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Autoclave reactor synthesis of
upconversion nanoparticles, unreported
variables, and safety considerations
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Autoclave reactors are widely used across chemical and biological sciences, including for the
synthesis of upconversion nanoparticles (UCNPs) and other nanomaterials. Yet, the details of how
autoclave reactors are used in such synthesis are rarely reported in the literature, leaving several key
synthesis variables widely unreported and thereby hampering experimental reproducibility. In this
perspective, we discuss the safety considerations of autoclave reactors and note that autoclaves
should only be used if they are (a) purchased from reputable suppliers/manufacturers and
(b) have been certified compliant with relevant safety standards. Ultimately, using unsuitable
autoclave equipment can pose a severe physical hazard and may breach legal safety requirements.
In addition, we highlight several parameters in autoclave synthesis that should be reported as
standard to maximise the reproducibility of autoclave synthesis experiments across materials and
chemistry research. We encourage users of autoclave synthesis vessels to: (1) adopt high-safety
autoclaves and (2) report the many experimental variables involved to enhance experimental
reproducibility.

In the context of chemical synthesis, autoclave reactors (sometimes simply
referred to as “autoclaves”) are extremely strong enclosed metal vessels
designed to contain reaction mixtures at elevated temperatures and pres-
sures. Autoclave reactors serve as the “pot” in which many hydrothermal
and solvothermal reactions occur. Autoclave reactors have the advantage
that they can be heated with common laboratory equipment such as hot-
plates or ovens. There are a variety of autoclave reactors available on the
market, which can accommodate reactions of different scales and single or
multiple reaction vessels. Autoclave reactors are used in many aspects of
chemistry and materials science, including the synthesis of many types of
nano- and micromaterials1,2, metal-organic frameworks1, catalysis3,
hydrogenation4, polymerisation5, materials testing6, digestion7, single-
crystal casting8, and corrosion testing9. Autoclave reactors have been
widely used as a method of synthesis for upconversion nanoparticles
(UCNPs) and are, therefore, the focus of this perspective.

UCNPs are inorganic crystalline nanostructures consisting of a low-
photon energy host lattice doped with photonically active trivalent lan-
thanide ions. There are many possible host lattices for UCNPs10–13, with
NaYF4 being the most common14. The long-lived excited states of the lan-
thanide ions (typically ~100 µs to ~10ms)15 enable multi-photon

absorption and subsequent upconversion process, where multiple low-
energy photons are absorbed and converted into a higher energy photon16.
UCNPs can absorb and emit light at various wavelengths, primarily
dependent on the choice of photoactive dopants hosted within the UCNP
lattice structure. Sensitisers include Yb3+ ( ~ 976 nm), Nd3+ ( ~ 808 nm),
and Er3+ ( ~ 1532 nm)17,18. Er3+ and Tm3+ are common emissive activator
ions, enabling emission from UV to visible at discrete “line-like”
wavebands19–21.UCNPproperties canbe further enhancedvia incorporating
core/shell architectures. Carefully designed and synthesised photonically
active core/shell architecture can enable advanced multi-wavelength exci-
tation, e.g., for display technologies, and enhance quantumyield18,22,23. Core/
shell architectures (e.g., layers of silica or the host lattice material) can also
shield photoactive ions from solvent quenching that otherwise reduce
UCNPemission24. Typical quantumyields forUCNPs innon-polar solvents
are ~0.01% to 0.1%25,26. However, the greatest UCNP quantum yield to-date
was 10.3% for core/shell hexagonal-phase NaYF4:18%Yb

3+,2%Er3+ for
UCNPs in a dry form reported by Homann et al.27. For comparison, the
quantumyield of rhodamine 6 G is 95% inEtOH;whereas 25–75% is typical
for quantumdots28,29. Nevertheless, there are reports of bright luminescence
fromwell-optimisedUCNPs being visible to the naked eye30,31. UCNPsoffer
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several key advantages over other optically active materials, such as fluor-
escent dyes and quantum dots. Prominently, UCNPs do not photodegrade,
photobleach, or blink32–36. This makes UCNPs well suited to applications
such as nanoscale temperature sensing37, pressure sensing38,39, transparent
multicolour volumetric display technologies18,40, as well as nanopatterned
security inks41–43. In biological environments, the diffuse NIR UCNP exci-
tation can travel through several millimetres of blood17, and several centi-
metres of ex vivo tissue due to minimal absorption and scattering at NIR
wave ranges44–46. Further, NIR excitation does not induce visible auto-
fluorescence, and has low phototoxicity47. The combination of these optical
properties makes UCNPs uniquely suited to all-optical reporting in life
sciences applications. Beyond purely optical properties, dopants also enable
multi-modal responses, for example, incorporationofGd3+ andDy3+within
or onto UCNPs induces a parametric response for magnetic resonance
imaging (MRI) contrast48 complimentary to x-ray computed tomography
(CT)49, and incorporation of isotopes such as Fluorine-18 within UCNPs
enables positron electron tomography (PET) response50.

Using autoclave reactors
Advantages and disadvantages of autoclave reactors in com-
parison to other UCNP synthesis approaches
Given the utility of UCNPs and the expense of purchasing UCNPs from
commercial vendors (see Supplementary Section B for the cost of pur-
chasing UCNPs), it is often necessary for researchers to synthesise UCNPs
for their research projects. A variety of UCNP synthesis approaches have
been developed, the major ones being microwave reactions, hot-injection
reactions, polymer-assisted reactions, and autoclave reactor approaches.
Each method has advantages and disadvantages when it comes to (a)
equipment and expertise required, (b) range of materials that can be pro-
duced, and (c) scalability. For brevity, these methods are discussed in depth
in supplementary material (Sections D-G). A comparative summary of
equipment and skill requirements, costs, and capabilities for each UCNP
synthesis method is provided in Table 1.

Use of an autoclave reactor enables hydrothermal and solvothermal
synthesis of UCNPs at moderate costs in comparison to other approaches
(seeTable 1), and can give rise toawide rangeofUCNPmorphologies based
upon various lattice materials (see Supplementary Figs. S4 and S5 for
examples). In such reactions, the autoclave reactor acts to safely contain any
pressure build-up arising from the gas pressure of the reaction mixture at
elevated temperatures (typically 180 °C for standard autoclave reactors). For
contextual information regarding the hydrothermal and solvothermal
synthesis of oleic-acid capped UCNPs (OA-UCNPs) and poly-
ethyleneimine capped UCNPs (PEI-UCNPs), the reader is referred to the
case studies provided in Supplementary Sections H and I. However, there
are some disadvantages to autoclave reactor synthesis. For example, control
of the heating rate and cooling rate is generally limited, andmany autoclave
reactors do not accommodate internal temperature monitoring. Further,
scaling up autoclave reactions requires adopting either a parallel synthesis
approach (e.g., multiple small-capacity autoclave reactors) or amuch larger
autoclave reactor; both approaches involve considerable expense.

Given the temperature and pressure hazards, autoclave reactor
synthesis requires (1) careful attention to safety (see sections “Autoclave
design, safety, and operation”), (2) an appreciation of the related legal
regulations (section “Legal considerations of autoclaves”), and (3) an
understanding of the experimental variables which are often unreported in
the literature (section “The unreported variables in autoclave synthesis”).

Autoclave design, safety, and operation
Safety is a major concern with pressurised autoclave reactors because an
autoclave failure or erroneous opening under pressure can result in the
release of large amounts of energy (i.e., an explosion). The hazards asso-
ciatedwith autoclave reactor synthesis are compounded by: (a) the design of
the autoclave reactor and (b) the type of reaction occurring and the resultant
pressure build-up. In hydrothermalUCNP synthesis reactions approaching
100 °C, water will, of course, form steam, which generates an elevated

pressure (we typically record 10 to 25 bars of pressure in such hydrothermal
syntheses). In solvothermal reactions, UCNP synthesis will only generate
excess pressure if heated to temperatures in excess of the boiling point of the
solvents used, e.g., ethylene glycol [197 °C], oleic-acid [286 °C], and
1-octadecene (ODE) [178–179 °C]51–53. Therefore at typical autoclave
reactor synthesis temperatures (i.e., ~180–200 °C), solvothermal synthesis
(assuming dry starting products) will not generate significant elevated
pressures.

Autoclave reactor designs range from simple screw-thread systems to
more sophisticated high-safety systems incorporating multiple redundant
safety features. In general, autoclave reactors will include a liner (e.g., PTFE
or suitable glass), to hold the reaction mixture. The simplest varieties of
autoclaves may feature an over-pressure disk. However, if the autoclave
reactor does not have a pressure gauge or internal temperature reading
system, then one has to rely on the good judgement of the operator.
Additionally, care must be taken with screw-thread systems to preserve the
integrity of screwthreads and to ensure there is noexcess pressurewithin the
autoclave reactor before it is opened. Therefore, simple autoclave reactors
have higher risks of accidental failure and more advanced high-safety
autoclave reactors are preferable.

Advanced high-safety autoclave reactor systems will feature engi-
neering controls to help ensure safety. As a minimal example, the Berghoff
DAB pressure vessels (see Fig. 1a) include a rupture disk to release pressure
build-ups beyond design tolerances54. Both the Berghoff DB series (not
shown) and Asynt PressureSyn series (see Fig. 1b) offer high-safety reactors
that use clamps insteadof threads, pressure release valves, andover-pressure
bursting disks, temperature probe ports, and pressure gauges55,56. These
features allow operators to identify and control potential pressure hazards
during operation. Therefore, there is a lower risk of misuse.

Autoclaves are typically single-chamber apparatus, but it can be
desirable to scale up synthesis via parallel batch production or simply larger
autoclaves (e.g., autoclaves as large as 500 L are currently commercially
available frommanufacturers such as Büchiglasuster). Somemanufacturers
provide inserts to turn a single-chamber autoclave into a multi-chamber
system, whilst others offer purpose-designed multi-reactor systems. Such
multi-chamber reactors can speed up iterative synthesis.

Autoclave reactors can be heated by numerous means, including
simple ovens, heating blocks, and advanced heating systems. Indeed,
advanced heating systems may provide advantages with regard to space
efficiency, temperature control, and sensing of the reaction parameters. The
most advanced autoclave reactor systems also enable automated tempera-
ture data logging and feature active cooling to recover products faster than
passive cooling will allow, thereby increasing potential synthesis rate, and
enabling safety features such as automatic shut-down if nearing maximum
limits. Advanced systemsmay also enablemagnetic stirring, which typically
cannot be accommodated in an oven. Notably, the most advanced systems
available remove the need for manual handling, thereby preventing burn
hazards and allowing maximum accessibility to all users—after all, auto-
claves are made from solid metal (e.g., stainless steel) and are, therefore,
cumbersome to handle. These features can help ensure safety and to enable
reproducible synthesis.

To summarise: contemporary high-safety autoclave reactor systems
offer benefits in terms of (1) safety, (2) accessibility, and (3) reaction
monitoring. However, they are more expensive than (arguably unsafe)
simple screw-thread autoclave reactors. Further, more sophisticated auto-
clave reactor systems with larger or multiple reaction chambers may also
help reduce the time required to iterate synthesis towards optimisation or
simply enable the generation of a greater quantity of desired product.

Some additional “last line of defence” measures above standard
laboratory procedures may be considered for best safety practices when
using autoclave reactors. (1) A form of secondary shielding around the
autoclave reactor system (e.g., polycarbonate shields) to protect partially
against accidental discharge or over-pressure. (2) Provision of hearing
protection for operators in case of rupture of an over-pressure safety
release valve.
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The maximum heat and pressure a given autoclave reactor can
safely sustain is primarily determined by the materials it is manufactured
from; this is often stainless steel, with other options available on the
market including alloys, glass, nickel, titanium, and zirconium options
available for various temperature ranges, including temperature in excess
of >200 °C. However, it is worth noting that PTFE liners are known to
soften and deform if exposed to sufficiently high temperatures and
pressurises arising from erroneous usage (see Fig. 1c). Instead, liners
made of borosilicate glass may be better suited to high-temperature
reactions.

Legal considerations of autoclaves
There are various regulations worldwide regarding the use of pressurised
equipment. In the UK, employers have a legal duty to comply with the
“Pressure Systems Safety Regulations 2000 (PSSR)” as part of the broader
legal duties specified in the “Health and Safety at Work Act” (1974)57–59.
The PSSR regulation aims “to prevent serious injury from the hazard of
stored energy as a result of the failure of a pressure system or one of it’s
component parts”, and applies to any “compressed or liquefied gas,
including air, at a pressure than greater than 0.5 above atmospheric
pressure” and “pressurised hot water above 110 °C” 57. There are some
exceptions to the PSSR, which include (but are not limited to) pressure
systems to be used for “weapons systems”, “vehicle tyres”, and “experi-
mental research”. However, we note that most research is conducted at
universities that have a duty of care to their students and staff, so we
suggest that it would be good practice to abide by the PSSR when using
autoclaves for nanomaterial synthesis research. In the European Union,
the directive 2014/68/EU60 governs the certification and testing of
equipment pressurised to >0.5 bar60. Guidance in other countries varies
and cannot be comprehensively covered here. We encourage all users of
autoclave reactors to (a) familiarise themselves with the legal require-
ments and guidance regarding autoclave reactors for their specific
country and (b) to source autoclaves that are compliant with the highest
international standards.

Autoclave reactors should only ever be purchased from reputable
scientific suppliers who pre-test and certify their autoclave reactors to
governmental standards. Examples of reputablemanufacturers include (but
may not be limited to): Berghof GmBH (Germany), Büchiglasuster (Swit-
zerland), Asynt Ltd (United Kingdom), LBBC Baskerville Ltd (United
Kingdom), Mettler Toledo (USA/global), and Parr Instrument Company
(USA). It is also worth noting that, in our experience, some manufacturers
will provide certification of testing but may not provide a user manual or
equivalent example operating procedures. This can result in some unex-
pected issues for inexperiencedusers. For example, any ferrules that are used
to introduce thermocouple probes to autoclave reactor ports will likely
become permanently conjoined with a thermocouple probe after autoclave
usage. Further, appropriate high-temperature, high-pressure grease (e.g.,
CRC Lithium Grease 30570 for temporary operation up to 200 °C) will aid
smooth situation of clamp components, and non-flammable leak detector
fluid (e.g., SNOOP®) canbe beneficial to check that allfittings are secure and
pressure is contained.

It should be noted that there are some dubious low-cost autoclave
reactors readily available via non-reputable manufacturers. These auto-
clave reactors will likely not be compliant with government standards at
these low-price points. This could introduce a high risk of spurious
failure and potentially lethal hazards. Therefore such low-cost autoclaves
should not be used. We strongly recommend that research teams pur-
chase autoclaves from certified reputable suppliers and ensure that their
autoclave equipment meets appropriate governmental certification
requirements.

The unreported variables in autoclave synthesis
Many studies report autoclaveUCNP synthesis, yetmost of these studies do
not report which autoclaves were used and how they were operated. For
example, much of the literature simply states that reaction mixtures wereT
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“added to a Teflon-lined autoclave” and “heated at” a temperature for some
time. This raises many questions, such as:
• What volume is the autoclave reactor?
• How much internal space does the liner occupy?
• What is it made of?
• How is it heated?
• Was it pre-heated?
• Is the quoted temperature the internal reactor temperature or the

externally applied heating temperature? These are often different—see
Supplementary Fig. S3.

• What timepoint counts as reaction onset?
• Was the reaction stirred? What pressure did the reaction occur at?

This is a huge parameter space of unreported variables. In our
experience, this combinatorial pitfall of variables can make it difficult for
researchers to reproduce autoclave synthesis—particularly hydrothermal
autoclave UCNP synthesis (see Supplementary Section H)—even when
using the same autoclave equipment in the same laboratory environment. If
it is challenging for researchers using the same equipment and reagents to
reproduce, then how can we possibly reproduce UCNP synthesis studies
where the equipment used is fundamentally unreported? The absence of
comprehensive reporting has the potential to waste significant time and
effort within our research community. Therefore, in the interest of robust,
reproducible, and open science, we strongly recommend that a number of
key autoclaveparameters and variables be reported; these are summarised in
Table 2.

For context, we have detailed two case studies of autoclave synthesis
UCNPs. The first is hydrothermal synthesis of oleic-acid (OA) coated
NaYF4:Yb,Er,MnUCNPs (976 nm excitation) (see Supplementary SectionG).
The second example is the synthesis of PEI-coated NaYF4:Yb,Er@NaYF4:Yb,
Nd core/shell UCNPs featuring dual band 808 nm and 976 nm excitation
in Supplementary Section H. These case studies are intended as illustrative
examples of the importance of the aforementioned variables in autoclave
synthesis, rather than comprehensive scientific reports.

Future directions for autoclave reactor synthesis of UCNPs
In the longer term, there may also be scope to improve the wider stan-
dards of autoclave reactor synthesis of UCNPs. For instance, the field
may consider the adoption of more transparent standardised operating
protocols and/or standardised apparatus. This could also facilitate inter-
group comparator experiments, where for example, a standardised out-
put/reference material is synthesised to demonstrate verified high-quality
UCNP synthesis and/or to compare measurements between research
groups13. For example, in the wider field of nanomaterials research,
standardised approaches have been developed and proposed for nano-
material synthesis61, physiochemical properties61, optical properties (e.g.,
quantum yield)62, toxicity61,63,64, dynamic light scattering (hydrodynamic
diameter)65. Whilst full discussion relating to standardised UCNP
reference nanomaterials is beyond the scope of this paper, it should be
noted that standardisation is a complex problem in the wider field of
nanomaterials which requires input from the relevant global scientific
communities64,66.

Outlook
A large number of publications have reported the use of autoclave
reactors for the synthesis of nanomaterials, including UCNPs. However,
to date, many important experimental and operational parameters
associated with autoclave reactor equipment have not been reported. The
lack of these crucial experimental details reduces experimental repro-
ducibility across the nanomaterial literature. Herein, we have provided
suggestions for experimental parameters that can and should be reported
in detail of autoclave reactor synthesis procedures (see Table 2). We
recommend that these details be provided wherever practicable in order
to enhance future experimental reproducibility. We have also sum-
marised some regulations and legalities covering the use of autoclaves for
research and work purposes and have noted that these legalities should
be carefully considered by all researchers involved in autoclave reactor
usage. We recommend that research should only use autoclaves made by
reputable manufacturers and which are certified/tested to comply with

Fig. 1 | Examples of autoclave reactor systems. aA screw-thread Berghoff Digestec
DAB autoclave reactor (photo courtesy of Dr Juliane Simmchen). b An assembled
Asynt PressureSyn high-safety autoclave reactor and hotplate heating block situated
on a hotplate stirrer within a fume hood. Labelled components: (i) temperature
probe and heating controller. (ii) pressure gauge. (iii) pressure release valve. (iv)
emergency over-pressure burst valve. (v) clamp key valve. (vi) clamp release
mechanismwhich can only be released using the clamp key valve. (vii) heating block

to ensure uniform heating. (viii) hotplate/stirrer for heating. c A PressureSyn PTFE
liner, which was deformed due to the following process: (1) some liquid was erro-
neously left between the liner andmetal autoclave, (2) this caused inefficient heating
of the reaction mixture, resulting in the heating control system to apply a con-
sistently elevated heating temperature, (3) resulting in excessive heating of the liquid,
(4) elevating temperatures to a point where the PTFE softened and deformed,
resulting in deformation of the bottom of the liner.
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appropriate international regulatory standards. Further, we note that
currently available high-safety autoclave reactor systems offer advantages
in terms of safety, experimental control, and reproducibility.

Received: 2 May 2024; Accepted: 15 January 2025;
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