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Machine learning can revolutionize the development of laser-plasma accelerators by enabling real-
time optimization, predictive modeling and experimental automation. Given the broad range of laser
and plasma parameters and shot-to-shot variability in laser-driven ion acceleration at present,
continuous monitoring with real-time, non-disruptive ion diagnostics is crucial for consistent
operation. Machine learning provides effective solutions for this challenge. We present a synthetic
diagnostic method using deep neural networks to predict the energy spectrum of laser-accelerated
protons. This model combines variational autoencoders for dimensionality reduction with feed-
forward networks for predictions based on secondary diagnostics of the laser-plasma interactions.
Trained on data from fewer than 700 laser-plasma interactions, the model achieves an error level of
13.5%, and improves with more data. This non-destructive diagnostic enables high-repetition laser
operations with the approach extendable to a fully surrogate model for predicting realistic ion beam
properties, unlocking potential for diverse applications of these promising sources.

Particle accelerators enable researchers to explore the fundamental structure
ofmatter and develop new technologies formedicine, industry and defense.
Laser-plasma-based accelerators generate ultrashort pulses of high-energy
particles over short distances, driven by ultra-high field gradients1,2. This
enables the development of compact particle accelerators capable of deli-
veringultra-highdose rates. Proton and ionbeamsproducedby laser-driven
accelerators have potential applications in medical imaging and FLASH
radiotherapy3–5. Realising these applications requires new approaches to
optimization and control of the acceleration process and beam properties.

The application of machine learning (ML) in laser-plasma accelerator
development is an emerging and dynamic area, providing innovative
solutions to critical challenges in optimization and control. Early demon-
strations include Bayesian optimization approaches in electron and ion
acceleration experiments6–8 and modeling9,10, in addition to deep neural
networks (DNNs) for rapid deconvolution of laser-plasma diagnostics11–15,
diagnostics of intense laser focal parameters16, modeling laser wakefield
acceleration of electrons17,18, laser-solid interactions19 and ion
acceleration20–23. While DNNs have previously been used to analyze
experimental laser-driven iondiagnostics, their application topredicting ion
beam properties has thus far been restricted to models trained solely on
simulation data. Despite advancements in laser-plasma ion source

development, challenges such as optimization, stabilization and real-time
diagnosis remain, where ML can play a transformative role. The growing
availability of experimental data from high-repetition rate systems is
accelerating greater integration of DNNs in this field.

In the realm of laser-plasma-based ion acceleration, Target-Normal
Sheath Acceleration (TNSA) is the most reproducible mechanism, produ-
cing short ion pulses with energies reaching tens-of-MeV/nucleon3,4. This
method involves irradiating a thin foil targetwith relativistic laser intensities
( > 1018Wcm−2 for ~ 1 μm light) to produce fast electrons, generating a
strong electric field (TVm−1) for ion acceleration. Stabilizing these ion
sources and consistently reproducing desired ion beam properties is
inherently challenging due to their sensitivity to shot-to-shot variations in
laser pulse parameters. Correlating output ion beam properties with input
parameters is further complicated by the interplay of numerous interrelated
factors. Direct experimental measurement of beam parameters is typically
possible only when the ion beam is not being used for irradiation applica-
tions orwhen only a small portion of the beam is needed for that purpose, as
direct characterization can disrupt the beam properties. Key applications in
radiobiology24,25 and radiation damage studies often require capturing and
focusing the entire ion beam to deliver the required dose. This requirement
complicates simultaneous measurement and application, highlighting the
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need for reliable modeling approaches. While high-fidelity particle-in-cell
(PIC) simulations can model these interactions, they are time-consuming,
necessitating simplified empirical models.

Recent advancements in high-power laser repetition rates and
rapidly replaceable targets—such as tape-driven foils, droplets, clusters
and cryogenic or liquid sheets—enable thousands of laser shots in short
experimental campaigns26. This capability facilitates extensive parameter
scanning, generating large datasets for developing empirical models and
training DNNs, which are particularly adept at modeling complex,
nonlinear problems.

Here,we introduce aDNN-based synthetic diagnostic of theTNSA-ion
energy spectrum, trained and validated with experimental data. A dense
feed-forward network, combined with a β-variational autoencoder27 (β-
VAE) predicts the ion beam spectrum and its uncertainty using the laser
input parameters and secondary laser-plasma interaction diagnostics. The
β-VAE excels in dimensionality reduction to a smooth, interpolatable latent
space, enhancing prediction accuracy even with limited, high-dimensional
training data. This synthetic diagnostic approach offers real-time insights
into ion beamproperties without disrupting the beam, facilitating improved
operational control.

Results
Model input data
The experimental datawas obtained from662 laser-target interactionsusing
the Gemini high power laser28, with 80% of the dataset used for hyper-
parameter tuning andmodel training, and 20% reserved as a holdout test set
for performance estimation. The experiment, depicted schematically in
Fig. 1, is described in detail in Methods.

The objective of theDNN is to predict the energy spectrumof the beam
of protons accelerated during the laser-target interaction. Therefore, the
energy spectrum was measured for each interaction. The DNN inputs

include the on-shot laser energy (EL), pulse duration (τL), focal spot radius
(rL), the percentage of laser energy within the focal area (EL), and the target
distance from the focal point (Δz). In addition, the temporal offset of a
‘preheater’ laser pulse (Δt) is included. This preheater laser pulse generates a
preplasma at the target front surface, which can significantly influence the
evolution of the subsequent main pulse interaction29,30.

As an in-situ diagnostic of the interaction, we measured the on-shot
backreflected light from the laser-plasma interaction using a spectrometer,
along with cameras filtered for both the laser frequency (ω) and the second
harmonic (2ω). This reflected light inversely correlates with the energy
absorbed during the interaction and is expected to encode information
about the proton energy spectrum31.

The processed backreflection images and spectra for each shot consist
of over 300 × 300 and 1700 pixels, respectively. The high dimensionality of
this input data presents a significant challenge for a DNN, known as the
curse of dimensionality32, especially given the limited training data available.
To address this, we reduce the dimensionality by calculating the mean (M),
standard deviation (S) and skewness (α) of the pixel intensity distributions
in the images and spectra, which removes explicit spatial information. Both
higher-ordermoments and imagemoments—where the images (or spectra)
are treated as distributions to preserve spatial or spectral information33—
were tested during hyperparameter tuning. These methods led to poorer
model performance, suggesting that these details do not contribute effec-
tively to the model’s predictive capability.

The nine backreflection moments—comprising the mean, variance,
and skewness of the backreflection spectra, laser-frequency-filtered images,
and second-harmonic-filtered images—along with the six laser-target
parameters, serve as the lower-dimensional inputs to the network. Since the
proton spectra are high-dimensional arrays of size 2057, both dimension-
ality reduction and an inverse reconstruction process are required; these are
discussed in the next section.
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Fig. 1 | Experimental schematic and model process. The main laser pulse is
transported via multiple stages of the laser beamline and finally turned with a
dielectricmirror onto a F/2 parabolicmirror that focuses the pulse onto a tape target,
producing a plasma and driving ion acceleration. Laser light back-reflected from the
plasma, together with second harmonic light generated in the plasma, passes
through the dielectric mirror and onto a scatter screen, where the spatial, intensity
and spectral properties are measured. The spectrum of the beam of protons accel-
erated from the plasma is measured using a Thomson parabola ion spectrometer. As
shown in the dashed inset, a lower intensity preheater laser pulse is focused onto the
target at time Δt prior to the arrival of the main pulse. The target displacement with
respect to the main laser pulse focus, Δz, is also varied. The model training and

prediction processes, and example spectra, are shown on the right. The β-VAE is
trained to encode and reconstruct (blue) the measured (black) proton spectra, after
which the encoder is used to generate a mean latent space representation for all
spectra in the training set. The predictor neutral network is trained with the laser
parameters and back-reflectionmoments as inputs to predict themean and standard
deviation of the encoded proton spectra, by minimizing the negative log-likelihood
loss function (LNLL). The mean latent space prediction is decoded by the β-VAE
decoder to produce the predicted spectrum (green), with 1000 samples from the
predicted latent space distribution decoded to generate a predicted distribution
(each sample shown in a shade of red with reduced opacity to visualise the dis-
tribution of overlaid data).
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Model pipeline
Following the methodology in references18,34–36, we employed a β-VAE for
the dimensionality reduction of proton spectra. Autoencoders are com-
posed of an encoder and a decoder. The encoder maps the input data to a
lower-dimensional ‘latent space’ representation (LSR), while the decoder
reconstructs the input data from this encoded representation. The β-VAE
enhances this framework by having the encoder generate parameters of a
Gaussian probability distribution instead of deterministic values, as illu-
strated in Fig. 1. By sampling from this distribution and incorporating a loss
term that constrains it to approximate a standard normal distribution, a
smooth latent space is learned37. This process is regulated by the hyper-
parameter β, which weights the importance of latent space smoothness to
the reconstruction error (see the β-VAE architecture section in Methods).

The β-VAE’s encoder reduces the dimensionality of the proton spectra
by generating a mean LSR (μ) for each spectrum in the training dataset. A
feed-forwardDNN,or ‘predictor’, is then trained topredict theLSR fromthe
laser parameters and backreflection moments. The decoder subsequently
converts these predicted encodings into proton spectra, as illustrated in
Fig. 1. The smoothness of the latent space imposed by the β-VAE archi-
tecture allows for reasonable reconstructions, even for slightly misaligned
latent space predictions. This predictor-decoder pair therefore forms a
synthetic diagnostic for laser-driven protons based purely on input laser
parameters and backreflection measurement.

Uncertainty quantification
Quantifying uncertainties is an essential aspect of applying ML models to
practical applications38. ‘Aleatoric’ uncertainty stems from inherent ran-
domness or unaccounted variations in the input and output data, such as
uncorrected drifts in laser parameters during operation. In contrast, ‘epis-
temic’uncertaintyoriginates from limitations in themodel designor the size
and diversity of the training dataset39. Aleatoric uncertainty of predicted
spectra is estimated by the predictor network under two assumptions. First,
the LSR uncertainty is a multivariate normal distribution. Second, each
latent space dimension is statistically independent. The use of the β-VAE
architecture supports these assumptions, and they are validated by the
model’s performance in the Uncertainty prediction accuracy section. The
predictor network outputs a mean value and the natural logarithm of the
standard deviation (to ensure positive values) for each latent space
dimension. The network is trained using a negative log-likelihood loss
function, optimizing the mean and standard deviation prediction
simultaneously40. Sampling multiple times from the predicted distribution
and decoding with the β-VAE decoder generates an empirical distribution
of spectra, representing an estimate of aleatoric uncertainty.

For the ‘average’ prediction of a predictor-decoder pair, the predicted
mean LSR (μ̂ in Fig. 1) can be decoded directly ormultiple samples from the
predicted latent space distribution can be decoded and averaged. While the
latter approach offers slightly better prediction accuracy, decoding the
predicted mean directly is faster and thus more suitable for the high repe-
tition rates of modern laser-driven ion sources. Therefore, the average
proton spectrum is obtained by directly decoding the predicted mean LSR.

A widely used technique for estimating epistemic uncertainty and
enhancing prediction accuracy is ensembling41. This involves training
multiple neural networks andcombining their outputs, ideallywithdiversity
introducedduring training, e.g., via variedhyperparameters or trainingdata.
During hyperparameter tuning, we found that β-VAEperformancewas not
a limiting factor, so ensembling efforts focused on the predictor networks.

An ensemble of 100 predictor-decoder pairs was trained, consisting of
4 β-VAEdecoders, each pairedwith 25 predictors. Diversity was introduced
by training eachmember on random subsets of the training data, as detailed
in the Ensembling section in Methods.

This ensemble, hereinafter referred to as the synthetic diagnostic
ensemble (SDE), generates an uncertainty distribution for a predicted
proton spectrum, incorporating both aleatoric and epistemic uncertainty.
Multiple samples are taken from each predictor’s latent space distribution
and decoded with the paired decoder, producing a distribution of spectra

from which statistical information, such as confidence intervals, can be
derived.

We use the median of the average predicted spectra from all ensemble
members as the SDE prediction. This approach is computationally efficient,
with only a 0.1% higher error than the best performing method, enabling
rapid generation of average spectra while retaining uncertainty estimation
through sampling.

Occasionally, the SDE generates spectra which contain non-physical
negative values, particularly in low signal spectra. These values are set to
zero, as they likely stem from poorly trained regions of the latent space,
leading to unphysical output spectra after decoding. When producing the
SDE average prediction, it was found that eliminating negative values either
before or after calculating the median made negligible difference. In the
implemented code, this clipping is performed after the median calculation.

Proton spectrum and total flux prediction accuracy
Since the ion spectrometer used in this experiment was not calibrated for
absolute proton number, absolute error metrics are not particularly
insightful for assessing the SDEperformance. Instead,weuse the percentage
of unexplained variance (PUV), a relative error metric, calculated as the
ratio of the mean squared error of the model predictions to the variance of
the dataset, indicating the percentage of variance not explained by predic-
tions (see the Metrics section in Methods). A naive model that always
predicts the mean spectrum of the test dataset, irrespective of the inputs,
would have a PUV of 100%. The SDE predictions have an average PUV of
13.5%, indicating high predictive power.

We also evaluated the reconstruction performance of the 4 β-VAEs in
the SDE, finding an average PUV of 1.9%. The smaller reconstruction error
compared to prediction errors indicates that most inaccuracies arise from
the predictors’ ability to estimate the LSRs, rather than from the β-VAE
reconstruction process.

To visualize model performance, Fig. 2a shows the measured spectra,
the mean reconstructions by the β-VAEs and the SDE predictions for the
test dataset (20%of the total dataset). These plots demonstrate that while β-
VAE reconstructions are closer to the actual spectra, SDE predictions are
accurate across most of the dataset.

Figure 2 b displays individual measured spectra, SDE predictions, and
1000 random samples from the predicted SDE distributions for the test
dataset. This distribution estimates bothaleatoric andepistemicuncertainty.

Interpreting the PUV of spectra is challenging due to nonlinear separa-
tion of proton energies in the ion spectrometer, which causes resolution to
decrease as energy increases. Consequently, the mean squared error, and by
extension, the PUV, is biased towards performance at lowproton energies. To
address this, we also evaluate the performance of the model in predicting the
total flux of the spectra, ΦP (the integral over energy), which appropriately
weights energy bins based on their width. The PUV of these predictions is
16.4%, indicating low error across the spectral energy range.

For each spectrum, we sampled 1000 times from the SDE’s predicted
uncertainty distribution to generate aΦP uncertainty distribution. The 68%
confidence interval (16th to 84th percentile) is shown in Fig. 3a, plotted as a
function of the measured ΦP.

Figures 2 and 3a show good agreement between the average predictions
and the actual values, within the predicted uncertainty range. The next section
will explore the validity and practical value of these uncertainty predictions.

Uncertainty prediction accuracy
Whilst the uncertainty predictions of the SDE are plausible, their validity
needs assessment. Calibration is a crucial aspect of uncertainty predic-
tion, testing whether predicted confidence intervals (CIs) align with
observed data. To evaluate this, we use a calibration curve, plotting the
percentage of the test dataset (i.e. all energy bins of all spectra or all ΦP

values) that fall within a given predicted CI, against the corresponding CI
size. Perfect calibration is represented by the line y=x, with values below
the ideal line indicating overconfidence and values above indicating
underconfidence42,43.
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We computed the percentage of test data within predicted CIs, centred
on the median, from 1% to 99% in 1% steps. This is shown for both spectra
andΦP predictions in Fig. 3b, displaying only small deviations from perfect
calibration. Calibration error (CE), defined in the Metrics subsection in
Methods, quantifies calibration quality, measured as the root mean square
(RMS) deviation between the values of the CIs and the observed data within
them. Our model achieves a CE of 3.35% for spectra and 5.8% for ΦP

predictions. We also calculate signed CE44,45, which is positive for pre-
dominantly underconfident predictions. The signed CE is 2.1% for spectra
and 1.8% forΦP predictions, suggesting that incorrect uncertainty estimates
are generally conservative.

Additionally, we measure the sharpness of predicted distributions,
defined in theMetrics subsection inMethods as the averageRMSwidthof the
predicted distributions. Lower values indicate narrower distributions, which

aremore insightful, assuming comparable calibration46. The sharpness across
predicted spectra distributions is 0.065, much narrower than the dataset’s
average standard deviation of 0.19. Similarly, the predicted ΦP distributions
have a sharpness of 0.4 compared to a standard deviation of 1.2.

The high degree of calibration and sharpness of the predicted dis-
tributions highlights the power of this model architecture to be utilized as a
synthetic diagnostic, capable of generating accurate and precise uncertainty
distributions of on-shot spectra with training on a small dataset.

Training set size performance scaling
The SDE demonstrates promising performance with fewer than 700
training samples. DNNs typically improve with larger datasets, following a
power law trend47–49. This suggests potential error reduction with larger
datasets, as planned for future experiments.

To extrapolate future performance, we retrained the SDE on random
sub-samples of the full trainingdataset of varying sizes, repeating theprocess
ten times to ensure robustness against data distribution changes and
training variability. The spectra andΦP PUV, sharpness, andCE of the SDE
predictions were evaluated after each training session.

The results, presented in Fig. 4a, show a substantial reduction in error
as more data is added, following a power law trend. For example, with

Fig. 2 | Spectral comparison. a Proton spectra measured experimentally (top), with
corresponding average reconstructions from the β-VAEs (middle) and predictions from
the predictor-decoder pair in the SDE (bottom). The spectra are sorted by increasing
measuredΦP, indexed by N. Red dashed lines are included as visual guides to assist in
identifying specific energy levels. b Examples from evenly-spaced, ΦP-sorted indices N,
showing measured spectra (black), average predictions from the SDE (green), and 1,000
overlaid samples fromthepredicteddistributiongeneratedby theSDE(eachsample shown
in a shade of red with reduced opacity to visualise the distribution of overlaid data).
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3600 shots of training data, achievable in about an hour with aHz-rate laser
system, the PUV for predicted spectra is projected to reach ~6.5%.

The PUVof theΦP predictions, shown in Fig. 4b, also follows a power-
law trend but improves less significantly, reaching about 12.7% after 3600
training shots.

The sharpness of predicted spectra distributions decreases slightlywith
more data, from 0.07 with < 160 training samples to 0.065 with the full
dataset, while the predicted ΦP distribution sharpness remains almost
unchanged, as shown in Fig. 4c. This indicates that adding more training
data does not significantly sharpen the distributions.However, as previously
noted, the distributions are already considerably sharper than the overall
variation within the dataset.

The gradual improvement in the SDEΦP prediction error and negligible
changeof theΦPdistribution sharpness canbeattributed toa small numberof,
predominantly high-energy, high-flux, spectra where the model underper-
forms. In contrast, greater improvement is observed in overall metrics due to
the bias towards low energy regions of the spectra, where predictions improve
significantly. This is potentially driven by the low density of high-energy
spectra within the dataset (as can be observed from Figs. 2a, 3a), limiting
learning. Alternatively, it could indicate that the backreflection diagnostics do
not encode enough information for precise prediction of these high-energy
spectra, which may exhibit larger shot-to-shot fluctuations.

These findings indicate significant performance gains are possible with
larger datasets and highlight steps for improved performance across a wide
parameter range, particularly the need for a balanced dataset or additional
diagnostics, supporting advancements in laser-driven proton experiments.
Importantly, these results indicate that the scale of the datasets required for
significant improvements are within reach on current and next generation
Hz repetition rate laser systems.

Surrogate model
Wealso performed a dataset size scaling test on a full surrogatemodel (SM),
which is analogous to the SDE but without on-shot backreflection, or other

secondary diagnostic, measurements. This SM would enable both on-line,
real-time output ion beam parameter predictions based on measured
experimental input laser and plasma parameters, and off-line input para-
meter space exploration, facilitating rapid optimization.

As shown in Fig. 4a, b, the performance of the SMplateausmuchmore
quickly than that of the SDEwith the currentmodel architecture. However,
a more sophisticated model could potentially achieve enhanced perfor-
mance with additional data.

Feature importance
In addition to the SDE’s ability to provide accurate, on-shot predictions of
the proton spectra, we can also gain insights into the underlying physics
through the interpretation of its outputs. While the black-box nature of
DNNs poses significant challenges to interpretability50–52, Permutation
Feature Importance (PFI) provides away to gauge the relative importance of
specific inputs to themodel performance. Originally developed for Random
Forests53, PFI is now widely used for neural networks54–56. This method
involves shuffling an input in the test set and measuring the change in
prediction error, with large increases indicating strong dependency.

We applied PFI to the SDE ten times to account for random shuffling
variation, as shown in Fig. 5, along with the standard deviation normalized
to the range of each input parameter. The results highlight that laser pulse
energy is themost critical feature for determining proton spectra, consistent
with experimental studies57. Related to this, encircled energy is also
important, reflecting its role in determining the total energy transferred to
protons58.

The preheater offset time emerges as the secondmost important factor.
It determines the density profile of the expanding preplasma, which in turn
influences the interaction between themain laser pulse and the plasma, and
specifically the energy coupling to fast electrons29. While existing analytical
models of laser-driven ion accelerationdonot fully account for the impactof
the plasma density profile, our findings show it to be important, under-
scoring the advantages of this approach over more limited models. Focal

Fig. 4 | Effect of training set size on various
metrics. a Synthetic diagnostic ensemble proton
spectra prediction PUV (green), (b) ΦP prediction
PUV (green), (c) sharpness of predicted spectrum
(green) and ΦP (blue) distributions, and (d) cali-
bration error (CE) and signed CE, all as a function of
training set size. Error bars represent variability
from repeated resampling and retraining. Plots (a,b)
include power-law curve fits extrapolated to a
training set size of 3600, and include the perfor-
mance and power-law fit of the surrogate
model (red).
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spot size and Δz have some effect, though less significant, while pulse
duration exhibits minimal influence within the tested range. As shown,
these parameters are less critical compared to energy and preheater offset
time, despite being varied similarly during the experiment over their tested
ranges.

Applying PFI to the SDE motivates an approach to defining system
performance requirements and designing datasets for future ML-based
laser-driven ion acceleration experiments. These findings highlight the
substantial benefits of ensuring detailed sampling and accurate measure-
ment of laser energy compared to other parameters, such as pulse duration.
Additionally, they highlight the necessity of developing a more precise
diagnostic of the front surface plasma density profile, given its relative
importance as indicated by the model.

Discussion
We have developed a DNN-based model that accurately predicts proton
spectra from high-intensity laser-solid interactions while providing well-
calibrated uncertainty estimates. The model employs an ensemble of pre-
dictor networks that use laser conditions and secondary backreflection
measurements to predict reduced-dimensional spectra representations,
which are subsequently decoded using β-VAE networks. By predicting
Gaussian distribution parameters, the model generates robust uncertainty
estimates that enhance prediction accuracy. The ensemble approach
improves both uncertainty estimation and prediction error by combining
diverse predictions from multiple predictor-decoder pairs, each trained on
distinct subsets of the dataset.

This study presents a reliable framework for non-destructively deter-
mining the properties of laser-accelerated proton beams, enabling real-time
diagnostics and optimization of future experiments. Traditional laser-
plasma setups are constrained by bulky in-vacuum diagnostic systems,
requiring large chambers and complex controls. Synthetic diagnostics offer
a solution, significantly reducing system size and unlocking new applica-
tions (e.g., non-destructive testing and inspection), where source mobility
and live diagnostics are essential59.

Additionally, our methodology, incorporating techniques such as PFI,
enhances our understanding of laser-driven ion acceleration and laser-solid

interactions, providing valuable insights for guiding future experimental
design and parameter optimization. The performance of the SDE demon-
strates favorable scaling with increasing dataset size; however, the gradual
improvementobserved in theSDEΦP predictionshighlights the importance
of achieving a balanced distribution of spectra in future experiments to
maximize performancewith limited data. This observation also suggests the
potential need for different diagnostics that capture a broader range of
interaction information, enabling more precise predictions.

The occasional negative output values in SDE predictions have a
minimal impact on model performance. However, this could be addressed
more rigorously in future models by applying the rectified linear unit
(ReLU) activation function to the decoder output instead of the current
linear function. Implementing this change would necessitate retuning the
model hyperparameters due to the significant change in the architecture.

The lack of increased prediction accuracy when applying alternative
dimensionality reduction techniques to the backreflection data, including
thepreservationof spatial and spectral information through theuse of image
moments (as discussed in theModel input data section), may reflect unique
characteristics of the backreflection diagnostic itself. A diagnostic more
strongly correlated with the proton spectrum could potentially benefit from
adimensionality reduction approach that better preserves such correlations.
Furthermore, potential enhancements to the model architecture could
include adopting a non-parametric approach to predicting aleatoric
uncertainty, removing the assumption that latent space representations
must follow a Gaussian uncertainty distribution. This could result in
improvements in calibration and sharpness60.

Although the SM exhibits limited improvement with additional data,
thismay stem frommodel capacity constraints. Re-tuning hyperparameters
or modifying the model architecture could enhance the predictor DNN’s
accuracy, offering a method for efficiently and accurately scanning large
parameter spaces and designing future experiments.

Since the model inputs consist of in-situ backreflectionmeasurements
from the interaction, the model is unlikely to generalize immediately to
datasets fromother experimental setups or laser facilities. However, transfer
learning presents a promising avenue to address this limitation. By using a
pre-trained SDE from one system, it may be possible to learn the complex
correlations of a new systemwith reduced training time and smaller dataset
requirements, enabling rapid adaption for future applications61,62. This
approach holds significant potential for current and emerging high-power
laser facilities operating at 1 Hz repetition rate or greater, where an
equivalent dataset size to that used in this work could be generated within
tens of minutes. Consequently, training an SDE or surrogate model to
diagnose and guide experiments could become a routine part of standard
operating procedures.

In conclusion, the DNN architecture presented here provides accurate
and insightful predictions of the spectral properties of laser-accelerated
protons. This approach represents a significant advancement in non-
destructive ion beam measurements and highlights the effectiveness of
applying DNNmodels to laser-solid interactions. The technique has broad
potential applications, ranging from diagnosing other radiation types (e.g.,
electrons, neutrons and x-rays) in high-power laser-plasma interactions to
predicting outcomes and quantifying uncertainty in fields like nuclear
fusion research and astrophysics, where high dimensionality and low data
volumes present substantial challenges.

Methods
Experimental details
As illustrated in Fig. 1, pulses from the Gemini high power laser were
focused to intensities up to 4.4 × 1020Wcm−2 onto a 15 μm-thick copper
tape-driven target. Prior to focusing, the pulses passed through a double
plasma mirror system (not shown in the schematic). The timing of the
arrival of a preheater laser pulse (focused to 1 × 1014Wcm−2) prior to the
main laser pulse, Δt, controlled the degree of plasma expansion. The
parameterΔtwasvariedwithin the range [0.4, 3.68]ns (noting thatwhen the
preheater is not used, it is labelled as 0 ns in the dataset) using a motorized
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Fig. 5 | Influence of input parameters. The red bars correspond to the percentage
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timing slide.Meanwhile,Δz, the spatial offsetbetween the laser focus and the
target front surface, was adjusted using motorized drives for the parabola,
varying within the range of [−100, 100] μm. The energy of the preheater
beam could not be measured for every shot during the experiment. Instead,
it was characterized daily when the system was brought online. The energy
variability is anticipated to be comparable to that of the main drive laser
pulse, as both are derived from the same source. Since the preheater beam is
not tightly focused, any potential wavefront changes are expected to have a
minimal impact on the interaction.Thewide rangeoverwhich thepreheater
offset time was varied is likely the most significant parameter influencing
changes in the preplasma.

Measurements of the laser pulse energy and resulting proton and
optical radiation were made using a suite of diagnostic tools. The on-target
laser energy, measured every shot using a calibrated calorimeter sampling
energy froma laser pick-off,waswithin the range [0.65, 4.8] J. The laser focal
spot was periodically imaged with the laser in low-power mode at 10 Hz.
The focal spot radius (defined as the half-width at half-maximum) and the
encircled energy within the focal radius were calculated for each image and
found to be within the range [1.35, 2.11] μm and [21.5, 25.7]%, respectively
(see the Data processing section). The pulse duration was adjusted within
the range [36, 95] fs via an Acousto-Optic Programmable Dispersive Filter
(Dazzler by Fastlite). Daily pulse duration measurements were performed
over five shots using a GRENOUILLE63, enabling both optimization and
characterization of the pulse. The use of a double plasma mirror system
required operations to be paused every 50 shots for plasma mirror repla-
cement. Following each replacement, the laser focal spot was reoptimized
and imaged to ensure consistency. This process effectively minimized the
effects of drift in the laser wavefront. However, any unaccounted-for var-
iations in the laser focus or spectrum could introduce noise into the focal
spot or pulse duration input parameters.

The energy spectrumof the beamof accelerated protonswasmeasured
using a Thomson parabola ion spectrometer64–67, which directed the ions
onto amulti-channel plate with phosphor screen. The resulting light output
was imaged with an Andor Neo CMOS camera. Backreflected laser light
from the target front surface was measured by directing it onto a diffuse
scatter screen. The scattered lightwas imaged at both the laser frequency (ω)
and the second harmonic (2ω), in addition to the spectrum beingmeasured
across a range from 175 to 1169 nm.

Data processing
To extract the radii and encircled energies from the focal spot images,
background reference images were subtracted and Gaussian curves fit in
both x and y dimensions, centered on the image centroid. The focal spot
radiuswas defined as the average half-width at half-maximum (HWHM)of
these Gaussian distributions, and the encircled energy was calculated as the
ratio of pixel intensity inside the area defined by the HWHM radius to the
total intensity across the focal spot.

The accelerated ions are dispersed by the parallel electric andmagnetic
fields of the Thomson parabola spectrometer in parabolic traces, depending
on their charge-to-mass ratio and energy. To reduce X-ray-induced noise,
the images of the phosphor lightweremedian-filtered, and customcodewas
used to extract the proton spectra from the ion traces by performing
background subtraction and modeling the energy spread induced by
the fields.

Images of the backreflected light were median-filtered, and a back-
ground level was estimated from regions outside the near-field, which was
then subtracted; any negative pixel values set to zero. The images were
cropped to match the near-field beam diameter and masked to eliminate
pixels outside this area. The processed backreflectionω and 2ω images were
saved as 320 × 328 and 326 × 334 arrays, respectively.

Backreflection spectra, stored as 1714-element arrays, were also
median-filtered. Each spectrum had the mean of the lowest 10% subtracted
to remove backgroundnoise andwas clipped to ensure non-negative values.

Metrics
Severalmetrics are used to evaluate the performance of themodel including
the PUV, CE, and sharpness. These are defined as follows:

PUV ¼ 100 1� R2
� �

¼ 100

PN
i¼1

PL
j¼1 ðyij � ŷijÞ2PN

i¼1

PL
j¼1 ðyij � �yjÞ2

ð1Þ

whereR2 is the coefficient of determinationandN is thenumberof spectra in
the test dataset, eachwith lengthL. yij and�yj denote the jth element of the ith
spectrumand themean spectrum(definedas themeanvalue for eachenergy
bin over all spectra in the test dataset), respectively. ŷij indicates the corre-
sponding predicted value. The PUV, a commonly used performancemetric
in regressionproblems, is the ratio of themean squared error of themodel to
the varianceof the dataset, representing the percentage of the variance in the
data not explained by the model. Alternatively, it may be interpreted as the
error of themodel relative to the error of a naivemodel that always predicts
the dataset mean68–72. For ΦP predictions, the same formula applies, with
L = 1 and �yj replaced with the mean ΦP of the test dataset.

CE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
99

X99
P¼1

ðOP � PÞ2
vuut ð2Þ

SignedCE ¼ 1
99

X99
P¼1

ðOP � PÞ ð3Þ

are the CE and signed CE respectively, where OP is the percentage of the
measured data (i.e., all measured energy bins of all spectra, or all ΦP, in the
test set) observed to be within a P% confidence interval42,44,45. We have
included an additional square root operation on the CE from the definition
in ref. 42 to retain the units.

For a predicted empirical distribution with S samples, where each
sample is given byeyijs, representing the uncertainty in the jth element of the
ith predicted spectrum, the sharpness can be defined as

sharpness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NL

XN
i¼1

XL
j¼1

1
S

XS
s¼1

ðeyijs � �yijÞ2
vuut ð4Þ

Here, �yij is the mean over s of eyijs42,73.
During hyperparameter tuning, we used the Continuous Ranked

Probability Score (CRPS) to evaluate model performance. CRPS integrates
both calibration and sharpness into a single metric, making it effective for
comparing the overall accuracy of predicted distributions46,74.We estimated
CRPS by calculating the average of the ‘pinball loss’75 from the 1st to 99th
quantiles of the predicted distributions74.

Data splitting
To accurately evaluate the final model performance, a random 20% of the
total data was set aside as a holdout test set, which was not used for data
normalization, hyperparameter tuning, or model training. This approach
ensures that the final performance metrics are not overly optimistic due to
overfitting.

Each DNNmodel was trained on 90% of the remaining data, with the
remaining 10% reserved as a validation set. This configuration enabled the
useof theKerasEarlyStopping callback,whichhalts training if the validation
loss does not improve after a specified number of epochs (the ‘patience’
hyperparameter), therebypreventingunnecessary training andoverfitting76.
In addition, we used the ‘restore_best_weights’ parameter of EarlyStopping,
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restoring the model weights to those found on the training epoch with the
lowest validation loss.

Data normalization
Data normalization, which has been shown to enhancemodel performance,
especially in data-limited scenarios77,78, was applied bymapping the training
dataset inputs and outputs to the [0, 1] interval. The validation and test sets
were scaled using the parameters obtained from scaling the training set,
avoiding data leakage. Each β-VAE and predictor in the ensemble was
trained on a different random sub-sample of the training data, necessitating
unique scaling parameters for each ensemblemember’s inputs and outputs.
Predicted data was then scaled back to the original range to ensure con-
sistent performance evaluation.

β-VAE architecture
The encoder and decoder of the β-VAEs are fully connected dense neural
networks. All layers use rectified linear unit (ReLU) activation functions,
except for the input and output layers, which are linear. During hyper-
parameter tuning, the hidden layers of both the encoder and decoder are
constrained to be symmetric, with a maximum of 2 hidden layers each.

The β-VAE loss function for each proton spectrum during training is
defined as follows79:

Lβ�VAE ¼ 1
2

XL
i¼1

ðyi � ŷiÞ2 þ
β

2

XLz
j¼1

μ2j þ σ2j � logðσ2j Þ � 1
� �

ð5Þ

where L denotes the ‘length’ of the proton spectrum, yi is the ith element of
the ground truth spectrum, and ŷi is the corresponding element of the
reconstructed spectrum. Lz represents the length of the latent space, while μj
and σj is the mean and standard deviation of the latent space generated by
the encoder, respectively.

The first term on the right-hand side of equation (5) captures the
reconstruction error from the decoder, whereas the second term represents
the Kullback-Leibler (KL) divergence between the latent space distribution
and the standard normal distribution.

The parameter β is a hyperparameter that regulates the trade-off
between the reconstruction error and theKLdivergence. Increasingβ results
in a smoother and more regularized latent space but may also increase the
reconstruction error. During hyperparameter tuning, βwas permitted to be
set to 0, effectively disabling the KL divergence term. In this scenario, the
encoder outputs only the mean LSR, reverting the β-VAE to a standard
autoencoder.

Predictor architecture
The predictor network is a fully connected dense network that uses ReLU
activation functions across all hidden layers, with the architecture allowing
for up to three hidden layers during hyperparameter tuning.

As discussed in the Uncertainty quantification section, the predictor
DNNs use a negative log-likelihood loss function to estimate the parameters
of an independent multivariate normal distribution, reflecting the assumed
distribution of latent space variables due to experimental noise. The loss
function for each encoded spectrum is given by40:

LNLL ¼
1
2

XLz
j¼1

logðσ̂2j Þ þ
ðμj � μ̂jÞ2

σ̂2j

 !
ð6Þ

where μj is the jth element of the encoded ground truth spectrum generated
by a β-VAE encoder, and μ̂j and σ̂ j are the corresponding predicted mean
and standard deviation of the predictor DNN, respectively.

Hyperparameter tuning
The combined β-VAE-predictor model has numerous hyperparameters
that need to be tuned for optimal performance. Given the computational

expense of training eachDNN,we usedBayesian optimization via the scikit-
optimize gp_minimize package80–82.

Initially, we performed Bayesian optimization over broad parameter
ranges for 221 iterations to identify regions of high performance. This was
followed by a more focused optimization over narrower ranges for an
additional 123 iterations. Hyperparameter tuning was conducted using k-
fold cross-validation (k=10)83–85, with nine folds used for training and one
used for performance evaluation on every permutation of folds. The nine
training folds incurred a further 90/10 random split into training and
validation datasets for EarlyStopping. The β-VAE and predictor networks
were trained for amaximum of 15,000 epochs, with EarlyStopping patience
parameters tuned independently.

During tuning, the batch sizes for training the β-VAEs and predictors
were set to 16, 32 or 64. To ensure uniform batch sizes, the training data for
each fold was truncated to a multiple of 64. Additionally, the maximum
moment order (MMO) of the backreflection diagnostics was treated as a
hyperparameter, recognizing that not all moments may be essential for
predictions. Including too many unimportant inputs could potentially
reduce performance.

The full list of tuned hyperparameters along with their allowed ranges
and optimal values found are shown in Table 1.

We selected stochastic gradient descent as the optimizer for the net-
works during training because of its proven ability to achieve superior
generalization performance compared to adaptive algorithms such as
ADAM86–88.

Given that themodel predicts an uncertainty distribution rather than a
single average spectrum, we needed a metric that evaluates the error across
the entire distribution, not just the average. To achieve this, we generate 1000
samples from the predicted distribution for each ground truth spectrum and
use an approximation of the CRPS. Minimizing this approximation enables
us to fine-tune the model hyperparameters effectively, ensuring the model
accurately captures the overall uncertainty distribution of the data.

Ensembling
During hyperparameter tuning, we found that the prediction performance
of the predictor-decoder pairs was not constrained by the reconstruction
error of theβ-VAEs, as detailed in the sectionProton spectrumand totalflux
prediction accuracy. Consequently, ensembling the β-VAEs was not
essential, and we trained only four β-VAEs, each using a different 10%
subset of the training data for validation and EarlyStopping.

For the predictor ensemble, eachmember is again trained on a random
90% subset of the training data, with the remaining 10% used as validation

Table 1 | Optimal DNN hyperparameters and tuning ranges

Hyperparameter Optimal Value Tuning Range

β-VAE LR 0.000601 [1 × 10−4, 1.5 × 10−3]

β 0.0265 [0, 2]

β-VAE Encoder Layer 1 505 [10, 1000]

β-VAE Encoder Layer 2 633 [0, 1000]

Latent Space Size 8 [1, 15]

β-VAE Patience 333 [10, 500]

Predictor LR 0.0024 [1 × 10−4, 5 × 10−2]

Predictor Layer 1 1198 [10, 1500]

Predictor Layer 2 1435 [0, 1500]

Predictor Layer 3 247 [0, 1500]

Backreflection MMO 3 [0, 5]

Predictor Patience 145 [10, 500]

Batch Size 32 [16, 64]

Both the model learning rates (LRs) and β were trained on a logarithmic scale. To accommodate β

values of zero, a small constant (1 × 10−4) was added during training and subtracted before applying
the value in the model.
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for EarlyStopping. In addition, a scan was performed to test the CE,
sharpness and PUV of the ensemble predictions as a function of different
techniques to induce variation between ensemble members. The two
methods involved either randomly truncating or padding the training data
for eachmember network tomultiples of the batch size (after the validation
split) and sampling these resized datasets with or without replacement.
When sampling without replacement, padding was achieved by randomly
appending samples from the trainingdata, also inmultiples of the batch size.
This step was unnecessary when sampling with replacement, as it allows
direct sampling from a dataset larger than the original. Consequently, both
the fraction of the data used for training each network and its distribution
were varied.

The optimal performance, in terms of prediction error, CE and
sharpness, was achieved when each member was trained with the full
training dataset, padded to amultiple of the batch size, and sampledwithout
replacement. It remains unclear which method of padding or truncating is
most effective in edge caseswhere the trainingdata (after the validation split)
is already amultiple of the batch size, as no padding or truncating would be
applied in this scenario with the current design.

Furthermore, various definitions of the ‘average’ prediction were tes-
ted, including themean andmedian of all ensemblemembers, as well as the
meanandmedianof an empirical distributiongenerated fromthe ensemble.
Itwas found that themedianof thepredicteddistributionyielded thehighest
accuracy by a small margin. However, as noted in the Uncertainty quanti-
fication section, the median of the average prediction from each ensemble
member is computationally more efficient while maintaining a similar
error rate.

Data availability
Data associated with research published in this paper can be accessed at
https://doi.org/10.15129/cee473ca-3d2d-4150-b46b-6f964e8ce9d1.

Code availability
The developed code is available at https://gitlab.cis.strath.ac.uk/
mckennagroup/2024_synthdiag_commsphysics#.
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