Zeeb et al., 2009 (17) Automated Five
hole
operant chamber

Rat 4 Holes
(central hole
blocked)
Nose pocks
into holes.

Sucrose
pellets

Time-outs
5-40s

According
to schedule

Training session
by ~25 daily ses
(100 trials/30mi
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TABLE 1 Continued

k Duration Features of Task

ing sessions to stable
rmance ~25 days

Schedule based upon Zeeb et al., 2009 for rats.
Assessment of performance in GM mice.

ing sessions to stable
rmance ~25 days

Schedule based upon Zeeb et al., 2009 for rats.
Assessment of pharmacological agents

ing sessions followed
daily test sessions

min) to assess a rat’s
preference -then drug
enge test (30min)

Schedule based upon Zeeb et al., 2009
Investigation of trait and housing conditions

ing followed by ‘no
e’ trials (to maintain
nding) or choice
(quit or gamble-
iated visual
lus).
iple test sessions

Schedule incorporates loss-chasing options over repeated
programmed losses.
Enables loss chasing to be compared to initial decision to
quit or gamble.
Assessment of pharmacological agents

ing sessions followed
ultiple test
ons (~20)

Contingencies based upon Zeeb et al., 2009. Four options
that differ in magnitude of reward or punishment
possibilities. Worst option – total 2400s time-out.
Assessment of pharmacological agents

ing sessions followed
ultiple test
ons (~20)

Contingencies based upon Zeeb et al., 2009. Four options
that differ in magnitude of reward or punishment
possibilities. Worst option – total 720s time-out.
Assessment in GM mice.

ing sessions followed
ultiple test
ons (~20)

Contingencies based upon Zeeb et al., 2009. Four options
that differ in magnitude of reward or punishment
possibilities. Worst option – total 444s time-out.
Assessment in rats overexpressing D1 receptor

ing sessions followed
ultiple test
ons (>60)

Adaption of Thomson et al., 2021 to incorporate
contingency -shifting option. Worst option – total 720s
time-out.
Assessment of phenotype and pharmacological agents in
GM mice

d to perform the task.
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Reward Punishment Reward
occurrence

Tas

Young et al., 2011 (21) Automated
five hole
operant chamber

Mouse 4 nose poke
holes
(central
hole blocked)

Strawberry
milkshake

Time-outs According
to schedule

Trai
perf

Silveira et al., 2016 (61) Automated
five hole
operant chamber

Rat 4 nose poke
holes
(central hole
not used)

Sucrose
pellets

Time-outs
5-40s

According
to schedule

Trai
perf

Kim et al., 2017 (11) Automated
touchscreen
operant chamber

Rat 4 response
windows.

Sucrose
pellets

Time-outs
5-40s

According
to schedule

Trai
by 1
(~30
risk
chal

Humby et al., 2020 (7) Automated
touchscreen
operant chamber

Mouse 2 Condensed
milk

Time-outs According
to schedule

Trai
choi
resp
trial
asso
stim
Mul

Elsilä et al., 2020 (8) Automated
touchscreen
operant chamber

Mouse 4 response
windows

Sucrose
solution

Time-outs 5-40s According
to schedule

Trai
by m
sess

Thomson et al., 2021 (9) Automated
touchscreen
operant chamber

Mouse 4 response
windows

Strawberry
milk shake

Time-outs According
to schedule

Trai
by m
sess

Beyer et al., 2021 (64) Automated
touchscreen
operant chamber

Rat 4 response
windows

Sucrose
pellets

Time-outs According
to schedule

Trai
by m
sess

Openshaw et al., 2022 (10) Automated
touchscreen
operant chamber

Mouse 4 response
windows

Strawberry
milk shake

Time-outs According
to schedule

Trai
by m
sess

Note in rodent tasks, animals require varying amount of pre-training and typically require food restriction (80-95% of free feeding weight to ensure animals are motivat
n
o

n
o

n
5

l

n
c
o
s
c
u
t

n

i

n

i

n

i

n

i

e

https://doi.org/10.3389/fpsyt.2025.1518435
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Pratt and Morris 10.3389/fpsyt.2025.1518435
(inhibitory/impulse control), perseverative (compulsive)

behaviours, and also executive function (e.g. attention) can also

be measured, thereby increasing face validity.

Construct validity relates in part to similar neurobiological

systems underpinning the behaviour in animal and human tasks.

As with human studies, components of the cortico-striato-thalamo-

cortical circuits have been identified in the rGT (5). For example,

lesion studies in rats (19, 20) have shown the amygdala and

orbitofrontal cortex (OFC) to differentially affect exploration and

exploitation phases of the operant based rat gambling task.

The development of mouse paradigms is important for

improving construct validity since they allow the use of genetic

manipulations (GM), optogenetic and imaging tools to probe neural

systems, genetic and environmental risk factors relevant to

gambling disorders. Young et al. (21) utilised a mouse version of

the validated operant task (17), to demonstrate that knockdown of

the dopamine transporter in GM mice resulted in increased risk-

taking behaviour. By comparison alpha-synuclein deletion mice

showed decreased impulsive action (premature responding)

without an effect on risky decision making (22). However, there

has been limited use of this mouse operant paradigm to dissect the

neural circuits and systems that underpin behaviours relevant

to gambling.
Touchscreen tasks –
translational capacity

There is a huge unmet need in psychiatry to develop

improvements in therapies for mental health conditions. The

majority of clinical trials for new treatments fail in part due to

limitations in forward and reverse translational approaches (23).

Discrepancies between how behavioural constructs - in particular

within neurocognitive domains - are assessed in animals and

humans are a key factor in this problem.

The advent of touchscreen tasks for assessing cognitive domains

in rodents (24, 25) is a significant advance for translational research.

Commercially available touchscreen systems provide an

opportunity to evaluate a range of cognitive constructs (e.g.

learning and memory, executive function, reward learning,

impulsivity and working memory) using tasks very similar/

identical to those used to assess cognition in humans (e.g.

CANTAB) (25–28), thereby providing superior face validity and

translational potential compared to previous methods. As in human

studies, animals are presented with visual stimuli (that can be easily

manipulated) on a computer monitor before selecting a response. In

the case of rodents this is achieved through a nose poke approach to

an infra-red ‘touchscreen’ assembly.

By comparison with automated cognitive tasks in a five-hole

operant chamber, touchscreen tasks offer similar advantages in that

the automation enables high throughput of experiments under

rigorously controlled conditions, measurement of several

behaviours concurrently, the ability to test numerous subjects

simultaneously, use of within-subject designs, minimisation of

confounds related to animal handling, and less experimenter data

analysis bias through computerised data collection. One limitation
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common to many operant tasks is that confounds such as motoric

impairment, basic learning mechanisms and motivational factors

can impact on task performance. These however can often be

addressed by scrutinising variables such as trial omissions, or

reaction times to collect rewards or produce a response.

Touchscreen tasks require animals to evaluate a visual stimulus

on the touchscreen and approach the infrared screen to register a

response without necessarily touching it (25, 27). This feature is

considered to facilitate training and allows assessment of animals

that may have motor impairments. However, a potential

disadvantage, as compared to operant tasks that require nose-

pokes to elicit a response, is that touchscreen tasks may not

sustain behaviours relevant to motivation. These include

paradigms such as progressive ratio (PR) for assessing motivation,

and effort-related choice (ERC) related to decision-making.

Importantly, Heath et al. (29) demonstrated that mice were

indeed able to sustain vigorous repetitive responding in PR and

ERC paradigms using the touchscreen, confirming that motivation

and reward-related decision making are quantifiable in a

touchscreen task. Moreover, responses to amphetamine and

dopamine-receptor antagonists showed similar profiles to those

found in lever and nose-poke operant versions of these tasks,

suggesting that touchscreen tasks are suitable for assessing

motivational factors and decision making.

Touchscreen tasks offer an advantage in that appetitive (reward)

learning approaches are typically adopted (using reinforcers such as

strawberry milkshake/food pellets) rather than aversive learning

stimuli such as bitter-tasting food or mild electric shock. Stress is

known to modulate cognitive performance, including that in IGT/

rGT (30–32), so minimising any potential stressful confound is

important. By utilising positive (appetitive) reinforcement and

minimally stressful negative reinforcement (time-out), combined

with minimal experimenter exposure through automation,

touchscreen-based tasks represent an attractive strategy (33).

Nevertheless, mice could be trained to obtain a large milkshake

reward associated with varying probability of footstock, or a small

amount of reward with no punishment in a risky decision-making

task (34). However, the incorporation of aversive stimuli does have

the potential to induce unwanted stress that could impact on

endpoints of rGT paradigms.

The most obvious translational advantage of touchscreen-based

paradigms, as compared to other operant paradigms, is that they

maximise the similarity with the procedures and equipment used

clinically. While the neural circuitry recruited between presentation

of the visual stimulus and the ultimate selection of response and

pressure on the screen in humans may not be completely

characterised, it clearly makes sense to minimise any differences

in procedure between species. The touchscreen approach further

benefits from efficient standardisation and automation, flexibility in

terms of applicability to other cognitive tasks, and minimal motor

demands compared to other forms of apparatus (26, 27).

The application of touchscreen tasks in mice and rats is powerful

for dissecting the impact of genetic variants upon neurocognitive

behaviours, and also permits electrophysiological recordings and

optogenetic manipulations to investigate the neurobiological

mechanisms underpinning specific behaviours (35–38).
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Importantly, the ability to use similar types of visual stimuli,

responses and reinforcers, using identical apparatus for different

cognitive tasks, enables insight into the specific cognitive constructs

important in an experimental model or manipulation. Whilst

touchscreen tasks have been widely used to explore neurochemical

mechanisms and neural systems important in a range of cognitive

behaviours (25–27, 39–43), few studies have utilised rGT protocols.
Genotype-phenotype relationships in
the rodent gambling task

The ability of the rGT to probe multiple aspects of cognitive

function (see next section) allows the role of specific genes in these

aspects of cognitive function to be assessed with great sensitivity. A

transcriptomic study has explored the possibility that genomic

differences may underlie cautious versus risk-seeking behaviours

in the touchscreen version of the task (44). A direct link with

glutamatergic synapse function has been proposed, since a peptide

mimetic of the actin-regulatory protein radixin, injected into the rat

nucleus accumbens, altered dendritic spine morphology and

reduced rGT performance in risk-averse rats (38). This gene-

specific approach has proved especially informative in relation to

genes associated with schizophrenia risk, and we return to this in

more detail below.
Capturing elements of gambling-
related decision making in
touchscreen tasks

Decision making in the Iowa gambling task integrates a wide

range of neurobehavioural and neurocognitive processes. These

include reward processing (to evaluate risk-reward ratio),

attention (constantly to monitor information), cognitive flexibility

(to account for various outcomes), inhibitory control (to refrain

from choosing immediate high reward option - impulsivity), and

compulsivity (persistence/perseverative responses that do not relate

to achieving the overall goal).

It has long been argued that substance-use-disorder (SUD)

involves a shift from being more novelty-driven and impulsive to

being more habit-driven and compulsive (45, 46). Given that DSM-

5 has categorised gambling disorder in the same section as

‘Substance related and Addictive disorders’ it is important to

assess these behaviours in experimental models using the same

task, in order to understand the neurobiological mechanisms

underpinning risk and protective factors for gambling and to

inform new treatments.

The touchscreen platform provides an ideal opportunity to

measure a range of cognitive behaviours concurrently and to

dissect the precise neural mechanisms involved in decision

making in the rGT. Importantly, studies are beginning to unravel

the neural mechanisms of how genetic, neurodevelopmental and

environmental factors impact on different behavioural and

cognitive processes in the rGT, together with the impact of drugs
Frontiers in Psychiatry 06
on performance. Here we summarise some of the approaches used

to investigate these factors, along with modifications of the basic

rGT that allow additional behaviours relevant to gambling to

be quantified.
Environmental and trait factors

Kim et al. (11) were the first to investigate the interaction of

environmental factors with trait on decision making in a rat rGT

touchscreen task using the method previously used for operant

‘nose poking’ chambers (17). Animals were trained (housed in pairs

or isolation) to detect 4 choices differing in the probability and

magnitude of reward (food pellet) and punishment (time-out).

Once trained, they were assessed for risk-averse or risk preference

behaviours under free choice conditions and their response to

cocaine evaluated. Interestingly, rats could be divided into risk-

averse and risk-seeking groups according to their preference for

advantageous or disadvantageous choices in the free choice stage,

indicating trait differences. Furthermore, pre-existing trait towards

risk and the environment (housing conditions) interacted to affect

decision making, and cocaine appeared to heighten this process.
Age and impulsivity

Cho et al. (47) focussed on the impact of age on impulsivity

measures in the rGT. Impulsivity can be broadly divided into

‘impulsive action’ and ‘impulsive choice’ (48). Impulsive action

relates to premature responding through failure to inhibit an

inappropriate response, whereas impulsive choice relates to

impulsive decision making (choosing immediate rewards over

more beneficial long-term rewards). Importantly, they found that

rats exposed to the task early in life (late adolescents/young adults)

showed increased impulsive action compared to those exposed as

mature adults. By contrast, rats exposed to the task as mature adults

showed an increase in impulsive choice after cocaine

administration, which was only apparent in a sub-group of rats

pre-categorised as ‘high impulsive action and risk averse’. These

data highlight that the neurodevelopment period in which rats are

exposed to the task differentially impacts on these two aspects of

impulsivity, and that cocaine administration and/or stressors may

be necessary to reveal differences. The neurobiological mechanisms

underpinning these impulsive processes in neurodevelopment

remain to be established, as well as whether they translate to

human adolescence and vulnerability to gambling disorders.
Loss chasing behaviours

One of the features of human pathological gambling is loss of

control and the emergence of loss-chasing behaviour. Loss chasing

is the drive to continue gambling despite successive and

accumulating losses. It has been argued that different mechanisms

mediate the commencement of gambling choices and their

persistence, and that the neural systems recruited in the habitual
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nature of gambling differ from those involved in the goal-directed

actions of loss chasing. To explore this, Humby et al. (7) developed a

novel touchscreen task to assess gambling and loss-chasing

performance under different win/loss probabilities in mice, and

then assessed the impact of a 5-HT2C receptor antagonist and a 5-

HT1A receptor agonist. The translational validity of the task was

demonstrated as mice showed the expected patterns of behaviour

when the odds for winning were altered, resembling behaviours

seen in humans. Notably, antagonism of 5-HT2C receptors with

SB242084 decreased the likelihood to initially gamble but did not

affect loss chasing behaviour. By contrast the 5-HT1A receptor

agonist 8-OH-DPAT did not affect initiation of gambling, but

increased gambling choices once started. These findings support

the involvement of distinct 5-HT receptors in mediating discrete

components of gambling behaviours and provide the basis for

further studies to explore the neurobiological mechanisms involved.
Neural circuitry and neurotransmitters
underlying IGT performance

There is good cross-species correspondence in the brain

circuitry involved in IGT performance. The core circuitry

recruited to perform the task in rodents includes prefrontal cortex

(PFC), OFC, amygdala and striatum/accumbens (5, 19, 49). Lateral

OFC is believed to be involved in the integration of historical and

recent choice outcomes (50).

Serotonergic pathways contribute to various aspects of cognitive

function, including attentional process, executive function and

impulse control, in a distributed neural network prominently

including PFC and OFC (51). They are hence likely to contribute

to risk/reward processing. As noted previously, antagonism of

5-HT2C receptors in mice seemed to reduce inclination to

gamble, without affecting loss-chasing, but stimulation of 5-HT1A

receptors (0.03mg/kg 8-OH-DPAT) tended to increase loss-chasing

(7). This may be related to results in the 5-hole operant box version

of the task where 8-OH-DPAT (0.3 mg/kg) in rats increased

selection of the two least advantageous options (17). The 5HT2A/

C agonist LSD also failed to modify option selection in mice (8).

There is also little effect of LSD in a different gambling task, without

any learning component, in humans (52).

Dopaminergic pathways, both mesocortical (to PFC/OFC) and

mesolimbic (to accumbens), are important for various aspects of

cognitive function, including executive processes (51). Clinical

studies support a role for dopaminergic pathways in IGT

performance. IGT performance is impaired in early-stage

Parkinson’s disease (53–55), and with cocaine exposure (56, 57),

yet no overt impairment is observed after amphetamine

administration (58). In rodents, the results for indirectly-acting

dopamine agonists with the touchscreen rGT largely parallel those

obtained using the 5 hole operant box. Acute administration of

cocaine (15mg/kg) had little overall effect on choice selection in rats

(11, 47). Rats receiving a cocaine challenge (15mg/kg), having been

withdrawn for 2 weeks after a week of repeated cocaine exposure,

showed decreased selection of the optimal choice, and increased

selection of the second-worst but not the worst option (11).
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However, a low dose of amphetamine (1.5mg/kg) in mice slightly

increased selection of the 2nd best option, without affecting

premature responses (10). A marginally higher dose (2mg/kg),

also in mice, reportedly had no significant effect on choice

selection, but with a tendency towards increased selection of the

2nd best option, while decreasing premature responses and

increasing omission rates (8). In rats, amphetamine (0.3-1.0 mg/

kg) also increased selection of the 2nd best option at the expense of

the best option, while additionally increasing premature responding

(17, 59–61). The same effect is seen with 2mg/kg amphetamine in

mice (62), although here it was omissions that increased rather than

premature responses.

The reason why amphetamine leads to slightly less

advantageous responding, and in particular elevated responses at

the 2nd best option, are unclear. Amphetamine does tend to increase

impulsivity and slightly compromise attentional task performance

in rodents (63). It may be that there is a reduction in the acuity of

risk/reward assessment, but combined with an increased awareness

of harm avoidance, leading to increased selection of the 2nd best

choice, but not the least advantageous choices associated with

greater levels of punishment.

Localised overexpression of D1 dopamine receptors in rat PFC

increased selection of disadvantageous choices in the touchscreen

rGT, and was interpreted as increased risk-taking (64). An agonist

at D3 dopamine receptors increased selection of risky options in the

5 hole box rGT (65).

Pathological gambling behaviour is a particular problem

associated with the use of directly acting dopaminergic agonists to

treat Parkinson’s disease (66, 67). Pramipexole, an example of drugs

of this class, increases risk-taking behaviour in the IGT in control

subjects and in people with early Parkinson’s disease (68). Similar

effects are observed in people with bipolar disorder (69). Equally,

pramipexole is recently reported to increase selection of the 2nd

worst option in control mice, and to increase selection of the least

advantageous choice in mice with lesions of the dopamine system,

using a touchscreen rGT (70). Hence there seems to be strong

translational relevance of the rGT with dopaminergic agonists.

Modafinil, which facilitates dopaminergic and noradrenergic

transmission via uptake transporter inhibition, along with other

actions as well, reduced loss-chasing behaviour in a simplified

touchscreen gambling task (7). No effect on choice selection was

detected in a 5-hole operant box version of the task (62). The

selective noradrenaline uptake inhibitor atomoxetine, administered

acutely, did not affect gambling behaviour, including loss-chasing,

but reduced premature responding (60, 61). Noradrenaline is

known to play an important role in attention and executive

processes (51, 71, 72). Interestingly, the alpha2 adrenoceptor

agonist clonidine, while not affecting IGT performance in control

subjects, produced a fairly clear improvement in heroin-users (73).

A long-standing literature suggests functional links between alpha2

receptors and opioid receptors (74).

The widespread role of glutamatergic signalling in cognitive

processes, in particular by NMDA receptors, would suggest that

interfering with NMDA receptor signalling might impair

performance on the IGT/rGT. Interestingly, just as with

amphetamine, an NMDA receptor antagonist increases selection
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of the 2nd best option at the expense of the most favourable option

in the 5-hole operant chamber rGT, while also dramatically

increasing premature responses (75).
Schizophrenia, depression and
bipolar disorder

These psychiatric conditions arise due to a combination of

genetic and non-genetic factors. In the case of schizophrenia,

genetic advances have to some extent confirmed pre-existing

ideas, based on drug effects, that there might be some

fundamental alterations in the activity of dopaminergic and

glutamatergic pathways (76, 77). These alterations are thought

particularly to affect the neural circuitry centred on thalamic

connections to PFC, OFC and hippocampus (78–80).

Neurotransmitter disturbances in depression and bipolar disorder

are less thoroughly investigated, but PFC/OFC dysfunction is also a

core component of these conditions (81–84).

Compared to control subjects, people with schizophrenia,

depression or bipolar disorder all show similarly altered levels of

performance in the IGT (85–88), with reduced selection of the best

choice and increased selection of the second worst choice (89, 90) or

worst choice (91–93). The deficits observed in people with

schizophrenia are particularly robust (88, 93–104). In depressed

people, symptom severity correlates with harm avoidance, that is a

tendency to avoid the least advantageous options (105).

A modification of the IGT that incorporates a contingency-shift

element has proved especially informative for revealing altered

cognitive risk/reward processes (103). In this modification, the

reward/punishment contingencies associated with each choice

option are modified during the course of the test session, this

providing an indication of ability to adjust to differing risk/reward

assessments and adapt behaviour accordingly. People with

schizophrenia who were able to achieve levels of performance

similar to controls in the baseline test then experienced difficulty

in adjusting their responses when the contingences of 2 of the

choices were switched. This could be interpreted as “harm
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avoidance”, manifest as a reluctance to select choices previously

linked to unfavourable outcomes (103). There is some evidence that

people with schizophrenia are particularly sensitive to the “worst”

option, despite their impaired overall IGT performance (106).

Anxiety, which is often present in schizophrenia (107, 108), is

thought to impair IGT and rGT performance (5, 109), and can lead

to avoidance of the worst IGT options (110). People prone to

hallucinations/delusions were reported to perform at normal levels

in the basic test, but to show impaired performance after the

contingency shift (111), further suggesting that the manipulation

increases sensitivity to detect impairment. People with depression

are also impaired during this contingency-shift stage (90), showing

an unwillingness to shift to the “previously bad, now good” choices.

People with bipolar disorder taking the D2/D3 agonist pramipexole

become more sensitive to gains than to losses (69).
Genetic manipulations relevant to
schizophrenia and other
neuropsychiatric conditions

We have adopted the touchscreen task to assess the impact of

genetic manipulations relevant to schizophrenia upon mouse

gambling performance, using four reward punishment

contingencies based upon Zeeb et al. (17). The design of the task

and the parameters used are summarised in Figure 1.

GPR88 is an orphan G protein couple receptor enriched in

striatal GABAergic medium spiny neurons, but also present in PFC

(112). Based upon this location, GPR88 receptors are strategically

placed to modulate the function of several cortico-striato-thalamo-

cortical loops, suggesting potential utility as a target for treating

schizophrenia and other neuropsychiatric conditions. Indeed, there

is an interaction between Gpr88 and dopaminergic function (113–

115), and we and others have reported impairments in mice lacking

Gpr88 in cognitive domains involving PFC/OFC circuitry (9, 116).

Gpr88 KO mice show a perturbance of reward processing,

selecting more risky choices (P4) at the expense of more

advantageous, lower risk options (P1). At the same time, mice
FIGURE 1

Task design and risk/reward contingencies as used by Thomson et al. (9).
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showed increased premature responding indicating motor

impulsivity. These findings suggest a hyperdopaminergic

phenotype, and together with performance in other tasks suggest

that GPR88 KOmice are a useful model to evaluate novel targets for

a range of cortico-striato-thalamo-cortical-mediated behaviours

relevant to schizophrenia and other neuropsychiatric conditions

(9). Hence these mice provide an opportunity to evaluate

compounds and investigate neurobiological mechanisms from a

transdiagnostic perspective.

We noted the particular difficulty that people with

schizophrenia, or those prone to delusions and hallucinations,

experience in the contingency-shifting modification of the IGT

(103, 111). Common sequence variants in the MAP2K7 gene

roughly double risk of schizophrenia (117). This is a large effect

size for a common variant, making the gene of great interest for

functional investigation in rodents. Mice heterozygous for deletion

of theMap2k7 gene showed altered prepulse inhibition of the startle

reflex, hyperlocomotion, and increased levels of omissions in a

touchscreen attentional test, alongside reduced metabolic activity in

the prefrontal cortex (39, 118). This is a pattern of phenotypes that

closely relates to schizophrenia. There is also evidence for altered

dopaminergic function in this strain of mice (118). However, when

tested in the standard rGT, the mice performed at equivalent levels

to control mice (10). We therefore incorporated a contingency-

shifting component. When the two intermediate contingencies were

switched, the Map2k7 hemizygous mice adapted as rapidly as the

wild-type mice, showing no evidence for perseveration for the

previous learned responses. However, when the best and worst

options were switched, we found that theMap2k7 hemizygous mice

were dramatically impaired, essentially being unable to complete

the shift back to a more optimal choice selection, despite large

numbers of retraining sessions (10). They continued to avoid the

option that had previously been the worst choice. We hypothesise

that the Map2k7 hemizygous mice are showing a form of harm

avoidance behaviour, and that full function of the Map2k7 gene is

necessary for overcoming this anxiety-related contribution to

cognitive flexibility. Indeed, there is some evidence linking the

MAP2K7 gene to panic disorder (119).
Conclusions

In summary touchscreen tasks are showing great promise as

translational tools to dissect neurobiological mechanisms in the

rGT. Since maladaptive decision making occurs in many psychiatric
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conditions, examining genetic, neurodevelopmental and

environmental risk factors for these conditions in the rGT could

provide greater insight into how these factors may cross current

diagnostic boundaries and offer transdiagnostic opportunities to

evaluate novel treatments. These studies also pave the way to dissect

the specific neural circuits and neurotransmitter mechanisms

underpinning distinct behaviours though the concurrent use of

optogenetic approaches and in vivo electrophysiological recordings

during evaluation of behaviours.
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