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12

Abstract13

Background: Nonuniform sampling is a useful technique to optimize the acquisition14

of projections with a limited budget. Existing methods for selecting important projec-15

tion views have limitations, such as relying on blueprint images or excessive computing16

resources.17

18

Methods: We aim to develop a simple nonuniform sampling method for selecting19

informative projection views suitable for practical CT applications. The proposed al-20

gorithm is inspired by two key observations: projection errors contain angle-specific21

information, and adding views around error peaks effectively reduces errors and im-22

proves reconstruction. Given a budget and an initial view set, the proposed method23

involves: estimating projection errors based on current set of projection views, adding24

more projection views based on error equidistribution to smooth out errors, and final25

image reconstruction based on the new set of projection views. This process can be26

recursive, and the initial view can be obtained uniformly or from a prior for greater27

efficiency.28

29

Results: Comparison with popular view selection algorithms using simulated and real30

data demonstrates consistently superior performance in identifying optimal views and31

generating high-quality reconstructions. Notably, the new algorithm performs well32

in both PSNR and SSIM metrics while being computationally efficient, enhancing its33

practicality for CT optimization.34

35

Conclusions: A projection view selection algorithm based on error equidistribution is36

proposed, offering superior reconstruction quality and efficiency over existing methods.37

It is ready for real CT applications to optimize dose utilization.38

39
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I. Introduction61

Thanks to its non-evasiveness, high resolution, and good flexibility, X-ray computed to-62

mography (CT) is a popular imaging technique that has been extensively used for medical63

imaging, non-destructive testing (NDT), material characterization, etc. By reconstructing64

tomographic images from X-ray measurements for a number of scanning angles (views), CT65

reveals the inner structures of scanned objects.66

Conventionally, the scanning views are equally distributed in a specific angular range,67

and to achieve high quality reconstructions, the number of scanning views should meet68

certain sampling constraint1,2. This might be inappropriate for applications like medical69

examinations where too much X-ray radiations could result in health risks3,4. Even in70

industrial applications, high radiation dose leads to increased costs and decreased detection71

efficiency5,6. Numerous methods have been developed to optimize dose utilization. Yu et72

al.7 summarized the general technical strategies that are commonly used for radiation dose73

management in CT, including CT system optimization, reducing scanning range, automatic74

exposure control, optimal tube potential and noise control strategies in reconstruction and75

data processing, etc.76

One effective approach to reducing radiation exposure is to minimize the number of77

projections required for image reconstruction. This raises the problem: how to select the78

most “valuable” projection views ? Previous studies have highlighted the crucial influence79

of projection view selection8–12. For instance, in8, I.G. Kazantsev demonstrated that it is80

possible to identify an angle distribution that maximizes the information content about the81

scanned object to significantly improve the reconstruction quality.82

In order to determine the most informative set of projection angles, numerous nonuni-83

form angular sampling methods have been proposed over the past few decades. Placidi et84

al.13 introduced an adaptive method that selects projections based on the principle of “en-85

tropy”. This adaptive scheme effectively reduces the required number of projections when86

the scanned object exhibits internal symmetries. Venere et al.14 exploited the preferential87

direction of elliptical-shaped cracks and demonstrated that the preferred projection views88

should align with the main axis of the ellipse. Later, motivated by E. Quinto’s visible and89

invisible edges principle15, Zheng and Mueller16,17 developed a method for selecting the most90
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relevant projections that contain rays tangent to salient edges of the scanned object. Haque91

et al18 proposed to select the projection angles based on the spectral richness of the acquired92

projections. Batenburg et al.19,20 selected the next new angle by maximizing the information93

gained by adding each projection view. Similarly, by applying sequential feature selection94

(SFS) based on a blueprint image, Peter et al.21 proposed to sequentially find the optimal95

angles with the highest information content measured by global uncertainty or relative mean96

error against the projections already acquired. These two methods suffer from high computa-97

tional burden since they have to run the reconstruction algorithms many times to determine98

the next best angle. Recently, Victor Bussy et al.22 extended the discrete empirical inter-99

polation method (DEIM) and the reduced-order model to select the most informative and100

relevant projections. Joseph and Keng23 proposed an IntelliScan approach that uses prior101

object information to select projections that contain X-rays tangent to the scanned object’s102

surfaces. These works show that the informative projection views should align with the103

edges distribution of the object under scanning.104

Inspired by the success of deep learning methods, neural networks have also been em-105

ployed for angle selection. Shen et al.24 used modern reinforcement learning methods to106

select projection angles and specify their doses for personalized scanning, where the CT107

scanning process is formulated as a Markov Decision Process. A one-step deep learning108

framework was proposed in25 which can select the most related projection angles and learn109

a high-performance reconstruction network. Due to high computational burden, deep learn-110

ing methods are mainly of research interest rather than application.111

Despite the promising results achieved, existing methods suffer from applicability is-112

sues. Indeed, the aforementioned methods either need prior blueprint image (CAD model)113

to provide salient edges information, or perform some kind of brute-force searching hence114

consuming too much computational resources. In this paper, we design an effective and115

light-weight projection view selection approach that keeps applicability in mind. Given a116

set of projection views and a forward projection model, the projection error for each view117

is defined as the difference between the projection data and the corresponding scanned data118

quantified by some chosen metric. Our approach is inspired by two key observations for the119

behaviors of the projection errors during iterative reconstructions.120

• The projection error for each projection angle carries information about the informa-121
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tiveness of that particular projection angle, i.e. projection errors effectively quantifies122

the importance of the corresponding projection angles.123

• The addition of projection angles around the peaks of the (discrete) projection er-124

ror curve, which is defined in Section II.C., effectively reduces projection errors and125

improves reconstruction quality.126

Based on the above two observations, the goal is then to design a strategy for acquiring127

additional projection views around the peaks of the projection error curve. Fortunately, we128

find that the idea of error equidistribution just aligns with this objective. Error equidistri-129

bution26,27 is a commonly used technique for adaptive spatial mesh design28–30. We borrow130

its basic idea for projection views selection by following the principle that each area under131

adjacent views on the error curve should be equal. This strategy guarantees more projec-132

tion angles around the large projection errors are selected, thus a more informative set of133

projection views are determined.134

The remainder of this paper is organized as follows. In Section II. , we describe the135

proposed projection view selection algorithm in detail, and numerical experiments shall be136

performed in Section III. to verify the effectiveness and efficiency of the proposed algorithm.137

We present discussions in Section IV. to address practical issues, and conclude our paper in138

V..139

II. Methodology140

This section provides a detailed description of the proposed projection views selection algo-141

rithm based on error equidistribution, which is named PVSEE here and after. We will first142

illustrate the high correlation between informative projection angles and the orientation of143

the object’s edges. We then explain the motivation behind our proposed PVSEE algorithm.144

PVSEE essentially consists of three steps: projection error estimation, projection selection145

based on error equidistribution, and final image reconstruction. These three steps will be146

described in this section in detail.147
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II.A. The discrete imaging model of CT148

Let’s first introduce the notations used throughout the paper. The CT reconstruction prob-149

lem could be formulated as solving a linear system,150

Au = p (1)151

where A = (aji)J×I is the system matrix, J = V × D denotes the total number of rays, V152

and D denote the number of projection views and the number of detector cells, respectively,153

u is the reconstructed image of size Nx ×Ny, and I = Nx ×Ny denotes the total number of154

image pixels.155

For convenience, we use the subscript [i] to refer to the i-th projection view, i.e. A[i]156

and p[i] refer to the projection operator (system matrix) and the projection data for the i-th157

view, respectively, such that158

A =


A[1]
...

A[i]
...

A[V ]

 , p =


p[1]
...
p[i]
...

p[V ]

 ,159

where A[i] ∈ RD×I and p[i] ∈ RD×1, for each i ∈ {1, 2, . . . , V }. For nonuniform distributed160

projection views, we refer to the ith view with its projection angle θi when necessary, i.e.161

A[i] = Aθi , and p[i] = pθi = (pθi,1, pθi,2, · · · , pθi,D)T .162

II.B. The high correlation between informative projection angles163

and edges’ angular orientation164

When the scanned object exhibits preferential “directions”, the most informative projection165

views will align with the principle directions of the edges8,31,32. To illustrate the high corre-166

lation between informative projection angles and edges’ angular orientation , we present two167

reconstructions of the rectangle phantom shown in Fig. 1, with uniform and nonuniform sam-168

plings for the scanning angles, respectively. The reconstructed images, which are obtained169

by performing 10 iterations of the OS-SART algorithm, are illustrated in Fig. 1. The recon-170

struction with 6 projection angles uniformly distributed in [0, π) is shown in Fig. 1(b) while171

the reconstruction with nonuniform spaced projections at angles {179◦, 0◦, 1◦, 89◦, 90◦, 91◦}172
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is shown in Fig. 1(d). It can be clearly seen that the reconstruction from uniformly spaced173

projections exhibits severe streak artifacts and blurring, while the reconstruction with the174

designed nonuniformly spaced projection angles does not suffer from streaks or blurring.

(a) (b) (c) (d)

Figure 1: (a) Diagram of uniform scanning, (b) Reconstruction from uniformly spaced pro-
jections, (c) Diagram of nonuniform scanning, (d) Reconstruction from nonuniformly spaced
projections.

175

It is worth noting that the nonuniform angle distribution with the reconstruction shown176

in Fig. 1(d) aligns well with the main orientations of the rectangle, i.e. the scanning views177

are concentrated around 0◦ and 90◦. This coincides well with the visible and invisible edges178

theory developed by Quinto et.al15. So, if one knows the edges’ distribution of the object179

before scanning, the projection views could be specified around the primary directions of180

the edges to achieve better reconstructions. In reality, however, the edges, especially the181

inner edges, are not known before reconstruction, so we need to find a way to draw the edges182

information during the reconstruction process, which is the main focus of our paper. Our183

method is based on two key observations about the correlations between the informativeness184

of projection angles and the projection error curve.185

II.C. Motivation: the behaviors of the projection error curve186

Recall the denotations described in section II.A., for a given image u, define the residual187

e = p−Au and e[i] = p[i] −A[i]u. Utilizing the above symbols, we could define the so-called188

projection error curve. Let189

E(θi; e[i]) = ||e[i]||, i = 1, 2, . . . , V, (2)190

Selecting projection views based on error equidistribution for computed tomography
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where ∥ · ∥ denotes some chosen vector norm. Then the (discrete) projection error curve is

defined as the set

{(θi, Ei), i = 1, 2, . . . , V },

where Ei = E(θi; e[i]). So, the projection error curve is just a discrete function defined on191

the projection angles, hence it can be referred to as E(θ) = (E1, E2, . . . , EV ) for simplicity,192

where V denotes the total number of views considered. Here, we always assume the angles193

θi are sorted in ascending order. In all our tests, the ∥ · ∥p norm is used to calculate the194

error curves. In fact, we have tested other choices like entropy and Kullback-Leibler (KL)195

divergence, all works about equally well.196

For later reference, let’s define the “continuous” projection error curve as197

T#E(θ) = Linear Interpolation of E(θ).198

When it’s clear from the context, we just use error curve to refer either the discrete error199

curve or it’s continuous counterpart.200

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: The correlations between projection errors and main orientations for the scanning
objects. (a) Rectangle, (b) 45◦ anti-clockwise rotated rectangle, (c) 45◦ clockwise rotated
ellipse, (d) Rhombus (with sides at 30◦ and 150◦), (e) Circle, and (f)-(j) show projection
error curves for (a)-(e), respectively.

Observation 1: Projection error can serve as a viable measure of projection angle201

importance. As shown in Fig. 2, five simple phantoms (size of 256 × 256) with varying202

shapes and primary orientations ((a)-(e)) are scanned with 180 projection views uniformly203
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distributed in the full-range [0, π). The SART algorithm (10 iterations) is then utilized to204

transform the acquired projection data p into the corresponding image u, and the projection205

error curve is then computed as206

E(θ) = {||e[i]||1, i = 1, 2, . . . , V = 180}, e[i] = p[i] − A[i]u. (3)207

The second row of Fig. 2 depicts the projection error curves for each reconstruction. It’s208

easy to see that, the peaks of the projection error curve, indicated by yellow stars, align209

well with the primary directions of the objects. This suggests that the projection errors210

could serve as the measure of the importance of projection angles since they have strong211

correlations with the primary directions of the object’s edges.

(a) 182 angles (b) 184 angles (c) 188 angles (d) 216 angles

(e) 182 angles (f) 184 angles (g) 188 angles (h) 216 angles

Figure 3: The effects of adding projection angles around the main orientations {45◦, 135◦}
against non-main orientations {0◦, 90◦}. The original projection error curve is calculated
with 180 uniformly distributed projection views, and the added projection views are allo-
cated around the orientations symmetrically, which are specified at: (a) {45.5◦, 135.5◦}, (b)
{44.5◦, 45.5◦, 134.5◦, 135.5◦}, (c) {44◦+ i∗0.4◦, 45◦+ i∗0.4◦, 134◦+ i∗0.4◦, 135◦+ i∗0.4◦}2i=1,
(d) {44◦ + i ∗ 0.1◦, 45◦ + i ∗ 0.1◦, 134◦ + i ∗ 0.1◦, 135◦ + i ∗ 0.1◦}9i=1. (e) {0.5◦, 90.5◦}, (f)
{179.5◦, 0.5◦, 89.5◦, 90.5◦}, (g) {179◦ + i ∗ 0.4◦, 0◦ + i ∗ 0.4◦, 89◦ + i ∗ 0.4◦, 90◦ + i ∗ 0.4◦}2i=1,
(h) {179◦ + i ∗ 0.1◦, 0◦ + i ∗ 0.1◦, 89◦ + i ∗ 0.1◦, 90◦ + i ∗ 0.1◦}9i=1.

212

Observation 2: Adding projection angles around the peaks of the projection213

error curve efficiently improves reconstruction quality.214

If we want to improve the reconstruction quality by investing more projection views,215

where should these projection views go? Since the projection error curve indicates the216
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{0.5◦, 90.5◦}, {179.5◦, 0.5◦, 89.5◦, 90.5◦}, {179◦+i∗0.4◦, 0◦+i∗0.4◦, 89◦+i∗0.4◦, 90◦+i∗0.4◦}2i=1237

and {179◦+ i∗0.1◦, 0◦+ i∗0.1◦, 89◦+ i∗0.1◦, 90◦+ i∗0.1◦}9i=1. From these projection curves,238

we can see that the resulting projection error curves maintain their original shapes. Besides,239

the errors witness a significant drop from [0.5, 4] to [0.18, 0.54] when adding projection240

views around the peaks, while the errors only show a small fall from [0.5, 5.8] to [0.5, 5.1]241

when adding the projection views far away from the peaks. We also calculate the average242

projection errors and peak signal-to-noise ratio (PSNR)33 of the reconstructed results which243

are then illustrated in Fig. 4. As observed, adding projection views around the peaks of the244

error curve can dramatically reduce error and significantly improve reconstruction quality245

compared with the case of adding projection views far away from the peaks.246

II.D. The proposed PVSEE247

Based on the insights gained from the above observations, this subsection focuses on the248

development of an adaptive algorithm for projection view selection. The proposed algorithm249

compromises two fundamental components, which leverage the findings of Observation 1250

and Observation 2. Taking Observation 1 into account, we propose that the projection251

error can be used as a metric to evaluate the informativeness of the projection views. Con-252

sidering Observation 2, to effectively reduce projection error and improve reconstruction253

quality, we propose to invest more projection views around the large projection errors and254

vice versa. To achieve the above goal, we employ the error equidistribution technique orig-255

inally developed for mesh adaption27 to flatten out the projection error curve by fulfilling256

the requirement that the areas between adjacent projection views on the error curve are257

all equal. This area equidistribution procedure effectively leads to error equidistribution by258

placing more projection views around the large values on the projection error curve.259

Given the object to be scanned, the budget for the number of projection views V , and260

an initial set of M projection views, we now describe the PVSEE algorithm in detail. The261

proposed PVSEE for selecting V −M informative projection views consists of three steps:262

Step 1: Projection error estimation: Given an initial set of M projection views at angles263

{θi}Mi=1, reconstruct them into a rough estimation û for the scanned object by applying264

some reconstruction algorithm (operator), and then calculate the projection error curve265

{(θi, Ei)}Mi=1.266

Selecting projection views based on error equidistribution for computed tomography
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Step 2: Projection view selection following the error equidistribution law: Given267

the projection error {Ei}Mi=1 on the present views {θ}Mi=1 from Step 1 , we now deter-268

mine new V −M projection views such that the projection error is (approximately)269

equidistributed. Let’s denote the new added set of projection views as {θ′j}V−M
j=1 . The270

error equidistribution law specifies the added views as follows:271

θ′1 = θ1∫ θ′j

θ′j−1

T#E(θ)dθ =
S

V −M
, j = 2, . . . , V −M.

(4)272

where S =
∫ θM
θ1
T#E(θ)dθ.273

Step 3: Final image reconstruction: Conduct CT scans at the new selected projection274

angles {θ′i}V−M
i=1 obtained from Step 2, and then perform image reconstruction by ap-275

plying the chosen Reconstruction operator on the obtained projection data for views276

{θ′i}V−M
i=1 ∪ {θi}Mi=1, such that a new, higher quality reconstruction is obtained.277

𝚯 = 𝜽 𝒊=𝟏
𝑴

ℛ

𝒖𝒑[𝚯]
𝚯 = 𝜽 𝒊=𝟏

𝑴

𝒜 ℰ

𝓔(𝜽)

ℰℰ

𝑨[𝚯] 𝒖

𝚯′ = 𝜽′ 𝒋=𝟏
𝑽−𝑴

𝒑[𝚯′]

ℛ

ℰℰ

ℰ

𝒜

ℛ

𝒖′

Figure 5: Schematic diagram of the projection view selection based on error equidistribution
(M = 5, V = 15).

The whole process of proposed PVSEE is summarized as Algorithm 1, which is also illus-278

trated in the schematic diagram shown in Fig. 5 for a special case (M = 5, V = 15). In279

this paper, we use MLEM-TV described in18 to implement the Reconstruction operator.280

Please note that the choice of Reconstruction operator is not unique, other reconstruction281

algorithms could work equally well.282
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Algorithm 1: PVSEE

Input: Initial M views {θi}Mi=1, the number of target projection views V
1: Initialize: Θ← {θi}Mi=1

2: # Step 1: estimate the projection error
3: Acquiring the projection data p[Θ] for the views in Θ
4: Performing image reconstruction from projection data p[Θ] by

u← Reconstruction(p[Θ])
5: Estimating the projection errors and generating the error curve E(θ) by applying (3).
6: # Step 2: select new V −M projection views Θ′ = {θ′j}V−M

j=1 by applying the error
equidistribution law (4)

7: # Step 3: achieve the final reconstruction
8: Including the selected views Θ′ into the set of initial set of projection views by

Θ = Θ ∪Θ′

9: Acquiring new projection data p[Θ′] for selected views in Θ′

10: Performing image reconstruction by
u′ ← Reconstruction(p[Θ])

Output: u′

III. Experiments283

In this section, we will assess the performance of our proposed projection view selection al-284

gorithm. We have chosen four well-established projection selection schemes as our compara-285

tive methods: DEIM22, SFS21, dynamic angle selection19, and adaptive projection selection286

based on spectral richness18. For easier reference, the last two methods shall be termed287

”Dynamic” and ”Spectral”, respectively. Similarly, the uniform sampling scheme shall288

be named ”Uniform”. The first two methods are used to validate the effectiveness of the289

proposed projection views selection strategy, while the last two methods are utilized to evalu-290

ate the performance of Algorithm 1. We have configured the parameters for these methods291

according to the guidelines provided in their original publications. Our evaluation will cover292

simulated and real data with and without preferential directions, taking both parallel beam293

and fan beam setups into account. The Reconstruction operator involves forward and294

backward projections which shall be implemented using the astra toolbox34. To draw quan-295

titative conclusions, we will calculate quality metrics including Peak Signal-to-Noise Ratio296

(PSNR) and Structural Similarity Index Measurement (SSIM)35. When needed, Poisson297

noise specified by the incident intensity, denoted as I0, will be introduced to the projection298
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data p, i.e.299

pnoisy = − ln

(
Poissrnd(I0)× exp(−p)

I0

)
, (5)300

where p and pnoisy denote noise-free and noisy projection data, respectively.301

III.A. Effectiveness validation of the proposed PVSEE302

In this subsection, the proposed PVSEE method will be tested against DEIM and SFS, two303

existing projection views selecting methods that assuming the availability of a blueprint im-304

age for the scanned object. The tests will be performed on two types of simulated phantoms,305

including the PCB (512× 512)36 which exhibits strong directional characteristics, and con-306

centric circles (512× 512) which exhibits no directional characteristics. We assume that full307

angle projections have already been acquired such that the projection selection task boils308

down to sparse sampling problem, involving the selection of V † highly informative projec-309

tions from M † full-angle projections. It should be pointed out that the discrete phantom310

and reconstructed images of the PCB are originally size of 512 × 512, but have been clipped311

to the size of 196 × 422 for visual clarity.312

III.A.1. Scanned object with preferential directions313

In this first test, we use a simulated PCB phantom with preferential directions, as displayed314

in Fig. 6(a). The scanning geometry is configured as follows: parallel beam source, 1024315

detector units with a unit length of 0.2mm. The noise level is set to I0 = 1 × 106. The316

phantom exhibits preferential directions of 0◦ and 90◦. For this test, 30 views shall be317

selected from 180 full-angle uniform spacing angles.

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 6: (a) The simulated PCB phantom, (b) Full angle SART reconstruction (10 itera-
tions, noisy), (c) SART reconstruction from 30 views (10 iterations, noisy). The grayscale
window is set to [0, 1].

318
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Reconstructed results from projections by the proposed algorithm and comparative319

algorithms from noisy data are shown in Fig. 7. Thanks to more attention paid on the320

vicinity of the projection view 90◦, the reconstructed results from projections selected by all321

schemes show better-recovered horizontal edges than that of the uniform scheme as shown322

in Fig. 7(a). When examining the zoomed-in images shown in Fig. 7(e)-(h), one can see323

that SFS and the proposed PVSEE demonstrate superiority since they suffer from much324

less artifacts. From quantitative indices shown in Table 1, we can see that the proposed325

PVSEE are better than DEIM, and comparable with SFS. It should be noted that SFS326

uses the information obtained at each additional angle to guide the selection of the next327

measurement, which makes it very slow as it has to execute the reconstruction algorithm328

multiple times to determine the best next angle. We monitor the runtime of competing329

algorithms computed with a single GTX 2080Ti GPU. As displayed in the bottom row of330

Table 1, SFS takes approximately 36 hours to select 30 angles out of 180 candidate angles,331

which is beyond endurance even though it gives slight better quantitative measures.

(a) Uniform (b) DEIM (c) SFS (d) PVSEE

(e) Zoomed-in of (a) (f) Zoomed-in of (b) (g) Zoomed-in of (c) (h) Zoomed-in of (d)

(i) Uniform (j) DEIM (k) SFS (l) PVSEE

Figure 7: Results of projection view selection methods for PCB phantom from noisy projec-
tions (M † = 180, V † = 30). The display windows for the first row and the second row are
set to [0, 1] and [0, 0.7].

332
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Table 1: Quantitative evaluation (PSNR, SSIM and runtime) of projection view selection
for the simulated PCB phantom on noisy projections.

Phantom Index Uniform DEIM SFS PVSEE

PCB PSNR 21.04 39.64 42.54 41.99
512× 512 SSIM 0.8572 0.9881 0.9880 0.9887

Running time(s) 20.56 20.94 130722.38 61.49

III.A.2. Scanned object without preferential directions333

The second test is performed on a synthesized image of several circular rings, as illustrated334

in Fig. 8(a). This phantom shares the same scanning parameters as those with the previous335

test. Noisy projections are obtained by adding Poisson noise with incident photons of 1×105336

to the noise-free data. Considering the symmetric structure of the phantom, which is quite337

simple, all competing algorithms are required to select 10 projection views from full-angle338

uniform spacing angles. The results are shown in Fig. 9. From the first line of Fig. 9, we

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 8: (a) The concentric circles phantom, (b) Full angle SART reconstruction (10 iter-
ations, noisy), (c) SART reconstruction from 10 views (10 iterations, noisy). The grayscale
window is set to [0, 0.8].

339

see that DEIM introduces obvious artifacts, SFS suffers from slight streak artifacts tangent340

to circles boundaries, while both the proposed PVSEE algorithm and the uniform spacing341

scheme produce similar much better reconstructions. The second line illustrates the selected342

projection angles. Clearly, PVSEE produces desirable near uniform projection angles, while343

DEIM and SFS result in quite non-uniform spaced angles. Since the phantom is central344

symmetric and no preferential directions, uniformly distributed projection views should be345

optimal, which could also be validated by the superior reconstruction from the uniform346
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spacingschemeshowninFig.9(a).Theadvantagesoftheerrorequidistributionprocedure

(a)Uniform(b)DEIM(c)SFS(d)PVSEE

(e)Uniform(f)DEIM(g)SFS(h)PVSEE

Figure9:Resultsofprojectionviewselectionmethodsforconcentriccirclesphantomfrom
noisyprojections(M†=180,V†=10).Thegrayscalewindowissetto[0,0.8].

347

couldbefurtherverifiedbycheckingthequantitativeindiceslistedinTable2.OurPVSEE 348

methoddemonstratessignificanthigherPSNRandSSIM.Asfortherunningtime,SFS 349

takestoolongtobepracticallyuseful.DEIMconsumesabouthalftimeofthatofPVSEE, 350

however,itsPSNRandSSIMvaluesaremuchlowerwhichmakesitnotcomparabletothe 351

proposedPVSEE,intermsofquality. 352

Table2:Quantitativeevaluation(PSNR,SSIMandruntime)ofprojectionviewselection
fortheconcentriccirclesphantomonnoisyprojections.

PhantomIndexUniformDEIMSFSPVSEE

ConcentriccirclesPSNR31.5325.6629.9831.54
512×512SSIM0.93200.88510.92180.9311

Runtime(s)18.2218.9026373.6237.81

III.B.PerformanceevaluationoftheproposedPVSEE 353

Inthissubsection,theproposedPVSEEmethodwillbetestedagainsttwopopularmethods: 354

dynamic(dynamicangleselection)andspectral(adaptiveprojectionselectionbasedon 355

spectralrichness).Todemonstratedeeperbehaviorsoftheproposedmethod,comprehensive 356
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tests shall be performed with both simulated and real data, with and without preferential357

directions, and parallel and fan-beam X-ray sources.358

III.B.1. Performance test on simulated data359

The first test uses a simulated strips phantom, consisting of eight horizontal strips and360

seven vertical strips within an ellipse, as shown in Fig. 10(a). Like the previous test, this361

phantom is scanned using parallel-beam X-rays. The scanning configuration involves 512362

detector units, each with a length of 0.2 mm. Noisy projections are generated by introducing363

Poisson noise with noise level I0 = 1 × 106 to the noise-free data. This phantom exhibits364

strong preferential directions {0◦, 90◦}. The original projection views set consists of M = 15365

uniformly spaced angles, which is then expanded to V = 30 projection views by applying366

the views selection algorithms. Since there exists preferential directions {0◦, 90◦}, a good

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 10: (a) The Strips phantom, (b) Full angle SART reconstruction (10 iterations, noisy),
(c) SART reconstruction from 30 views (10 iterations, noisy). The grayscale window is set
to [0, 1].

367

projection views selection scheme should determine more projections in the vicinity of 0◦368

and 90◦. The reconstructed results illustrated in Fig. 11(a)-(d) show that the competing369

algorithms Uniform, Dynamic, and Spectral bring obvious artifacts, while the proposed370

PVSEE algorithm produces high quality reconstruction, free of artifacts. When checking the371

selected projection views illustrated in Fig. 11(e)-(h), it’s easy to see that only the proposed372

PVSEE algorithm selects more projection views around 90◦, while all competing algorithms373

fail to do so. This explains off the superiority of PVSEE. The quantitative measurements374

listed in Table 3 agree well with the above conclusion.375
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(a) Uniform (b) Dynamic (c) Spectral (d) PVSEE

(e) Uniform (f) Dynamic (g) Spectral (h) PVSEE

Figure 11: Results of projection view selection methods for Strips phantom from noisy
projections (M = 15, V = 30).

Table 3: Quantitative evaluation (PSNR, SSIM) of projection view selection for Strips phan-
tom on noisy projections.

Phantom Index Uniform Dynamic Spectral PVSEE

Strips PSNR 25.99 22.89 35.96 38.15
256× 256 SSIM 0.9423 0.8301 0.9821 0.9855

To test the robustness of the proposed PVSEE against noise level change, we further376

performed two additional experiments at noise level I0 = 5×105 and I0 = 1×105, respectively.377

Reconstructed images from projections by the proposed PVSEE and comparative algorithms378

from noisy data at two different noise levels are shown in Fig. 12. From left to right, the four379

columns show the results by Uniform, Dynamic, Spectral and PVSEE, respectively. From380

top to bottom, the first two rows and the last two rows show the results at the noise level of381

I0 = 5× 105 and I0 = 1× 105, respectively. The competing methods Uniform, Dynamic and382

Spectral introduce more blurring and streak artifacts with the increasing noise level, while383

PVSEE can still recover white vertical strips nearly perfect. Taking a look at the the selected384

projection views illustrated in Fig. 12(e)-(h) and Fig. 12(m)-(p) at different noise levels, it385

is easy to observe that only PVSEE selects more projection views around 90◦ regardless of386

the noise levels, while all the competing methods fail to do so. This validates the robustness387

of PVSEE against noise levels. The quantitative indices listed in Table 4 agree well with388
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above conclusion.

Table 4: Quantitative evaluation (PSNR, SSIM) of projection view selection for Strips phan-
tom on noisy projections at different noise levels.

Noise level Index Uniform Dynamic Spectral PVSEE

I0 = 5× 105
PSNR 25.87 23.54 33.59 36.07
SSIM 0.9132 0.8615 0.9507 0.9577

I0 = 1× 105
PSNR 24.51 22.77 29.90 31.10
SSIM 0.8342 0.7876 0.8765 0.8881

389

The second test is with the Shepp-Logan phantom without obvious preferential direc-390

tions, as shown in Fig. 13(a). The scanning geometry is configured as follows: fan-beam391

source, the distance from the X-ray source to the object center is 311.49 mm, and the dis-392

tance from the X-ray source to the detector is 697.88 mm. There are 512 detectors per view,393

each with a unit length of 0.127 mm. For noisy cases, Poisson noise with a photon count of394

1× 106 is introduced.395

Since this phantom exhibits no obvious preferential directions, the desired projection396

views distribution should be near uniform. The original projection views set consists of M =397

10 uniformly spaced angles, which is then expanded to V = 15 projection views by applying398

the views selection algorithms.399

The results are illustrated in Fig. 14. At a first glance, all algorithms produce quite400

similar reconstructions which could be told from the first line of Fig. 14. A closer examination401

at the zoomed-in images from the second line, however, reveals the differences. All selection402

algorithms produce more consistent reconstructions than the uniform sampling scheme. If403

one checks the vicinity of the white edge, it’s easy to conclude that the proposed PVSEE404

algorithm performs the best since it introduces almost no jagged artifacts, which are easy405

to be identified for competing algorithms. As stated, the Shepp-Logan phantom exhibits no406

obvious preferential directions. However, we indeed know that it might have weak preferential407

directions that are not easy to be recognized. It’s interesting to notice that, by examining408

the last line of Fig. 14, the Spectral algorithm agrees well with the Uniform scheme, which409

suggests that the phantom should demonstrate no preferential directions. The Dynamic410

algorithm identifies two weak preferential directions near 120◦ and 240◦, while the proposed411
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(a) Uniform, I0 = 5× 105(b) Dynamic, I0 = 5×105(c) Spectral, I0 = 5× 105 (d) PVSEE, I0 = 5× 105
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(f) Dynamic, I0 = 5×105
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(g) Spectral, I0 = 5×105
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(h) PVSEE, I0 = 5× 105

(i) Uniform, I0 = 1× 105 (j) Dynamic,I0 = 1× 105 (k) Spectral, I0 = 1× 105 (l) PVSEE, I0 = 1× 105

(m) Uniform,I0 = 1×105
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(o) Spectral,I0 = 1× 105
0°

30°

60°
90°

120°

150°

180°

(p) PVSEE, I0 = 1× 105

Figure 12: Results of projection view selection methods for Strips phantom from noisy
projections at different noise levels. From up to bottom, the first two rows show the recon-
structions and selected projection views distributions at I0 = 5× 105 and the last tow rows
show the results at I0 = 1× 105.

Selecting projection views based on error equidistribution for computed tomography

19

....... 



(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 13: (a) The Shepp-Logan phantom. (b) SART reconstruction from 360 views (10 it-
erations, noisy), (c) SART reconstruction from 15 views (10 iterations, noisy). The grayscale
window is set to [0, 0.6].

(a) Uniform (b) Dynamic (c) Spectral (d) PVSEE

(e) Zoomed-in of (a) (f) Zoomed-in of (b) (g) Zoomed-in of (c) (h) Zoomed-in of (d)
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Figure 14: Results of projection view selection methods for Shepp-Logan phantom from
noisy projections (M = 10, V = 15).
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PSVEE algorithm identifies just one (weak) preferential direction near 240◦. Since PSVEE412

produces better reconstruction, the preferential direction near 120◦ might be a false alarm.413

The quantitative indices listed in Table 5 confirm that, while the Dynamic and Spectral414

algorithms demonstrate apparent advantages over the Uniform sampling scheme, still the415

proposed PVSEE wins by a significant margin against all competing algorithms.

Table 5: Quantitative evaluation (PSNR, SSIM) of projection view selection for Shepp-Logan
phantom on noisy projections.

Phantom Index Uniform Dynamic Spectral PVSEE

Shepp-Logan PSNR 30.52 33.61 34.36 35.02
256× 256 SSIM 0.9694 0.9785 0.9832 0.9833

416

The third test is with a shoulder medical phantom with intricate edge and gray value417

distributions, as shown in Fig. 15 (a). The fan-beam scanning geometry is configured as418

follows: the distance from the X-ray source to the object center is 500 mm, and the distance419

from the X-ray source to the detector is 1000 mm. There are 1024 detectors per view, each420

with a unit length of 1.38 mm. The projections are acquired at dose of a photon count of421

I0 = 1× 106. The number of initial uniform spaced projection views M is 30, which is then422

expanded to V = 60 projection views by employing PVSEE.

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 15: (a) The medical phantom, (b) Full angle SART reconstruction (10 iterations,
noisy), (c) SART reconstruction from 60 views (10 iterations, noisy). The grayscale window
is set to [0, 1].

423

The reconstructed results are illustrated in Fig. 16. At first sight, all algorithms produce424

very similar reconstructions, as seen in the top row of Fig. 16. When checking the zoomed-425
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(a) Uniform (b) Dynamic (c) Spectral (d) PVSEE
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Figure 16: Results of projection view selection methods for the medical phantom from noisy
projections (M = 30, V =60). The grayscale window is set to [0, 0.8].

in areas within the red rectangles, it can be told that the left bone boundaries and right426

soft-tissue boundaries with the proposed PVSEE, indicated by the red arrows, closely match427

the reference image. In contrast, the competing algorithms, Uniform, Dynamic and Spec-428

tral, exhibit blurring or deformation. Considering that the edge distribution of the shoulder429

phantom does not exhibit obvious orientations, only weak preferential directions that not430

easily noticed might be identified. By examining the selected projection views shown in Fig.431

16(f)-(h), one can see that the Spectral algorithm fails to identify any preferential directions,432

the Dynamic algorithm detects weak preferential directions, and the proposed PVSEE al-433

gorithm identifies several other weak preferential directions. Since PVSEE achieves better434

reconstruction, one can conclude that the proposed PVSEE can effectively and correctively435

identify weak preferential directions in this complex phantom, while competing algorithms436

fail to do so. Similar conclusion can be made from the quantitative indices listed in Table 6.437

III.B.2. Performance test on real data438

In this subsection, to test the potential capability of our method in practical applications,439

experiments are carried out on real data. For this test, complete projection data are initially440
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Table 6: Quantitative evaluation (PSNR, SSIM) of projection view selection for the medical
phantom on noisy projections.

Phantom Index Uniform Dynamic Spectral PVSEE

Medical image PSNR 34.58 33.30 33.33 35.27
512× 512 SSIM 0.8882 0.8795 0.8252 0.8971

acquired through full angular scanning. The SART algorithm is then employed on this441

complete data to construct a reference image. For simplicity, we deal with just one layer442

(the central slice) of the reconstructed image in the experiment.443

The first test involves a real flat object with a high length-width ratio, as shown in444

Fig. 17(a), which is reconstructed from real full scanning data acquired by the CT device445

located in our lab. The CT system consisted of a YXLON-FXE-225.48 X-ray source and a446

Varian PS2520V flat panel detector. Detailed system and geometrical scanning parameters447

are listed in Table 7. The reconstructed images are originally size of 480×480, however, for

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 17: (a) Photograph of the flat object, (b) the reference image reconstructed from the
full-angle data (SART, 10 iterations), (c) SART reconstruction from 30 views (10 iterations).
The grayscale window is of [0, 0.12].

Table 7: System and geometrical scanning parameters.

Parameter Value

Tube voltage 140kV
Current 160mA
Scanning range 360◦

Scanning angular interval 1◦

Number of detector units 960
Detector unit width 0.254mm
X-ray source to the rotation center distance 311.49mm
X-ray source to detector distance 697.88mm
Reconstructed image size 480× 480

448

better illustration, they are clipped to 132×480. The original projection views set consists of449
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M = 10 uniformly spaced angles drawn from the full projection data, which is then expanded450

to V = 30 projection views by applying the views selection algorithms. Fig. 17(b) shows451

the SART reconstruction with 10 iterations from full angle projections to act as a reference452

and Fig. 17(c) displays the SART reconstruction with 10 iterations from uniformly sampled453

30 projection views.454

The reconstructed results alongside the distribution of selected projection views are455

shown in Fig. 18. Both the Dynamic and Spectral schemes manage to recover the small456

structure indicated by the red arrows, but they failed to recover the horizontal edges indicated457

by the red arrows. In contrast, the proposed PVSEE scheme seems to be able to preserve458

the small structure while recovering the horizontal edges.
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Figure 18: Results of projection view selection methods for the PCB real data (M = 15, V
= 30).

459

Compared to the uniform sampling scheme, projection views selected by all compet-460

ing algorithms demonstrate some kind of concentration around 90◦ (corresponding to the461

horizontal direction), as illustrated in Fig. 18(e)-(h). However, a closer inspection reveals462

differences. It’s interesting to notice that the selected projection views by the competing463

algorithms demonstrate different concentration patterns. Both the Dynamic scheme and the464

Spectral scheme result in skewed concentration, i.e. not perfectly around 90◦. As a compar-465

ison, the proposed PSVEE gives very symmetric and dense concentration around 90◦. This466

indicates that PSVEE could more accurately identify the preferential directions than the467

competing algorithms. The quantitative indices listed in Table 8 show that the proposed468

PVSEE algorithm wins a large margin in terms of both PSNR and SSIM. This agrees well469
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with the above analysis.

Table 8: Quantitative evaluation (PSNR, SSIM) of projection view selection on real PCB
data.

Phantom Index Uniform Dynamic Spectral PVSEE

PCB PSNR 37.27 38.02 37.13 39.79
480× 480 SSIM 0.9797 0.9806 0.9794 0.9814

470

The second test utilizes real projection data of a carved cheese from an open-access471

source37, as shown in Fig. 19(a). As explained in37, the reconstruction is carried out using472

data from a custom-built CT device at the University of Helsinki, and the CT system employs473

the X-ray source (XTF5011) and a Hamamatsu Photonics C7942CA-22 flat panel detector.474

Other system and geometrical scanning parameters are listed in Table 9. As a reference, the475

full angle reconstruction (SART, 10 iterations) is shown in Fig. 19(b). Since the object

(a) Phantom (b) SART, full data (c) SART, sparse-view data

Figure 19: (a) Photograph of the carved cheese, (b) the reference image reconstructed from
the full-angle data (SART, 10 iterations), (c) SART reconstruction from 20 views (10 itera-
tions). The grayscale window is of [0, 0.2].

476

under inspection has simple structure, we set the budget for the number of total projection477

views to be V = 20. The original projection views set consists of M = 10 uniformly spaced478

projection views, which is then expanded to V = 20 projection views by applying the views479

selection algorithms. The SART reconstruction (10 iterations) from uniformly sampled 20480

projection views is shown in Fig. 19(c).481

This phantom has no preferential directions and the Uniform scheme should be near op-482

timal for placing the projection views. Fig. 20 shows the reconstructed images from selected483
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Table 9: System and geometrical scanning parameters.

Parameter Value

Tube voltage 40kV
Current 1mA
Scanning range 360◦

Scanning angular interval 1◦

Number of detector units 560
Detector unit width 0.2mm
X-ray source to the rotation center distance 404.3mm
X-ray source to detector distance 547.8mm
Reconstructed image size 280× 280
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Figure 20: Results of projection view selection methods for the cheese real data (M = 10,
V = 20).

20 projections by different selection methods, together with the corresponding views distri-484

butions. From the first line, all competing algorithms produce quite similar reconstructions485

from a global view. A closer inspection, especially in the vicinity indicated by the arrows, one486

can see that the small structure pointed to by the arrow is completely lost for the Dynamic487

algorithm, diminished or blurred to be almost non-recognizable for the Uniform and SFS488

schemes, while PVSEE preserves the structure quite well. When checking the projection489

views distribution illustrated in the second row of Fig. 20, we can see that the proposed490
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PVSEE results in a distribution closest to the uniform one, which is desirable since the491

scanned object has no preferential directions. In fact, simple computations show that, the492

maximum angular intervals for the four competing algorithms, i.e. the Uniform, Dynamic,493

Spectral and the proposed PVSEE, are 19◦, 40◦, 44◦ and 31◦, respectively, which suggests494

that the proposed PVSEE behaves the best since its largest angular interval is closest to that495

of the Uniform scheme. The above analysis and conclusion can be further validated by com-

Table 10: Quantitative evaluation (PSNR, SSIM) of projection view selection on real Cheese
data.

Phantom Index Uniform Dynamic Spectral PVSEE

Cheese PSNR 27.02 26.33 26.56 27.01
280× 280 SSIM 0.8965 0.8930 0.8916 0.8966

496

paring the quantitative indices listed in Table 10, where the PSNR and SSIM values show497

that the proposed PVSEE takes an advantage over the Dynamic and Spectral algorithms,498

and achieves almost same performance compared to the Uniform scheme.499

IV. Discussion500

In this section, we will further explore the proposed PSVEE algorithm, including the choice501

for the initial set of projection views, proposing a variant of PSVEE for better utilizing prior502

information about preferential directions and the possible application scenarios.503

IV.A. The initial set of projection views504

As previously mentioned, in the absence of prior information, the initial M projection views505

can be uniformly distributed. In certain applications, the preferential directions of the506

scanned object could be inferred before scanning, e.g. the CAD model for the scanned507

object is available. This prior information can be incorporated into the selection of the508

initial set of projection views by specifying more projection views around the preferential509

directions, which could significantly improve the effectiveness of projection views selection.510

When prior information is not available, uniform sampling is a reasonable choice to spec-511

ify the initial set of M projection views. How different choices of M affect the reconstruction512
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quality? To explore the stability and limits of the proposed method under the condition of513

different initial uniform sampling angles M , we conducted experiments on the simulated514

Strips phantom shown in Fig. 10(a) with M = 3, 7, 11, 15, 19, 23, 27 and the budget for total515

number of projection views V = 30. The scan geometry and noise level settings align with516

those specified in section III.B.1..

3 7 11 15 19 23 27
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Figure 21: The PSNR and SSIM results of the experiments with different numbers of initial
projection view on the Strips phantom at the noise level of I0 = 1× 106.

517

Fig. 21 shows the line charts of PSNR and SSIM against the size of initial uniform518

sampling angles M . As shown in Fig. 21, with the increase of the number of initial uniform519

sampling angles M , PSNR and SSIM show a trend of first increasing and then decreasing,520

and reach the highest value when M = 15. This phenomenon coincides well with our521

expectations. A too small M will give a initial bad quality image, so PVSEE will be fed522

with ”wrong” information and the determined projection views shall not be so ”informative”,523

which finally affect the reconstruction quality. On the other hand, a too large M will limit524

PVSEE to demonstrate its power and advantages since there are no much work left for it to525

do. From the line chart, one can also observe a nonsymmetric askew pattern: for both the526

PSNR and SSIM curves, the left part is higher than the right part. This actually indicates527

the effectiveness and robustness of PVSEE: when fed with ”wrong” information, PVSEE528

can still identify relatively informative projection views such that the reconstructed image529

is still of higher quality than that with uniform sampling.530

Selecting projection views based on error equidistribution for computed tomography

28

The number of the initial projection views M 



IV.B. The recursive variant of PVSEE method531

As outlined in Algorithm 1, when the budget for the number of projection views is V and532

an initial set of M projection views is specified, PVSEE selects V − M projection views533

all at once. This all-at-once strategy might be sub-optimal, particularly when the initial534

set of M projection views is very sparsely distributed. To mitigate this possible issue, we535

propose a variant of the proposed PSVEE algorithm, named recursive PSVEE (RPSVEE)536

algorithm, which selects the V −M views by a recursive strategy, i.e. the views are added537

in small batches, one by one. In this way, even if the initial set of M projection views does538

not contain preferential directions, they should be revealed during the recursive procedure539

if the object under scanning indeed possesses preferential directions. The variant RPSVEE540

algorithm is easy to implement, only involving an outer loop over the partition {Vi}Ni=1 of541

V −M , see Algorithm 2 for details.

Algorithm 2: Recursive projection view selection algorithm based on error equidistribution
(RPVSEE)

Input: Initial M projection views {θi}Mi=1, the number of target projection views V , subset
partitions V1, V2, · · · , VN ,

∑N
i=1 Vi = V −M

1: Initialize: Θ← {θi}Mi=1,Θ
′
0 ← Θ

2: for i := 1 to N do
3: # Step 1: estimate the projection error
4: Acquiring new projection data p[Θ′

i−1]
for the views in Θ′

i−1

5: Performing image reconstruction from projection data p[Θ] by
u← Reconstruction(p[Θ])

6: Estimating the projection errors and generating the error curve E(θ) by applying (3)
7: # Step 2: select new Vi projection views Θ′

i = {θ′j}
Vi
j=1 by applying the error equidis-

tribution law (4)
8: Including the selected views Θ′

i into the acquired set of projection views by
Θ← Θ ∪Θ′

i

9: end for
10: # Step 3: achieve the final reconstruction
11: Performing image reconstruction by

u′ ← Reconstruction(p[Θ])
Output: u′

542

To validate the effectiveness of the RPVSEE variant, experiments were conducted using543

the simulated PCB phantom shown in Fig. 6(a). The scan geometry and noise level settings544

align with those specified in section III.B.1.. As mentioned above, this phantom possesses545
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preferential directions at 0◦ and 90◦. For both PVSEE and RPVSEE, the parameters are546

set to M = 4, V = 30, and the initial 4 projection views are uniformly distributed. For547

the PVSEE algorithm, 26 projection views are determined all at once based on the error548

curve calculated by the initial 4 projection views, while for the RPVSEE algorithm, the549

26 projection views that need to be determined are divided into 5 groups which contain550

{6, 5, 5, 5, 5} projection views, respectively. So, for RPVSEE algorithm, it shall firstly add 6551

projection views, then 5 projection views are added, and so on, until reaching the budget of552

30 projection views.553

The reconstructed results as well as the determined 30 projection views are illustrated554

in Fig. 22. Clearly, RPVSEE results in much better reconstruction compared to PSVEE.555

The distributions of the selected projection views shown are illustrated in Fig. 22(c) and556

(d). Note that different marker shapes are employed to represent different sets of selected557

projection views during RPVSEE’s recursive selection process.
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Figure 22: Results of projection view selection methods for PCB phantom from noisy pro-
jections (M = 4, V = 30).

558

It’s obvious to tell that PVSEE leads to almost uniform distribution and fails to reveal559

the preferential direction. This behavior is understandable since the initial 4 projection560

views contain no information about the preferential directions. On the contrary, RPVSEE561

successfully identifies the preferential direction in the set of finally selected projection views562

since concentration of views around the preferential direction 90◦ is easy to be recognized.563
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IV.C. The application scenarios564

The prototypes of PVSEE and RPVSEE algorithms could be easily adapted to real applica-565

tions. It should be emphasized that the proposed algorithms allow for the selecting-while-566

reconstructing mode, i.e. once a new view is selected, the scanning is performed for this567

new view, and the new acquired projection data is then used to update the image, based on568

which new projection views are again selected, and so on. When the total number of projec-569

tion views reaches the planned budget, the iterative reconstruction procedure can proceed,570

if necessary, without selecting new views.571

Compared to the reconstruction procedure, the view selection procedure is much faster,572

thus the waiting time between consecutive scannings can be neglected. So, one can think that573

the proposed algorithm identifies informative projection views in real-time. This capability574

is essential for applying the proposed methods to current medical CT imaging systems,575

in which the X-ray source can not be stopped and always produces photons during the576

whole scanning process. We believe that manufactures would be willing to adapt their577

scanning system once they confirm that nonuniform scanning worth of it. As an example,578

the emerging stationary CT system38,39 consists of multiple sources and detectors, and each579

pair of source and detector can be separately controlled for scanning. In this scenario, the580

proposed algorithm could be applied without introducing any extra overhead, compared to581

traditional sequential scanning protocol.582

In certain applications, the objects under scanning share similar shape and structure.583

In this scenario, the informative projection views could be determined once by experiments584

and then fixed for subsequent examinations. This includes CT imaging needs for teeth, head,585

chest, etc, and it also includes industrial CT applications like battery examination.586

V. Conclusion587

Motivated by two key observations of projection error’s behaviors, we have introduced the588

idea of error equidistribution for selecting informative projection views. To our knowledge,589

this marks the first instance of utilizing projection errors to serve as an indicator of view590

importance in optimizing the selection of projection views.591
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Compared to existing algorithms, the proposed PVSEE algorithm produces very com-592

petitive or superior results which are verified by extensive numerical experiments. Besides,593

with proper programming, e.g. each implementation of the reconstruction operator could be594

fed with only newly added projection views and the current reconstructed image, the time595

consumption of the PVSEE algorithm shall be comparable to those of traditional popular596

methods like SART, thus our PVSEE suits well to time-critical real applications.597
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