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A B S T R A C T

In the context of broadband multichannel signal processing, problems can often be formulated using a space–
time covariance matrix, and solved using a diagonalisation of this quantity via a polynomial or analytic
eigenvalue decomposition (EVD). In this paper, we address the impact that an estimation of the space–time
covariance has on the factors of such a decomposition. In order to address this, we consider a linear unbiased
estimator based on Gaussian distributed data, and characterise the variance of this estimate, as well as the
variance of the error between the estimate and the ground truth. These quantities in turn enable to find
expressions for the bin-wise perturbation of the eigenvalues, which depends on the error variance of the
estimate, and for the bin-wise perturbation of the eigenspaces, which depends on both the error variance but
also on the eigenvalue distance. We adapt a number of known bounds for ordinary matrices and demonstrate
the fit of these bounds in simulations. In order to minimise the error variance of the estimate, and hence the
perturbation of the EVD factors, we discuss a way to optimise the lag support of the space–time covariance
estimate without access to the ground truth on which the estimate is based.
1. Introduction

The second order statistics of a measurement vector 𝐱[𝑛] ∈ C𝑀 ac-
quired by an 𝑀-element array over discrete time, indexed by 𝑛 ∈ Z, are
contained in the space–time covariance matrix 𝐑[𝜏] = 

{

𝐱[𝑛]𝐱H[𝑛 − 𝜏]
}

,
where  {⋅} is the expectation operator and {⋅}H denotes Hermitian
transposition. In narrowband signal processing, time delays with which
e.g. sources illuminate the different array elements are entirely cap-
tured by phase shifts. In this narrowband case it therefore suffices to
consider the instantaneous covariance matrix 𝐑[0] only. If broadband
signals are to be addressed, explicit time delay information must be
preserved, and this requires the inclusion of the lag component 𝜏 in
the space–time covariance matrix 𝐑[𝜏], which thus includes auto- and
cross-correlation sequences as entries.

Many narrowband array processing applications such as beamform-
ing [1–3] or angle of arrival estimation [4] rely on the eigenvalue
decomposition (EVD) of the instantaneous covariance matrix 𝐑[0] for
optimal narrowband solutions. For the broadband case, the narrowband
solutions can be generalised using a similar factorisation of the space–
time covariance matrix 𝐑[𝜏]. This however requires the diagonalisation
of 𝐑[𝜏] for every lag 𝜏, which is equivalent to strong decorrelation
of the underlying data 𝐱[𝑛] [5]. Because such decompositions are
generally formulated for the cross-spectral density (CSD) matrix 𝑹(𝑧) =
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𝜏 𝐑[𝜏]𝑧−𝜏 — a Laurent polynomial matrix [6,7] — they are termed
polynomial matrix eigenvalue decompositions (PEVD) [8–10]. Various
PEVD algorithms have been investigated over the two decades, see
[8,11–21], and form the basis of algorithms for various applications
including broadband beamforming [22–25], broadband signal com-
paction and coding [13,26,27], broadband source separation [27,28],
scene discovery [29], or broadband angle of arrival estimation [30–32].

For most applications, the space–time covariance matrix must be
estimated from measurements 𝐱[𝑛] over a limited number of, say 𝑁 ,
snapshots i.e. only a data set {𝐱[𝑛] ∈ C𝑀 , 𝑛 = 0 … (𝑁 − 1)} is available
to obtain an estimate 𝐑̂[𝜏] of 𝐑[𝜏]. This may be either due to the limited
availability of data, or the need to restrict the estimation to an interval
over which the data can be assumed to be stationary. While various
investigations have been undertaken into the accuracy of the above
decompositions [33,34], and limiting factors due to algorithm-internal
order reductions [35–38] or the conditioning of the underlying source
model [39], it has only been relatively recently that the estimation
errors of 𝐑[𝜏] and their impact on the factorisation of the PEVD of
𝑹(𝑧) [40] have been investigated.

Since the estimated quantity 𝐑̂[𝜏] will likely differ from the ground
truth space–time covariance matrix 𝐑[𝜏], the EVD factors of 𝐑̂[𝜏] will
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generally also differ from those of 𝐑[𝜏]. Assessing the impact of any
discrepancies of an ordinary matrix on its eigenvalues and eigenvectors
has been well studied under the topic of perturbation theory [41–46].
Rellich [47] showed that for a Hermitian matrix 𝐀0 and an analytic
perturbation term 𝐀(𝜖), the eigenvalues and eigenspaces of 𝐀0 + 𝐀(𝜖)
re also analytic in 𝜖 ∈ R. While his work has been useful in order

to establish the existence of an eigenvalue decomposition of 𝑹(𝑧) [9],
here the perturbation term is random and not analytic.

To characterise the perturbation of the covariance matrix, we need
o consider the statistics that are involved in estimating its constituent
uto- and cross-correlation sequences from a finite number of samples,
. To date, results have been derived for the broadband single chan-

el case, i.e. for the sample auto-correlation sequence. For this case,
arious attempts have been undertaken for random signals that can be
odelled as first order auto-regressive processes [48,49], or by more

general data models [50–52]. For the multichannel case, analysis has
been restricted to narrowband signals and the case where snapshots
[𝑛] are temporally independent; this leads to the spatial covariance

matrix being Wishart distributed [53,54]. This is insufficient for the
distribution of the sample space–time covariance matrix, 𝐑̂[𝜏], which is
constructed from multichannel broadband data, where the correlation
between subsequent snapshots 𝐱[𝑛] and 𝐱[𝑛+ 1] is vital and has explicitly
motivated the inclusion of the lag parameter 𝜏 [7–9,55].

Therefore, in this paper we want to characterise space–time covari-
nce estimation and its impact on the perturbation of PEVD factors.
ased on initial work in [56], we expand by analysing potential esti-

mators, whereby an incorrect choice can lead to a rank-one space–time
covariance irrespective of the number of contributing sources. For
a linear unbiased estimator, we state a closed-form solution for the
expected variance of the error between 𝐑̂[𝜏] and 𝐑[𝜏], which depends
both the sample size 𝑁 and the ground truth 𝐑[𝜏]. Particularisation
of our results agree with [50,53,54] and with results from spectral
estimation such as [52]. This error variance can in turn be linked to
the impact on the PEVD of 𝐑̂[𝜏]. Initial work in [40] is expanded
by the derivation and demonstration of bounds for eigenvalues and
igenspaces. In order to minimise this impact, we also investigate over
hich range of lags 𝐑̂[𝜏] should be evaluated, for which initial ideas
ad been reported in [57].

Below, we commence with a definition of the space–time covariance
matrix, and review its properties and matrix factorisation in Section 2.
In Section 3 we analyse the sample cross-correlation sequence, which
is used for the sample space–time covariance in Section 4 and its
perturbation effects in Section 5, followed by experimental verification
in Section 6. Section 7 considers how the lag-support of a space–time
ovariance estimate may be optimised in order to minimise its deviation

from the ground truth 𝐑[𝜏], and to best limit the perturbation of its
in-wise EVD factors. A summary and conclusions can be found in
ection 8.

2. Space–time covariance matrix and analytic EVD

2.1. Data model and space–time covariance

Given 𝑀 sensor measurements 𝑥𝑚[𝑛], 𝑚 = 1 …𝑀 , organised in
a column vector 𝐱[𝑛] = [

𝑥1[𝑛] … 𝑥𝑚[𝑛]
] T, the space–time covariance

matrix of the data was defined in Section 1 as 𝐑[𝜏] = 
{

𝐱[𝑛]𝐱H[𝑛 − 𝜏]
}

.
he source model or innovation filter [58] in Fig. 1 ties this data

vector 𝐱[𝑛] to 𝐿 zero-mean unit-variance mutually independent com-
plex circularly symmetric Gaussian sources 𝑢𝓁 , 𝓁 = 1 …𝐿, such that

{

𝑢𝓁[𝑛]𝑢𝜈 [𝑛 − 𝜏]
}

= 𝛿[𝜏]𝛿[𝓁 − 𝜈] for 𝜈 = 1 …𝐿 [59]. As a result, the
space–time covariance matrix can be expressed as

𝐑[𝜏] =
∑

𝑛
𝐇[𝑛]𝐇H[𝑛 − 𝜏]

where 𝐇[𝑛] ∈ C𝑀×𝐿 is a matrix of deterministic filters. If the entry in
he 𝑚th row and 𝓁th column of 𝐇[𝑛] represents the impulse response
 s

2 
Fig. 1. Source model for 𝑀 convolutively mixed signals arising from 𝐿 independent
nit-variance zero-mean sources.

ℎ𝑚𝓁[𝑛] between the 𝓁th source and the 𝑚th sensor, then

𝑟𝑚𝜇[𝜏] =
∑

𝑛

𝐿
∑

𝓁=1
ℎ𝑚𝓁[𝑛]ℎ∗𝜇𝓁[𝑛 − 𝜏] (1)

is a cross-correlation sequence that occupies the 𝑚th row and 𝜇th
column of 𝐑[𝜏], with {⋅}∗ denoting complex conjugation.

2.2. Cross-spectral density matrix

Since the space–time covariance matrix comprises auto- and cross-
correlation sequences, it satisfies the symmetry 𝐑[𝜏] = 𝐑H[−𝜏]. Its
𝑧-transform, the cross-spectral density (CSD) matrix 𝑹(𝑧) = ∑

𝜏 𝐑[𝜏]𝑧−𝜏
 or for short 𝑹(𝑧) ∙ ◦ 𝐑[𝜏] to denote a transform pair – therefore is
 parahermitian matrix, such that its parahermitian transpose, denoted
y the operator {⋅}P, is equal to itself: 𝑹P(𝑧) = {𝑹(1∕𝑧∗)}H = 𝑹(𝑧) [55].

2.3. Analytic eigenvalue decomposition

A parahermitian, analytic 𝐑(𝑧) admits an analytic EVD [9]

𝑹(𝑧) = 𝑸(𝑧)𝜦(𝑧)𝑸P(𝑧) , (2)

where 𝐐(𝑧) is a paraunitary matrix of eigenvectors and 𝜦(𝑧) is a
iagonal parahermitian matrix of eigenvalues. In most standard cases,
hese factors can be selected to be analytic [10].1 If so, then the

factors 𝑸(𝑧) and 𝜦(𝑧) on the r.h.s. of (2) are generally algebraic or
transcendental. While for an analytic 𝑹(𝑧), an analytic solution for 𝜦(𝑧)
is unique, the eigenvectors can contain arbitrary allpass filters, and only
he eigenspaces within which these vectors reside are unique.

If the space–time covariance matrix is estimated from a finite set of
samples, the obtained matrix 𝐑̂[𝜏] ◦ ∙ 𝑹̂(𝑧) will differ from 𝑹(𝑧). Thus
lso the eigenvalues and eigenspaces can be expected to be perturbed.
ince the estimate 𝑹̂(𝑧) will be a Laurent polynomial and therefore
nalytic due to its finite nature, we would ideally be interested in
he perturbation of the analytic factorisation 𝑹̂(𝑧) = 𝑸̂(𝑧)𝜦̂(𝑧)𝑸̂P(𝑧).

However, while such an analytic factorisation is guaranteed by the
theorems in [9,10,60,61], Section 5 will argue that we can currently
only state the perturbation at individual frequencies 𝛺0 ∈ R for an
evaluation of 𝑹̂(𝑧) on the unit circle.

3. Cross-correlation estimation

Practically, the space–time covariance matrix must be estimated
from data. If only a set of 𝑁 snapshots of 𝐱[𝑛], 𝑛 = 0 … (𝑁 − 1), is
vailable, then generally the estimate for the space–time covariance

matrix, 𝐑̂[𝜏], will experience estimation errors. In this section, we focus
n the estimation of the cross-correlation sequence since (1) is the most
eneral component of the space–time covariance matrix.

1 Many current algorithms aim to provide the McWhirter decomposi-
tion [8], which is not necessarily analytic, and approximates 𝑸(𝑧) and a
pectrally majorised 𝜦(𝑧) by Laurent polynomials.
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3.1. Biased estimation

The cross-correlation sequence between two signals 𝑥𝑚[𝑛] and 𝑥𝜇[𝑛],
𝑚, 𝜇 ∈ {1 …𝑀}, is defined as

𝑟𝑚𝜇[𝜏] = 
{

𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏]
}

. (3)

Assuming strong ergodicity and therefore by implication stationarity
for the involved signals [62], the estimation of 𝑟𝑚𝜇[𝜏] over a set of
𝑁 time snapshots can be performed in different ways. For later use in
Section 4.1, one specific cross-correlation estimate is

̂(biased)𝑚𝜇 [𝜏] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁

𝑁−|𝜏|−1
∑

𝑛=0
𝑥𝑚[𝑛 + 𝜏]𝑥∗𝜇[𝑛] , 𝜏 ≥ 0 ;

1
𝑁

𝑁−|𝜏|−1
∑

𝑛=0
𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏] , 𝜏 < 0 .

(4)

The superscript will differentiate this estimate from an unbiased one
iscussed in Section 3.2.

We first calculate the mean of the estimator in (4) for 𝜏 ≥ 0,

mean{𝑟̂(biased)𝑚𝜇 [𝜏]} = 
{

𝑟̂(biased)𝑚𝜇 [𝜏]
}

= 1
𝑁

𝑁−|𝜏|−1
∑

𝑛=0

{

𝑥𝑚[𝑛 + 𝜏]𝑥∗𝜇[𝑛]
}

= 1
𝑁

𝑁−|𝜏|−1
∑

𝑛=0
𝑟𝑚𝜇[𝜏] =

𝑁 − |𝜏|
𝑁

𝑟𝑚𝜇[𝜏] .

Similar analysis can be performed for 𝜏 < 0, such that for |𝜏| < 𝑁
mean{𝑟̂(biased)𝑚𝜇 [𝜏]} = 𝑁 − |𝜏|

𝑁
𝑟𝑚𝜇[𝜏]. (5)

This shows that the estimator in (4) is biased for all lag values 𝜏 except
𝜏 = 0.

Due to the finite length of the signals over the interval 0 ≤ 𝑛 < 𝑁 ,
it is possible to state their 𝑧-transforms 𝑋𝑚(𝑧) =

∑𝑁−1
𝑛=0 𝑥𝑚[𝑛]𝑧−𝑛. In this

case the cross-spectral density estimate 𝑅̂(biased)
𝑚𝜇 (𝑧) ∙ ◦ 𝑟̂(biased)𝑚𝜇 [𝜏] is

̂ (biased)
𝑚𝜇 (𝑧) = 1

𝑁
𝑋𝑚(𝑧)𝑋P

𝜇(𝑧) , (6)

which will be further examined in Section 4.1. The triangular data
window in (7) is responsible for the bias of the estimator. Note that
or the case 𝑚 = 𝜇 and 𝑧 = ej𝛺, (6) represents the periodogram, which

is known to be an inconsistent, biased estimator for the power spectral
density [63].

3.2. Unbiased estimation

With a lag-dependent normalisation compared to (4), an estimate of
𝑚𝜇[𝜏] over a sample size 𝑁 is defined as

̂𝑚𝜇[𝜏] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁 − |𝜏|

𝑁−|𝜏|−1
∑

𝑛=0
𝑥𝑚[𝑛 + 𝜏]𝑥∗𝜇[𝑛] , 𝜏 ≥ 0 ;

1
𝑁 − |𝜏|

𝑁−|𝜏|−1
∑

𝑛=0
𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏] , 𝜏 < 0

(7)

and this can be shown to be unbiased. For example for 𝜏 ≥ 0,

mean{𝑟̂𝑚𝜇[𝜏]} = 
{

𝑟̂𝑚𝜇[𝜏]
}

= 1
𝑁 − |𝜏|

𝑁−𝜏−1
∑

𝑛=0

{

𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏]
}

= 1
𝑁 − |𝜏|

𝑁−𝜏−1
∑

𝑛=0
𝑟𝑚𝜇[𝜏] = 𝑟𝑚𝜇[𝜏] ,

i.e. the mean of the quantity estimated via (7) is indeed the cross-
orrelation sequence defined in (3).
 s
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3.3. Variance of estimator

The variance of the unbiased cross-correlation sequence estimator
n (7) is defined as

var{𝑟̂𝑚𝜇[𝜏]} = 
{

(𝑟̂𝑚𝜇[𝜏] − 𝑟𝑚𝜇[𝜏])(𝑟̂𝑚𝜇[𝜏] − 𝑟𝑚𝜇[𝜏])∗
}

= 
{

𝑟̂𝑚𝜇[𝜏]𝑟̂∗𝑚𝜇[𝜏]
}

− 
{

𝑟̂𝑚𝜇[𝜏]
}

𝑟∗𝑚𝜇[𝜏]

− 𝑟𝑚𝜇[𝜏]
{

𝑟̂∗𝑚𝜇[𝜏]
}

+ 𝑟𝑚𝜇[𝜏]𝑟∗𝑚𝜇[𝜏]

= 
{

𝑟̂𝑚𝜇[𝜏]𝑟̂∗𝑚𝜇[𝜏]
}

− 𝑟𝑚𝜇[𝜏]𝑟∗𝑚𝜇[𝜏] . (8)

Inserting the estimation in (7) into 
{

𝑟̂𝑚𝜇[𝜏]𝑟̂∗𝑚𝜇[𝜏]
}

results in (8)
containing a fourth-order term involving the signals 𝑥𝑚[𝑛] and 𝑥𝜇[𝑛].

The above fourth-order term can be expressed in terms of cumu-
lants, but for Gaussian signals cumulants of order three and above are
zero [64,65]. This property also holds for the complex-valued case [66],
such that this fourth-order term simplifies as follows2


{

𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏]𝑥
∗
𝑚[𝑛]𝑥𝜇[𝑛 − 𝜏]

}

=


{

𝑥𝑚[𝑛]𝑥∗𝜇[𝑛 − 𝜏]
}

⋅ 
{

𝑥∗𝑚[𝑛]𝑥𝜇[𝑛 − 𝜏]
}

+ 
{

𝑥𝑚[𝑛]𝑥∗𝑚[𝑛]
}

⋅ 
{

𝑥∗𝜇[𝑛 − 𝜏]𝑥𝜇[𝑛 − 𝜏]
}

+ 
{

𝑥𝑚[𝑛]𝑥𝜇[𝑛 − 𝜏]
}

⋅ 
{

𝑥∗𝜇[𝑛 − 𝜏]𝑥
∗
𝑚[𝑛]

}

.

Therefore, for 𝜏 ≥ 0, the variance of the estimator in (7) becomes

var{𝑟̂𝑚𝜇[𝜏]} = 1
(𝑁 − |𝜏|)2

𝑁−|𝜏|−1
∑

𝑛,𝜈=0

(


{

𝑥𝑚[𝑛 + 𝜏]𝑥∗𝜇[𝑛]
}

⋅

⋅ 
{

𝑥∗𝑚[𝜈 + 𝜏]𝑥𝜇[𝜈]
}

+

+ 
{

𝑥𝑚[𝑛 + 𝜏]𝑥∗𝑚[𝜈 + 𝜏]
}


{

𝑥∗𝜇[𝑛]𝑥𝜇[𝜈]
}

+ 
{

𝑥𝑚[𝑛 + 𝜏]𝑥𝜇[𝜈]
}


{

𝑥∗𝜇[𝑛]𝑥
∗
𝜇[𝜈 + 𝜏]

})

− 𝑟𝑚𝜇[𝜏]𝑟∗𝑚𝜇[𝜏]

= 1
(𝑁 − |𝜏|)2

𝑁−|𝜏|−1
∑

𝑛,𝜈=0

(


{

𝑥𝑚[𝑛]𝑥∗𝑚[𝜈]
}

⋅

⋅
{

𝑥∗𝜇[𝑛]𝑥𝜇[𝜈]
}

+

+ 
{

𝑥𝑚[𝑛]𝑥𝜇[𝜈 − 𝜏]
}


{

𝑥∗𝑚[𝜈]𝑥
∗
𝜇[𝑛 − 𝜏]

})

. (9)

The same result can be obtained for 𝜏 < 0, and matches results reached
in [52]. Note that the first term in (9) can be simplified as
𝑁−|𝜏|−1
∑

𝑛,𝜈=0

(


{

𝑥𝑚[𝑛]𝑥∗𝑚[𝜈]
}


{

𝑥∗𝜇[𝑛]𝑥𝜇[𝜈]
})

=
𝑁−|𝜏|−1
∑

𝑛,𝜈=0

(


{

𝑥𝑚[𝑛]𝑥∗𝑚[𝑛 − (𝑛 − 𝜈)]} ⋅

⋅ 
{

𝑥∗𝜇[𝑛]𝑥𝜇[𝑛 − (𝑛 − 𝜈)]
})

=
𝑁−|𝜏|−1
∑

𝑛,𝜈=0
𝑟𝑚𝑚[𝑛 − 𝜈]𝑟∗𝜇 𝜇[𝑛 − 𝜈]

=
𝑁−|𝜏|−1
∑

𝑡=−𝑁+|𝜏|+1
(𝑁 − |𝜏| − |𝑡|)𝑟𝑚𝑚[𝑡]𝑟∗𝜈 𝜈 [𝑡] .

The second term in (9) can be addressed similarly. With 𝑟̄𝑚𝜇[𝜏] =

{

𝑥𝑚[𝑛]𝑥𝜇[𝑛 − 𝜏]
}

denoting the complementary cross-correlation se-
uence, the variance of the sample cross-correlation sequence becomes

2 We are grateful to one of our anonymous reviewers for pointing out
hat this the Isserlis formula for complex-valued processes. The formula holds
ore generally than for Gaussian signals as long as the assumption of the

ummability of fourth-order moments is satisfied [63].
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var{𝑟̂𝑚𝜇[𝜏]} = 1
(𝑁 − |𝜏|)2

𝑁−|𝜏|−1
∑

𝑡=−𝑁+|𝜏|+1
(𝑁 − |𝜏| − |𝑡|)⋅

⋅
(

𝑟𝑚𝑚[𝑡]𝑟∗𝜇 𝜇[𝑡] + 𝑟̄𝑚𝜇[𝜏 + 𝑡]𝑟̄∗𝑚𝜇[𝜏 − 𝑡]
)

. (10)

As special cases, if in the source model in Fig. 1, 𝑢[𝑛] is complex valued
with a circularly-symmetric distribution, then 𝑟̄𝑚𝜇[𝜏] = 0 ∀𝜏 ∈ Z. If all
signals are real valued, then 𝑟̄𝑚𝜇[𝜏] = 𝑟𝑚𝜇[𝜏].

3.4. Comparison with known results

The result in (10) generalises a number of solutions reported in the
literature. In the real-valued, single channel case, i.e. 𝐱[𝑛] ∈ R𝐿 and
= 𝜇, then (10) simplifies to

var{𝑟̂𝑚𝑚[𝜏]} = 1
(𝑁 − |𝜏|)2

𝑁−|𝜏|−1
∑

𝑡=−𝑁+|𝜏|+1
(𝑁 − |𝜏| − |𝑡|)⋅

⋅
(

|𝑟𝑚𝑚[𝑡]|
2 + 𝑟𝑚𝑚[𝜏 + 𝑡]𝑟𝑚𝑚[𝜏 − 𝑡]

)

.

This matches with the result reported in [50].
Next, we consider the narrowband case without any temporal cor-

relation of signals. In this case the transfer function 𝑯(𝑧) ◦ ∙ 𝐇[𝑛] is
n ordinary matrix, 𝑯(𝑧) = 𝐇0, and the signals 𝑥𝑚[𝑛] and 𝑥𝜇[𝑛] only
ave non-zero correlation for the case 𝜏 = 0. If further 𝐮[𝑛] ∈ R𝐿

and 𝐇0 ∈ R𝑀×𝐿, then the space–time covariance 𝐑[𝜏] = 𝐇0𝐇0
T𝛿[𝜏] is

ishart-distributed. For the instantaneous and real case, (10) simplifies
to

var{𝑟̂𝑚𝜇[0]} = 1
𝑁

(

𝑟𝑚𝑚[0]𝑟𝜇 𝜇[0] + |𝑟𝑚𝜇[0]|
2) ,

which indeed matches the variance of a Wishart distribution.

4. Sample space–time covariance matrix estimation

The cross-correlation estimation of Section 3 has a profound effect
n the construction of a space–time covariance matrix. We first explore
he impact of a biased estimation of the type in (4) before consider-

ing the estimation and modelling error when employing an unbiased
stimator.

4.1. Biased estimator

Due to the r.h.s. of (6) being an outer product of a single vector,
̂ (biased)(𝑧) by its very structure is a rank one matrix, and therefore
nly has a single non-zero eigenvalue. The corresponding principal
igenvector of (6) can be obtained by normalising 𝒙(𝑧) = ∑𝑁−1

𝑛=0 𝐱[𝑛]𝑧−𝑛,

𝒒̂(biased)1 (𝑧) = 𝛷(𝑧)
√

𝒙P(𝑧)𝒙(𝑧)
𝒙(𝑧) , (11)

where 𝛷(𝑧) is an arbitrary allpass filter. Note that the normalisation
involves a √

⋅ operation on a polynomial so 𝒒1(𝑧) contains potentially
lgebraic or transcendental functions in 𝑧 and these operations can be
pproximated using a Maclaurin or Taylor series [9]. Thus the principal
igenvalue is
̂(biased)
1 (𝑧) = 1

𝑁
𝒙P(𝑧)𝒙(𝑧) , (12)

with all remaining eigenvalues 𝛬̂(biased)
𝑚 (𝑧) = 0 for 𝑚 = 2 …𝑀 .

While this is not obvious in the time domain, the 𝑧-domain anal-
sis of the sample CSD matrix directly shows that the biased cross-
orrelation sequence estimation via (4) leads to a catastrophic collapse
n the rank of the estimated matrix.
4 
4.2. Unbiased estimator

Since we know that for the cross-correlation sequence the estimator
in (7) is unbiased, building up a sample space–time covariance matrix
𝐑̂[𝜏] from such components also leads to an unbiased estimate, such
hat 

{

𝐑̂[𝜏]
}

= 𝐑[𝜏].
Assume that the space–time covariance matrix has support of length

𝜏max+ 1, i.e. 𝐑[𝜏] = 𝟎 ∀|𝜏| > 𝜏max. Further assume that 𝐑̂[𝜏] is estimated
ver a support length of 2𝑇 + 1. We define the mismatch as

𝐄[𝜏] = 𝐑[𝜏] − 𝐑̂[𝜏] , (13)

and can state a mean square modelling error as

𝜉 =
∞
∑

𝜏=−∞

{

‖𝐄[𝜏]‖2F
}

=
𝑇
∑

𝜏=−𝑇

{

‖𝐄[𝜏]‖2F
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜉1

+ 2
𝜏max
∑

𝜏=𝑇+1
‖𝐑[𝜏]‖2F

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜉2

, (14)

where the first term, 𝜉1, is an estimation error due to (10), while the
econd term, 𝜉2, represents a truncation error. Note that 𝜉2 = 0 if
≥ 𝜏max.
For the estimation error, using (10) leads to

𝜉1 =
𝑇
∑

𝜏=−𝑇

𝑀
∑

𝑚,𝜇=1
var {𝑟̂𝑚𝜇[𝜏]}

=
𝑇
∑

𝜏=−𝑇

𝑁−|𝜏|−1
∑

𝑡=−𝑁+|𝜏|+1

𝑁 − |𝜏| − |𝑡|
(𝑁 − |𝜏|)2

(

tr
{

|𝐑[𝑡]|2
}

+

+ vec{𝐑̄[𝜏 − 𝑡]}Hvec{𝐑̄[𝜏 + 𝑡]}) , (15)

where the operator vec{⋅} vectorises its argument, 𝑇 is the support of
the estimate, and 𝐑̄[𝜏] is the complementary space–time covariance
matrix holding the complementary cross-correlation sequences defined
in Section 3.3. Therefore, the modelling error 𝜉 depends only on the
pace–time covariance matrix itself, the sample size 𝑁 , and the support

of the estimate, 𝑇 .

4.3. Optimum support for unbiased estimator

With the mean square modelling error 𝜉 depending on the ground
ruth 𝐑[𝜏], the sample size 𝑁 , and the chosen maximum lag 𝑇 , the
nly parameter typically under design control is the support |𝜏| ≤ 𝑇
ver which 𝐑[𝜏] is evaluated. The optimum value 𝑇opt for 𝑇 in terms of
inimising the mean square modelling error therefore is

𝑇opt = ar g min
𝑇
𝜉 . (16)

In general, this will be a trade-off between the terms 𝜉1 and 𝜉2. Since
 > 𝜏max leads to 𝜉2 = 0, and 𝜉1 generally grows with increasing
, we find 𝑇opt < 𝜏max, i.e. it appears better to underestimate than

o overestimate the support of 𝐑[𝜏] in practice. A heuristic sample-
et based approximate optimisation of the support window has been
nvestigated in [56].

Example 1. A space–time covariance matrix 𝐑(𝑧) ∶ C → C2×2 of order
120 is obtained from the source model in [16]. If the estimate based
on 𝑁 = 103 samples is calculated over a window |𝜏| ≤ 𝑇 , then the
estimation and truncation error terms are shown in Fig. 2. Note that
here 𝑇opt = 9, which is substantially smaller than the support of the
round truth. ▵
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Fig. 2. Errors incurred when estimating 𝐑[𝜏] from 𝑁 = 103 samples over the support
𝜏| ≤ 𝑇 .

Fig. 3. Power spectral density 𝜆(ej𝛺) corresponding to 𝐑[𝜏] ∈ C1×1, and 𝜆̂(ej𝛺) obtained
from a support-limited 𝐑̂[𝜏].

4.4. Truncation and loss of positive semi-definiteness

If 𝑹(𝑧) ∶ C → C𝑀×𝑀 is a space–time covariance matrix or emerges
rom a product 𝑹(𝑧) = 𝑨(𝑧)𝑨P(𝑧), with 𝑨(𝑧) ∶ C → C𝑀×𝐿 with 𝐿
nd 𝑨(𝑧) arbitrary, then its evaluation on the unit circle is positive
emi-definite, i.e. 𝑹(ej𝛺) ⪰ 0 ∀𝛺 ∈ R. The introduction of estimation
r truncation errors may destroy this property, such that 𝑹̂(𝑧)  0.
his loss has been observed in [50], and been addressed recently in
.g. [67,68]. We highlight this loss of positive semi-definiteness by way

of an example.

Example 2. For 𝑀 = 1 and 𝐴(𝑧) = 1 − ej𝜋∕4𝑧−1 + j𝑧−2, 𝑹(𝑧) = 𝐴(𝑧)𝐴P(𝑧)
educes to a power spectral density, and is equal to its only eigenvalue
(𝑧). In the case of truncating it to a support length of 3 instead of 5,
he evaluation of 𝜆̂(𝑧) on the unit circle, 𝜆̂(ej𝛺), is shown in Fig. 3. Over
he interval 0 < 𝛺 < 𝜋

2 , 𝜆̂(ej𝛺) < 0, i.e. the estimated PSD now takes on
ome negative values. ▵

Thus, for the biased estimator in (4), while truncation removes the
problem of structural rank-deficiency in (6), the estimation with finite
data removes the guarantee of positive semi-definiteness that comes
with (6), and eigenvalues may take on negative values when evaluated
on the unit circle.

5. Perturbation of eigenvalues and eigenspaces

This section explores how an estimation error 𝑬(𝑧) ◦ ∙ 𝐄[𝜏] in (13)
mpacts on the parahermitian matrix EVD in (2), i.e. how much the

quantities 𝐐̂(𝑧) and 𝜦̂(𝑧) of the sample CSD matrix 𝑹̂(𝑧) deviate from
he ground truth. For the analysis, we evaluate on the unit circle, i.e. for
𝑧 = ej𝛺, and utilise a number of results from matrix perturbation
theory [43,46] to first investigate the eigenvalues in Section 5.1. To re-

ove the ambiguity of eigenvectors from the analysis, we will secondly
nalyse the perturbation of eigenspaces in Section 5.2.

5.1. Impact of modelling error on eigenvalues

At any specific sample point 𝛺0, the evaluation of the 𝑧-transform
of (13) at 𝑧 = ej𝛺0 on the unit circle gives 𝑬(ej𝛺0 ) = 𝑹(ej𝛺0 ) − 𝑹̂(ej𝛺0 )
so that, by Weyl’s theorem [43], we have the following bounds on the
5 
perturbation of the 𝑚th eigenvalue 𝜆𝑚(ej𝛺0 ) of 𝑹(ej𝛺0 ),

𝜆𝐸min(e
j𝛺0 ) + 𝜆𝑚(ej𝛺0 ) ≤𝜆̂𝑚(ej𝛺0 )

𝜆̂𝑚(ej𝛺0 ) ≤𝜆𝐸max(e
j𝛺0 ) + 𝜆𝑚(ej𝛺0 ) ,

where 𝜆̂𝑚(ej𝛺) is the 𝑚th eigenvalue of 𝑹̂(ej𝛺0 ), and 𝜆𝐸min(e
j𝛺0 ) and

𝐸
max(e

j𝛺0 ) are the minimum and maximum eigenvalue of 𝑬(ej𝛺0 ) re-
pectively. After reshuffling,

𝜆𝐸min(e
j𝛺0 ) ≤ 𝜆̂𝑚(ej𝛺0 ) − 𝜆𝑚(ej𝛺0 ) ≤ 𝜆𝐸max(e

j𝛺0 ) (17)

provides bounds for the discrepancy between eigenvalues 𝜆𝑚(ej𝛺0 ) and
𝜆̂𝑚(ej𝛺0 ).

Additionally, the Hoffman-Wielandt theorem states that for all 𝑀
igenvalues
𝑀
∑

𝑚=1

(

𝜆̂𝑚(ej𝛺0 ) − 𝜆𝑚(ej𝛺0 )
)2 ≤ ‖𝑬(ej𝛺0 )‖2F (18)

holds. Further, the Bauer–Fike theorem [45] guarantees that

|𝜆̂𝑚(ej𝛺0 ) − 𝜆𝑚(ej𝛺0 )| ≤ 𝜅{𝑼̂ (ej𝛺0 )}‖𝑬(ej𝛺0 )‖2, (19)

with 𝜅{𝐀} the condition number of the matrix 𝐀. Since 𝑼̂ (ej𝛺0 ) is
unitary by definition, 𝜅{𝑼̂ (ej𝛺0 )} = 1, and (19) simplifies further. It
can also be noted that the bound on (19) is always an upper bound for
(17).

Overall, both the bounds (17) and (19) relate the deviation between
the ground truth and estimated eigenvalues directly to the estimation
error 𝑬(ej𝛺0 ), but are not tied to the absolute size and relative distance
between eigenvalues. Relative bounds [69] can also help to explore the
ffect of perturbation but assume a rank one perturbation and well-
eparated eigenvalues, which is not guaranteed here. For such relative
ounds, its has been shown in e.g. [70,71] that bounds for a specific

eigenvalue are scaled by that eigenvalue, such that the eigenvalue
perturbation can become multiplicative [72].

5.2. Impact of modelling error on eigenspaces

Assume that the 𝑚th eigenvectors associated with the 𝑚th eigenval-
es 𝜆𝑚(ej𝛺) and 𝜆̂𝑚(ej𝛺) are 𝐪𝑚(ej𝛺) and 𝐪̂𝑚(ej𝛺), respectively. Assume
urther that as the sample size 𝑁 → ∞ the estimate-based eigenvalue
̂𝑚(ej𝛺) → 𝜆𝑚(ej𝛺). Due to the phase ambiguity of the eigenvectors, sub-
pace angles or -correlations [73,74] must be used in order to compare
𝐪𝑚(ej𝛺) and 𝐪̂𝑚(ej𝛺). These metrics are particularly important if eigen-
values have a 𝐶-fold algebraic multiplicity, such that e.g. 𝜆𝑚(ej𝛺0 ) =
… 𝜆𝑚+𝐶−1(ej𝛺0 ) at a particular frequency 𝛺0, since in this case the
corresponding eigenvectors can form any orthonormal basis within a 𝐶-
dimensional subspace. In the vicinity of such an algebraic multiplicity,
eigenvectors can be ill-defined, while the subspace in which they are
contained remains invariant [46]. We therefore focus on the subspaces
in which eigenvectors of 𝑹(ej𝛺) and 𝑹̂(ej𝛺) exist.

To analyse the subspace of eigenvectors belonging to a 𝐶-fold
lgebraic multiplicity of eigenvalues at a frequency 𝛺0, we permute
oth eigenvalues and eigenvectors as follows. Let 𝜦(ej𝛺0 ) = block diag
𝜦1(ej𝛺0 ),𝜦2(ej𝛺0 )}, where 𝜦1(ej𝛺0 ) ∈ R𝐶×𝐶 contains the 𝐶 repeated
igenvalues, and 𝜦2(ej𝛺0 ) the remaining 𝑀 − 𝐶 eigenvalues (which
hemselves may contain further non-trivial algebraic multiplicities). We
imilarly partition 𝑸(ej𝛺0 ) = [𝑸1(ej𝛺0 ), 𝑸2(ej𝛺0 )], such that 1(ej𝛺0 ) =
ange

{

𝑸1(ej𝛺0 )
}

is the subspace containing the eigenvectors corre-
ponding to the 𝐶 multiple eigenvalues in 𝜦1(ej𝛺0 ). We now want to
easure the distance between 1(ej𝛺0 ) and ̂1(ej𝛺0 ), the subspace of

he corresponding eigenvectors of 𝑹̂(ej𝛺0 ).
The subspace distance is an appropriate metric for the distance

between two subspaces. It is defined using 𝑷 1(ej𝛺0 ) = 𝑸1(ej𝛺0 )𝑸H
1 (e

j𝛺0 ),
and similarly 𝑷̂ 1(ej𝛺0 ), for the estimated eigenvectors. In this case [73],
the subspace distance is

dist {1(ej𝛺0 ), ̂1(ej𝛺0 )} = ‖𝑷 1(ej𝛺0 ) − 𝑷̂ 1(ej𝛺0 )‖2 . (20)
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Similar to above, we also partition the perturbation

𝑬(ej𝛺0 ) =
[

𝑬11(ej𝛺0 ) 𝑬H
21(e

j𝛺0 )

⏟⏞⏞⏟⏞⏞⏟
𝐶

𝑬21(ej𝛺0 )
⏟⏞⏞⏟⏞⏞⏟
𝑀 − 𝐶

𝑬22(ej𝛺0 )

]

. (21)

By defining the spectral distance 𝛿(𝛺0) between the group of 𝐶
epeated eigenvalues in 𝜦1(ej𝛺0 ) and the next-nearest neighbour in
2(ej𝛺0 ) at a specific angular frequency 𝛺0 as

𝛿(𝛺0) = min
𝜆1(𝛺0) ∈ 𝜦1(ej𝛺0 )
𝜆2(𝛺0) ∈ 𝜦2(ej𝛺0 )

|𝜆1(ej𝛺0 ) − 𝜆2(ej𝛺0 )| > 0 , (22)

we find that the subspace distance in (20) is bounded such that

dist{1(ej𝛺0 ), ̂1(ej𝛺0 )} ≤ 4
𝛿(𝛺0)

‖𝑬21(ej𝛺0 )‖2 , (23)

as long as the overall perturbation is limited by the condition [73]

‖𝑬(ej𝛺0 )‖2 ≤
𝛿(𝛺0)
5

. (24)

This can be satisfied by selecting the sample size 𝑁 sufficiently large.
The above analysis for assessing the subspace distance between

ground truth and sample-based eigenvectors can be applied for any
𝛺 = 𝛺0 and in turn for eigenvectors at any frequency. Similarly to
the perturbation of eigenvalues, the perturbation of eigenspaces de-
pends on the estimation error, measured by ‖𝑬21(ej𝛺0 )‖2 < ‖𝑬(ej𝛺0 )‖2.
However, the mismatch between the ground truth and the estimated
subspaces will also depend on the distance between the associated
eigenvalues: the closer eigenvalues are located, the more perturbed the
subspaces of individual associated eigenvectors can become.

6. Perturbation-related experiments

6.1. Scenarios

Model 1. To underpin the above analysis by simulations, we define a
cenario as in Fig. 1 with 𝑀 = 𝐿 = 2. The ground truth eigenvalues of
𝑹(𝑧) are 𝜆1(𝑧) = 𝑧 + 2 + 𝑧−1 and 𝜆2(𝑧) = −𝑗 𝑧 + 2 + 𝑗 𝑧−1, corresponding
to PSDs 𝜆1(ej𝛺) = 2 + 2 cos𝛺 and 𝜆2(ej𝛺) = 2 + 2 sin𝛺 on the unit circle
which cross at 𝛺 = 𝜋

4 and 𝛺 = 5𝜋
4 [9,75]. The eigenvectors are given

by the elementary paraunitary mixing matrix 𝑸(𝑧) = 𝐈 − 𝐯𝐯H + 𝑧−1𝐯𝐯H
ith 𝐯 = [1, j]T∕

√

2 [55].
Model 2. W.r.t. Fig. 1, we use a source model 𝑯(𝑧) = 𝑸(𝑧)𝑭 (𝑧) as
ntroduced in [16], such that 𝑭 (𝑧)𝑭 P(𝑧) contains spectrally majorised

eigenvalues, and the paraunitary 𝑸(𝑧). The polynomial orders of both
𝑸(𝑧) and 𝑭 (𝑧) can be controlled, and 𝑸(𝑧) can be obtained as a
concatenation of elementary paraunitary matrices [13,55].

Each model can be excited by different instantiations of independent
nd identically distributed complex Gaussian noise, and estimates 𝐑̂(𝑧)

can be calculated from 𝑁 snapshots of data 𝐱[𝑛], 𝑛 = 0 … (𝑁 − 1)
according to (7) and using a support |𝜏| ≤ 𝑇opt that minimises the
verall error in (16). By performing the EVD on discrete DFT bins,

we calculate a number of samples of 𝜆̂𝑚(ej𝛺𝑘 ) and 𝒒̂(ej𝛺𝑘 ) along the
requency axis for 𝛺𝑘 =

2𝜋 𝑘
𝐾 , 𝑘 = 0 … (𝐾 − 1), which we can compare to

the ground truth.

6.2. Unbiased estimator

We first demonstrate the accuracy of the variance of a sample cross-
correlation sequence in (10). For a cross-correlation created by means
of an innovation filter model of order 5 with a single source (𝐿 = 1)
through the model given in Fig. 1 and (1), for 𝑁 = 102, (10) is
compared to the mean variance over an ensemble of size 105 in Figs. 4
and 5 for real- and complex-valued cases.

Generally, mean ensemble results in Figs. 4(a) and 5(a) and (b)
nderline that the estimator is unbiased. The theoretical variance of the
stimator in (1) also matches the ensemble results very closely; since

the lag support is almost the same as the sample size, the effective
 w

6 
Fig. 4. (top) ground truth and mean sample cross-correlation sequence, and (bottom)
its variance, both calculated according to (10) and estimated from real valued data.

Fig. 5. Complex-valued equivalent to Fig. 4, with (top) real part, (middle) imaginary
part, and (bottom) variance.

sample size of 𝑁 − |𝜏| increases the variance for larger values of
|𝜏| in Figs. 4(b) and 5(c). These two figures exhibit a notable differ-
nce though: the absence of the complementary cross-correlation terms
𝑟̄𝑚𝜇[𝜏] from (10) in the case of circularly-symmetric complex Gaussian
excitation means that the specific cross-correlation-related structure
over the lag range |𝜏| ≤ 6 that was present in the real-valued case in
Fig. 4(b) has now disappeared in Fig. 5(c).

6.3. Modelling error

To check the accuracy of the expected estimation error (15), an 𝐑[𝜏]
of order 102 is generated via Model 2 in Section 6.1. For 𝑁 = 500 and a
ange of supports 𝑇 , Fig. 6 compares results for the theoretical values 𝜉1

and 𝜉2 to the distribution 𝑝(𝜉) of the experimental quantity 𝜉 obtained
ver an ensemble of 104 instantiations. These match well, and also
emonstrate that in this case the optimum estimated support 𝑇opt = 10
s significantly shorter than the ground truth support 𝜏max = 50. The
hading in Fig. 6 and in subsequent figures is a coarse 3-D visualisation

of the distributions, in addition to the more precise bounds within
hich 50% and 95% of the experiments fall.
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Fig. 6. Comparison of the experimentally measured distribution of the modelling error
due to the truncation and expected estimation errors.

Fig. 7. Distribution of estimation error ‖𝑬(ej𝛺0 )‖2 for Model 1.

Fig. 8. Distribution of estimated eigenvalues for Model 1, with the ground truth as
solid lines.

6.4. Perturbation experiments

For Model 1 in Section 6.1, the distribution of the estimation error
metric ‖𝑬(ej𝛺0 )‖2 for 𝑁 = 103 over an ensemble of 105 simulations is
shown in Fig. 7, which demonstrates the frequency-dependency of (21).

The measured distribution of 𝜆̂𝑚(ej𝛺0 ) in Fig. 8 suggests that the
deviation from the ground truth does indeed depend on ‖𝑬(ej𝛺0 )‖2
as established in (19). The shading that indicates the spread of the
distribution also highlights that larger eigenvalues are more perturbed
compared to smaller ones, as explored by the comments on relative
bounds at the end of Section 5.1. Here, the perturbation of the eigen-
values depends on the absolute value of 𝜆𝑚(ej𝛺0 ), with the estimation
error having an approximately multiplicative effect.
7 
Fig. 9. Distribution of 𝛾1(𝛺0) in (25) for Model 1.

To measure how close the subspaces spanned by the ground truth
and estimated eigenvectors 𝒒𝑚(ej𝛺0 ) and 𝒒̂𝑚(ej𝛺0 ) are, we use a modified
version of the subspace correlation,

𝛾𝑚(𝛺0) = 1 − |𝒒̂H𝑚(e
j𝛺0 )𝒒𝑚(ej𝛺0 )| , (25)

where the Hermitian angle is insensitive to the eigenvectors’ arbitrary
phase shifts. Small values of 𝛾𝑚(𝛺0) mean that subspaces are aligned,
while 𝛾𝑚(𝛺0) = 1 indicates orthogonality. In Fig. 9, the measured distri-
bution of 𝛾1(𝛺0) shows higher subspace alignment where eigenvalues,
according to Fig. 8, are clearly separated. Near algebraic multiplicities,
a mismatch in subspaces arises as analysed in (23).

6.5. Bounds on eigenvalue and eigenspace perturbations

Normalised Weyl Bound. Assuming that the upper and lower limits
in (17) are separated, i.e. that 𝜆𝐸max(e

j𝛺0 ) ≠ 𝜆𝐸min(e
j𝛺0 ), we can define a

modified eigenvalue error

𝜖Wey l,𝑚(𝛺0) =
𝛥𝜆𝑚(ej𝛺0 ) − 𝜆𝐸min(e

j𝛺0 )

𝜆𝐸max(ej𝛺0 ) − 𝜆𝐸min(e
j𝛺0 )

, (26)

where 𝛥𝜆𝑚(ej𝛺0 ) = 𝜆̂𝑚(ej𝛺0 ) − 𝜆𝑚(ej𝛺0 ). The modified Weyl bound is
normalised to 0 ≤ 𝜖Wey l,𝑚(𝛺0) ≤ 1.

Normalised Hoffman-Wielandt Bound. Based on (18), we define

𝜖HW(𝛺0) =
∑

𝑚
(

𝛥𝜆𝑚(ej𝛺0 )
)2

‖𝐄(ej𝛺0 )‖2F
. (27)

Therefore the Hoffman-Wielandt bound for this normalised quantity
becomes 0 ≤ 𝜖HW(𝛺0) ≤ 1.

Normalised Bauer–Fike Bound. Using (19), we define

𝜖BF,𝑚(𝛺0) =
|𝛥𝜆𝑚(ej𝛺0 )|
‖𝐄(ej𝛺0 )‖2

. (28)

Similarly to the previous two bounds, the normalised Bauer–Fike quan-
tity satisfies 0 ≤ 𝜖BF,𝑚(𝛺0) ≤ 1.

Model 1 of Section 6.1 generates the distributions for each of
the above quantities in Figs. 10–12. For the normalised Weyl bounds
𝜖Wey l,𝑚(𝛺0) in (26), Fig. 10(a) shows the case of 𝑚 = 1 and Fig. 10(b) the
case of 𝑚 = 2. Interestingly, the ensemble values of 𝜖Wey l,𝑚(𝛺0) cover
the ranges 1

2 ≤ 𝜖Wey l,1(𝛺0) ≤ 1 and 0 ≤ 𝜖Wey l,2(𝛺0) ≤ 1
2 . When the

two eigenvalues are maximally separated, the distribution of 𝜖Wey l,𝑚(𝛺0)
across these ranges appears nearly uniform, while at sample points
𝛺0 = { 𝜋4 ,

5𝜋
4 } where the eigenvalues possess an algebraic multiplicities

of two, 𝜖Wey l,2(𝛺0) satisfies the lower bound while 𝜖Wey l,1(𝛺0) takes on
the upper bound. The bounds are therefore satisfied; the usefulness of
any bound increases the tighter it is, which here is the case at algebraic
multiplicities.

The normalised Hoffman-Wielandt bound (27) in Fig. 11 behaves
similarly to the normalised Weyl bound, and appears to be uniformly
distributed across its expected range when the eigenvalues are well
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Fig. 10. Distribution of the normalised Weyl bound (26) for 𝑚 = 1, 2 for the example
given Model 1 in Section 6.1.

Fig. 11. Distribution of normalised Hoffman-Wielandt bound (27) for the scenario in
ection 6.1.

separated, and takes on values close to the upper bound when eigen-
values match for 𝛺0 = { 𝜋4 ,

5𝜋
4 }. Fig. 12(a) and (b) show the normalised

Bauer–Fike bounds for 𝑚 = 1 and 𝑚 = 2, respectively. Similar to
the other bounds, at frequencies where eigenvalues are well separated,
the distribution of the values 𝜖BF,𝑚(𝛺0) is approximately uniform and
the bounds are loose. However for frequencies where the eigenvalues
possess non-trivial algebraic multiplicies, the relative bound 𝜖BF,𝑚(𝛺0)
is tight and therefore particularly useful.

The bounds on the eigenspaces described in Section 5.2 can be
demonstrated using similar metrics as for the eigenvalues. Using a
ormalised version of (23),

𝜓(𝛺0) =
𝛿(𝛺0)
4

dist {1(ej𝛺0 ), ̂1(ej𝛺0 )}
‖𝐄21(ej𝛺0 )‖2

, (29)

such that 0 ≤ 𝜓(𝛺0) ≤ 1 as long as (24) is satisfied. Fig. 13(a)
hows that condition (24) is violated near 𝛺0 = { 𝜋4 ,

5𝜋
4 }. As a re-

sult, the distribution of the normalised eigenspace perturbation does
not satisfy 𝜓(𝛺0) ≤ 1 near these frequency points as evident from
Fig. 13(b). Thus, the subspace perturbation bound is only useful where
eigenvalues are sufficiently well separated, and breaks down near
frequencies where the eigenvalues possess non-trivial algebraic multi-
plicities. Where eigenvalues are sufficiently separated, the bounds may
be translated to performance bounds of signal processing algorithms,
such as demonstrated for a broadband angle of arrival estimation
application using a polynomial multiple signal classification algorithm
n [76].

7. Support estimation

Previous sections have explored the impact that modelling errors
due to (i) truncation and (ii) estimation errors have on the bin-wise
8 
Fig. 12. Distribution of the normalised Bauer–Fike bound (28) for (a) 𝑚 = 1 and (b)
𝑚 = 2 for Model 1 in Section 6.1.

Fig. 13. (a) Distribution of the overall normalised perturbation ‖𝐄(ej𝛺0 )‖2∕
𝛿(𝛺0 )
5

, where
values greater than one indicate that the condition (24) has been violated, and (b) the
eigenspace perturbation bound (23) for the scenario in Section 6.1.

perturbation – with some bounds – of the eigenvalues and eigenspaces
of a space–time covariance matrix. Therefore, in the section below,
we want to concentrate on a suitable estimation of the support of the
space–time covariance, which aims to minimises the modelling error
and thereby the above perturbations, based on an initial idea presented
in [57].

7.1. Preliminary considerations

The ensemble-optimum support defined in (16) and illustrated in
Fig. 2 reflects the optimum adjustment across the entire ensemble
nder the assumption that the ground truth space–time covariance 𝐑[𝜏]
s known. Firstly, in practice 𝐑[𝜏] is unknown, and the computation
annot be performed. Secondly for individual estimates the best support
ay differ from the ensemble-optimum value, which the following

example briefly explores.

Example 3. For the scenario of Example 1, Fig. 6 highlights that for
different percentiles of the distribution, both the minimum modelling
error 𝜉 as well as the optimum support for a particular estimate can
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Fig. 14. (a) Real and (b) imaginary part of a cross-correlation sequence 𝑟12[𝜏] and its
stimate 𝑟̂12[𝜏] based on 𝑁 = 103 snapshots of data.

Fig. 15. Variance of the sample cross-correlation estimate shown in Fig. 14, and an
pproximation based on a sample estimate 𝑟̂12[𝜏] for |𝜏| ≤ 100.

deviate from the ensemble-optimum values. Specifically considering
he 95% range of experiments, for the distribution shown Fig. 6 the

support can vary between 8 and 10 lags, where min{𝜉} takes on values
between approximately 4 ⋅ 10−2 and 6 ⋅ 10−1. ▵

Therefore, in addition to the ensemble-optimum values 𝑇opt and
in 𝜉 which we have discussed in previous sections, we are there-

fore also interested in values 𝑇opt,p and its estimate 𝑇̂opt,p which are
based on a single measurement or ‘probe’ (motivating the subscript
‘p’) that contains 𝑁 snapshots of data. Note that 𝑇opt,p is based on
the knowledge of both 𝐑[𝜏] and the specific estimate 𝐑̂[𝜏]. Hence our
aim is to find an estimate 𝑇̂opt,p that minimises 𝜉 as best as possible
and is solely based on 𝐑̂[𝜏]. Based on (10), the variance of a cross-
correlation estimate var {𝑟̂𝑚𝜇[𝜏]} is a function of both the ground truth
cross-correlation 𝑟𝑚𝜇[𝜏] and the sample size 𝑁 , i.e.

var {𝑟̂𝑚𝜇[𝜏]} = 𝑓 (𝑟𝑚𝜇[𝜏], 𝑁) . (30)

Let 𝑟̂(𝑇 )𝑚𝜇 [𝜏] be a sample cross-correlation estimate with support 2𝑇 + 1,
uch that 𝑟̂(𝑇 )𝑚𝜇 [𝜏] = 0 ∀|𝜏| > 𝑇 . For a sufficiently large values of 𝑁 and
∕𝑇 , (30) can be very roughly approximated by

𝑓 (𝑟𝑚𝜇[𝜏], 𝑁) ∼ 𝑓 (𝑟̂(𝑇 )𝑚𝜇 [𝜏], 𝑁) ,

i.e. instead of the inaccessible ground truth, the variance of the estima-
tion will be based on the sample estimate itself.

Example 4. Fig. 14 provides an example for 𝑟12[𝜏] ∈ C and a sample
estimate 𝑟̂(100)12 [𝜏]. In addition to var {𝑟̂12[𝜏]} = 𝑓 (𝑟12[𝜏], 𝑁), Fig. 15 shows
𝑓 (𝑟̂(100)12 [𝜏], 𝑁), which behaves very similarly, and therefore may provide
an approximation to var {𝑟̂12[𝜏]}. ▵
m

9 
7.2. Support estimation approach

To estimate a suitable support, recall from e.g. (14) that the mean
square modelling error consists of an estimation error and a truncation
error term. The estimation error 𝜉1, in the case of a limitation to
𝑇 lags, can now be approximated based on 𝑓 (𝑟̂(𝑇 )𝑚𝜇 [𝜏], 𝑁). To exclude
stimation error behaviour for small lags, particularly in case of real-
alued Gaussian data as in Fig. 4, we focus on a portion of 𝜉1 in the tail
ection of var {𝑟̂𝑚𝜇[𝜏]} of length 𝑇0 via

𝜒1[𝑇 ] =
𝑇+𝑇0
∑

𝜏=𝑇+1

∑

𝑚,𝜇
𝑓 (𝑟̂(𝑇 )𝑚𝜇 [𝜏], 𝑁) . (31)

Note that 𝜒1[𝑇 ] roughly approximates an estimation error portion for
an estimate of larger support, 𝑟̂(𝑇+𝑇0)𝑚𝜇 [𝜏], measured over the range 𝑇 ≤
𝜏| ≤ 𝑇 + 𝑇0.

If we consider the energy in the tail section of an estimate 𝑟̂(𝑇+𝑇0)𝑚𝜇 [𝜏]
of increased support, then

𝜒2[𝑇 ] =
𝑇+𝑇0
∑

𝜏=𝑇+1

∑

𝑚,𝜇
𝑓 (𝑟̂(𝑇+𝑇0)𝑚𝜇 [𝜏], 𝑁) . (32)

will contain approximately the same portion of the estimation error, but
also include a term that would otherwise have been truncated in 𝑟̂(𝑇 )𝑚𝜇 [𝜏]
if 𝑇 was too short as support. Therefore the comparison of 𝜒1[𝑇 ] and
𝜒2[𝑇 ] enables us to detect if a truncation error has been incurred, in the
case that the support 𝑇 of 𝑟̂(𝑇 )𝑚𝜇 [𝜏] was too restrictive. Thus, we utilise the
variable 𝛾[𝑇 ] = 𝜒2[𝑇 ]∕𝜒1[𝑇 ] in order to estimate 𝑇̂opt,p for the optimum
support 𝑇opt: a value 𝛾[𝑇 ] ≈ 1 would indicate that an estimation error
has been incurred, while 𝛾[𝑇 ] ≫ 1 implies an additional truncation
error.

We now check for which value 𝑇 the behaviour of 𝛾[𝑇 ] changes from
he truncation-dominated part in e.g. Fig. 4, to a portion where only an

estimation error is incurred. For this, assume that we inspect 𝛾[𝑇 ] for
sufficiently high values of 𝑇 , say beyond some value 𝑇1, which is bound
to exceed the support of 𝐑[𝜏], or at least ensure that any elements of
𝐑[𝜏] will be small compared to an estimation error. Over a range of
values, say over 𝑇1 ≤ 𝜏 ≤ 2𝑇1, we determine (i) a linear least squares
fit 𝛾LF[𝑇 ] to 𝛾[𝑇 ], such that ∑2𝑇1

𝑇=𝑇1
|𝛾[𝑇 ] − 𝛾LF[𝑇 ]|2 is minimised, and

ii) the standard deviation 𝜎 of 𝛾[𝑇 ] w.r.t. this linear fit 𝛾LF[𝑇 ]. We
hen check whether for smaller values of 𝑇 , i.e. 𝑇 < 𝑇1, values of 𝛾[𝑇 ]
all outside a pipe of width 𝐾 𝜎 around this linear fit, and estimate the
ptimum support as

𝑇̂opt,p = ar g max
𝑇
𝑇 s.t. 𝛾[𝑇 ] > 𝛾LF[𝑇 ] +𝐾 𝜎 , (33)

with 𝐾 yet to be determined.

Example 5. The approach is exemplified for the scenario of Example 1
in Fig. 16(a), where 𝑇1 = 50, and 𝛾[𝑇 ] as well as the linear fit with a
ipe of width 𝐾 𝜎, here for 𝐾 = 5, are shown. In this case, 𝑇̂opt,p = 14.
ith exact knowledge of 𝐑[𝜏], and given the sample estimate 𝐑̂[𝜏], we

an exactly determine the modelling and truncation errors 𝜉 and 𝜉2, and
herefore the estimation error 𝜉1, displayed in Fig. 16(b). The search for

a minimum of 𝜉 for this example yields 𝑇opt,p = 10. A more accurate
alue for 𝑇̂opt,p could have been obtained for a wider pipe, i.e. for a
arger value of 𝐾. ▵

While there are statistical approaches for the testing of ratios of
variances such as the 𝐹 -test [77], their application is not straightfor-
ward, as e.g. successive ratios 𝛾[𝑇 ] in Fig. 16(a) are not independent.
Therefore, 𝐾 is maintained as a variable, and we will explore the effect
hat different values have on the support estimation below.

7.3. Support estimation ensemble simulation

To briefly demonstrate the accuracy and sensitivity of the proposed
upport estimation, we consider a numerical example of a randomised
atrix 𝐑[𝜏] of spatial dimension 𝑀 = 6 and 𝐑[𝜏] = 𝟎 for |𝜏| >
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Fig. 16. (a) Ratio 𝛾[𝑇 ] with threshold selection by a 𝐾 𝜎-pipe based on a single sample
et, and (b) optimum support based on the ground truth 𝐑[𝜏] and estimate 𝐑̂[𝜏] with

support 2𝑇 + 1.

Fig. 17. Distribution of metrics as a function of the pipe width 𝐾 when estimating
the support of 𝐑̂[𝜏].

𝑇0 with 𝑇0 = 30. As performance metrics over an ensemble of 103
andomisations 𝐑[𝜏], constructed using the source model in Fig. 1 using
arameters from [16], we utilise two performance metrics. Firstly, we

assess the support mismatch 𝛥𝑇

𝛥𝑇 = 𝑇opt,p − 𝑇̂opt,p . (34)

A positive value for 𝛥𝑇 means underestimation, 𝛥𝑇 < 0 overestimation
f 𝑇opt . The effect of over- vs underestimation on the modelling error
s unequal, see e.g. Fig. 6. Secondly, a normalised modelling error

𝜉nor m =
∑

𝑚,𝜇 ,𝜏 𝑓 (𝑟̂
(𝑇opt,p)
𝑚,𝜇 , 𝑁) − 𝑓 (𝑟̂(𝑇̂opt,p)

𝑚,𝜇 , 𝑁)
∑

𝑚,𝜇 ,𝜏 𝑓 (𝑟𝑚𝜇[𝜏], 𝑁)
(35)

creates a metric that is somewhat independent of a specific realisation
𝐑[𝜏], such that results become comparable across the ensemble.

The distribution for the performance metrics are shown in Fig. 17
as function of different pipe widths 𝐾. The normalised modelling error
̂nor m in Fig. 17(a) indicates that the result is relatively insensitive to the
selection of 𝐾, although the metric shows a minimum at around 𝐾 = 8.
or this value, the mean of the distribution of 𝛥𝑇 is approximately zero,
.e. the estimate 𝑇̂opt,p coincides with the optimum support 𝑇opt,p.

8. Conclusions

This paper has addressed the estimation of the space–time covari-
nce matrix, and the perturbation of this estimate itself as well as its
10 
parahermitian matrix eigenvalue decomposition due to finite sample
size effects. Through analysis of biased and unbiased estimators, this
paper has shown the problem of rank-deficiency when estimating a
space–time covariance matrix using a biased estimator and the effect
of truncating these covariance matrices. For unbiased estimates, a link
between the sample size and perturbations of the space–time covari-
ance matrix has been presented, where the eigenvalue perturbation is
affected by the norm of the discrepancy between ground truth and
estimated space–time covariance matrices and the eigenspace pertur-
bation is additionally affected by the distance between ground truth
and estimated eigenvalues.

We have further presented bounds for these perturbations to both
the eigenvalues and eigenspaces. In the case of the eigenvalues, the
ounds are particularly useful near non-trivial algebraic multiplicities,
here experiments indicate that they are tight. The opposite is the

ase for the eigenspaces — here the near algebraic multiplicities,
he condition under which bounds can be derived are violated, and
he bounds may offer less applicability, for example when assessing
ubspace leakage for subspace-based detection [78–80] or applications

such that the multiple-signal classification (MUSIC) algorithm [4,81].
In this context, the analysis and bounds presented in this paper has been
sed to assess the impact of estimation errors on a polynomial extension
f the MUSIC algorithm due to subspace perturbations in [76]. It is also

key to assess subspace perturbations for broadband subspace methods
to detect weak transient broadband signals [82–84], and the basis of
studying effects of perturbed eigenvalues across frequency bins [85].

In order to minimise perturbation effects on the EVD factors, we
have suggested a method to optimise the support when estimating the
space–time covariances. While the variance of the estimate depends on
he ground truth covariance, we have replaced this term by the esti-
ated space–time covariance, and demonstrated that a useful support

stimation is possible, with impact across the applications that we have
ummarised in the introduction to this paper.
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