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ABSTRACT 
Low-cost near infrared devices intended for consumers able to easily determine composition and 
quality of food products may boost adoption of sustainable healthy diets. However, predictive 
algorithms robust to external variations are needed. The aim of this work was to evaluate different 
data analysis strategies to develop robust predictive models for food composition when using 
spectrometric data subjected to external variations, specifically temperature and packaging 
material, acquired using low-cost sensors.  Usefulness of global modelling (GM), Generalised 
least squares weighting (GLSW), Loading space standardisation (LSS), Multiplicative Effects 
Model (MEM) were explored, and the effect of samples heterogeneity evaluated. To do so, two 
low-cost handheld NIR-based devices with different spectral ranges and resolutions were used. 
The food matrix samples were obtained from different anatomical muscles of commercial dry-
cured ham. Spectra were acquired on two types of packaging films at different temperatures to 
further explore the usefulness of global modelling (GM), generalised least squares weighting 
(GLSW), loading space standardisation (LSS), and multiplicative effects model (MEM) to 
retrieve these effects. Results show that the inherent food sample heterogeneity produces as much 
spectral variability as temperature and packaging materials. For temperature compensation, LSS 
did not decrease the predictive error caused by this factor probably due to the heterogeneity of the 
samples used. In contrast, the GLSW method decreased the predictive errors from 0.52% to 0.46% 
for salt and from 2.10% to 1.40% for water.. Only a slight effect of packaging was observed, and 
GM models were found to be the best strategy to compensate it, showing a decrease of bias from 
-1.35 to 0.012. The examined compensation strategies could facilitate the deployment of low-cost
spectrometers for consumer use, as they offer an effective means to mitigate or eliminate 
variations from any source in the data that are unrelated to the properties of interest. 
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1. Introduction

Food safety and implementation of sustainable healthy diets is a challenge for all European 

governments. In a society increasingly focused on ICT (Information and communication 

technologies), the improvement and adaptation of comprehensive digital tools is crucial to 

facilitate the achievement of the mentioned challenges. In this sense, the development of new 

digital devices that provide real-time information on food composition and quality could help 

consumers make informed, healthier, and more sustainable purchasing decisions; assist retail 

stores in managing stocks and preventing food waste; and boost consumer confidence in food 

origin by increasing transparency and reducing the risk of food fraud. 

Non-invasive technologies based on infrared and other spectrometric technologies through digital 

devices could help to achieve these challenges. It has been demonstrated that composition of 

food[1-5], nutritional claims and mislabelling [6-10] and quality parameters [11-13] can be 

determined using these technologies. The continuous instrumental developments and applications 

observed over the last few years have launched near infrared (NIR) spectroscopy into a new era 

of on-site and in-the field analysis [14]. Besides, manufacturing cost have been considerably 

reduced and the progress in miniaturization has been accompanied by software development 

aimed to facilitate its use by the non-expert consumer community [15]. However, caution should 

be applied with the instruments intended for consumers [16] since reliability of these devices to 

characterize foods depends on the technical factors such as lighting and the configuration of the 

equipment but also on the effect of external conditions when acquiring spectra [17]. Near infrared 

(NIR) spectra are affected by the variation in the physical properties of samples such as surface 

characteristics or heterogeneity, and external factors such as environmental light, temperature or 

packaging, which may need to be removed from the spectra. Traditional thermoplastic resin 

materials, such as polypropylene and polyethylene, used for food packaging may produce 

different absorption profiles and reflectance interference [18, 19]. In this regard, advanced pre-

processing methods to remove the effects of temperature [20, 21] and particle size [22] from 

spectra have been used before in other fields.  These include several filtering techniques such as 

External Parameter Orthogonalization (EPO)[23], Orthogonal Signal Correction (OSC)[24], 

Generalised Least Squares Weighting (GLSW) [25], and Loading Space Standardization (LSS) 

[26]. Other approaches for temperature compensation are augmentation of the calibration matrix 

through adding simulated noise on the spectra or correction methods that removes the non-

relevant variation from new spectra [27]. 

Despite the significant amount of work done, the application of these approaches in low-cost 

sensors of various types requires further investigation. This is particularly important due to the 

different environmental conditions they may encounter, such as temperature fluctuations and 
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packaging material variations, which are common in the food industry and at the supermarket and 

consumer’s level. 

The aim of this work was to evaluate different data analysis strategies to develop robust predictive 

models for food composition when using spectrometric data subjected to external variations, 

specifically temperature and packaging materials, acquired using low-cost NIR spectrometers. 

Usefulness of global modelling (GM), Generalised least squares weighting (GLSW), Loading 

space standardisation (LSS), Multiplicative Effects Model (MEM) were explored, and the effect 

of samples heterogeneity evaluated. 

2. Material and Methods

2.1 Food matrix and packaging materials 

Food matrix samples used in this study were obtained from different anatomical muscles of 50 

commercial dry-cured hams (Monte Nevado, Segovia, Spain) named Biceps femoris, 

Semimembranosus and Semitendinosus. Two types of packaging films commonly used at the food 

food industry were chosen to study spectral variation produced by packaging. Specifically, Plastic 

film 1 (P1) was a 50 µm ± 10%  Polyvinylidene Chloride (OSB Cryovac, Barcelona, Spain) and 

Plastic film 2 (P2) was a 120 µm ± 10% layered Poliamine/Poliethilene films (P2) (Estudi Graf, 

Barcelona, Spain). 

2.2 NIR spectrometers 

Spectra were acquired using two low-cost handheld NIR-based devices with different spectral 

ranges and resolutions. Spectrometer A was the smartphone-based SCiO spectrometer (Consumer 

Physics Inc., Tel Aviv, Israel) that can acquire 331-points reflection spectra that are ranging from 

740 to 1070 nm. A shade accessory was used to avoid external’s light influence and to keep the 

same 10 mm distance in all the collected spectra. Device A was calibrate using the optical head 

containing a bakelite reference plate and the automatic internal calibration of the handheld 

spectrometer. Afterwards, spectra were collected using the SCiO smartphone app (The Lab, 

version 1.3.1.81), sent to a smartphone via Bluetooth and then uploaded to the Consumer Physics 

Cloud database. Spectrometer B was a handheld low-cost NIR setup developed in house (NIRTA 

3.0) that uses a Hamamatsu sensor in reflectance mode (Hamamatsu Photonics C14384MA-01; 

Hamamatsu, Japan) and an internal source of halogen light of 0.55 W of power to acquired spectra 

in a range between 600 nm and 1160 nm with a 2.18 nm resolution. Spectometer B was calibrated 

using a white reference object of 80 x 200 mm made from Teflon (SpectrononPro, Resonon Inc., 

Bozeman, MT, USA) with reflectance values of 99.9% and internal procedure of the system. 

Afterwards, spectra were acquired at a working distance of 50 mm. For both devices, the spectral 

signals were downloaded and imported into Matlab®, version 7.1 (The MathWorks, Inc) to 

further develop the predictive models. 
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2.3 Experimental procedure 

The experimental procedure is represented in Figure 1A. In brief, a total of 155 regions of interest 

(ROIs) were selected on 2 cm thick slices of the 50 dry-cured hams described above and sampled 

(Sample set A). Depending on the slice, 0, 1 or 2 ROIs were obtained for a given muscle. Two 

thirds of the samples were randomly assigned to the calibration set and 1/3 to the validation set. 

Next, a total of 5 spectra on different positions were acquired directly on the muscle as received 

(Sample set A, Figure 1b) of non-packed samples (NP) at different temperatures -7±1.5ºC±, 

4±1.5ºC± and 10±1.5ºC± or 15±1.5ºC for spectrometer B and A, respectively. The temperature 

of the samples while acquiring the spectra was measured using a non-contact infrared 

thermometer (Testo 830-T2, Testo SE & Co. KGaA, Germany). Additionally, twenty additional 

samples were sampled and a total of 5 spectra on different positions were acquired at -15±0.5ºC, 

-5±0.5ºC, 5±0.5ºC and 15±0.5ºC (non-homogenized LSS set) and temperature measured. This set

of samples was used when applying the LSS compensation method described below. Next, all the 

samples were vacuum packed first using P1, taken out of the package and packaged again using 

P2, and spectra acquired on the packaging at a constant temperature (10±1.5ºC or15±1.5ºC for 

spectrometer B and A, respectively). 

In order to study the effect of samples heterogeneity, samples were homogenised using a 

conventional mincer (Moulinex, Barcelona, Spain) (Sample set B, Figure 1c) and spectra acquired 

again following the same procedure and temperatures described before. First, spectra were 

acquired on NP samples at different temperatures (-7±1.5ºC±, 4±1.5ºC± and 10±1.5ºC± or 

15±1.5ºC for spectrometer B and A, respectively) using the two spectrometers, and then vacuum 

package again first on P1 and later on P2 for spectral acquisition at a constant temperature 

(10±1.5ºC or 15±1.5ºC for spectrometer B and A, respectively). Additional spectra at -15±0.5ºC, 

-5±0.5ºC, +5±0.5ºC and +15±0.5ºC on LSS set once homogenized were also acquired to explore

the effect of homogenisation when applying LSS compensation method (homogenized LSS set) 

and temperature measured. Finally, salt and water contents were analytically determined in 

triplicate as described below. 

2.4 Compensation methods 

Several compensation methods were investigated as strategies against temperature and/or 

packaging material variations [38]. 

Global modelling (GM) involves incorporating in the calibration sample data collected at different 

conditions (such as temperature variation or packaging materials), covering the expected range 

for the application. This typically results in a more complex model due to the increase in the 

number of latent variables needed to describe these additional variances. A major downfall of this 
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method is the need to collect many more spectra at various conditions to ensure that the model 

space covers the range of expected variation. 

Global modelling - measured variable as an independent variable (GM-X) adds a measured 

variable of the sample (such as temperature), at the time spectra were collected, to the spectral 

data matrix. Therefore, independent variables used to develop the calibration are made up of the 

spectral absorbances of interest and the measured variable at which they were collected. 

Global modelling-measured variable as a dependant variable (GM-Y) adds the measured variable 

of the sample (such as temperature), at the time spectra were collected, to the measured data 

matrix. Therefore, the PLS2 algorithm is used to simultaneously develop calibration models for 

both variables (i.e salt or water content, and the temperature). By having to predict the two 

variables simultaneously, it is thought that that the model can identify which spectral regions are 

affected by the studied variables. 

Multivariate filter—generalised least squares weighting (GLSW) down weights spectral variables 

using a covariance matrix generated from the differences between similar samples defined by 

their measured value. The extent of the weighting depends on the variable parameter alpha (α). 

In this study, values for α ranged from 0.000001 to 1.0. Low α values result in increases in the 

weighting of the filter, whereas high values reduce the effect of the filter. A few different values 

of alpha were trialled (0.1, 0.01, 0.001, 0.0001 and 0.00001. 0.000001, 0.0000001 and 

0.00000001) as to get the best performance from the filter without removing information related 

to the aimed variable to predict. The use of the optimal α value results in the reduction in the 

complexity of the model as well as improvements to the predictive ability of the model. 

Loading space standardisation (LSS) assumes that the absorbance of each chemical species in 

every wavelength follows simple polynomials with respect to temperature. Therefore, the 

corresponding elements of the loading vectors for spectral data measured at different temperatures 

can also be described by simple polynomials. In LSS method, the polynomials estimated from a 

specific set of samples (LSS set) measured at specific temperatures (Step 1) can be used to predict 

the loading vectors at the test temperature. This step plays an important role in correcting the 

spectral variations resulting from the temperature differences between the multivariate calibration 

model and the validation samples [26]. Two parameters require to be estimated to build a LSS 

correction model, the degree of the polynomials (dependent on the nonlinearity of the temperature 

effects) and the number of factors describing the spectral information. In this study, LSS 

compensation method was applied using sample set A and B to explore the effect of samples 

homogenisation. Besides, preprocessing before and after LSS was explored. 

Multiplicative effects model (MEM) uses two-step procedure for the correction of multiplicative 

effects in spectral measurements. First, the multiplicative parameters accounting for 
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multiplicative effects in the spectral measurements of the calibration samples are estimated by the 

optical pathlength estimation and correction (OPLEC) algorithm [28] and then the multiplicative 

effects in the spectral measurements are efficiently removed by a dual calibration strategy. In this 

work a modified version of the OPLEC algorithm is used which has been found to be faster and 

more robust [29, 30]. 

2.5 Model construction and performance 

Partial least squares (PLS) regression was used to build the calibration models using PLS Toolbox 

chemometrics software (PLS_Toolbox_8.0.1, Eigenvector Research Inc., Manson, WA, USA). 

Models were developed using 2/3 of the samples for calibration and 1/3 for validation. Samples 

from different muscles and different hams were assigned to calibration and validation data sets to 

obtain a similar variability in terms of composition in both data sets. In all the cases, optimising 

the model involved trialling various pre-processing techniques and reviewing different spectral 

regions. The scatter correction methods evaluated included Mean centering, Multiplicative Scatter 

Correction (MSC), Extended MSC and Standard Normal Variate (SNV). First and second 

derivative were also explored to improve models’ accuracy. The best combination of pre-

treatments was selected based on the lowest cross validation error using venetian blinds 

(RMSECV) and the lowest number of latent variables (LV). A maximum of 10 LV was fixed for 

all the models to avoid overfitting. The goodness of fit of the models was assessed using the 

coefficient of determination (RP
2), and the root mean square error of Prediction (RMSEP). 

Spectral shooter software (Spectral shooter v.3.0, CPACT, UK) was used for LSS and MEM 

model development. The models predictive ability obtained using the different combinations of 

pre-treatments were compared using a Fisher-Snedecor distribution (or F-distribution) in 

Microsoft Excel 2021 (Microsoft Corporation, USA). A p-value < 0.05 in this test shows a 

significant difference between the errors of each model [31]. 

2.6 Physicochemical determinations 

Water content was analysed by drying at 103±2 ºC until reaching a constant weight [32]. Chloride 

content was determined according to [33] using a potentiometric titrator 785 DMP Titrino 

(Metrohm AG, Herisau, Switzerland) and expressed as salt content. 

3. Results and discussion

3.1 Samples characterization 

Table 1 shows the compositional characteristics of the different sets of samples used as food 

matrix for the evaluation of different compensation methods of spectral variations caused by 

temperature and packaging materials. Similar salt and water content ranges were obtained 

ensuring the appropriate application of spectral compensation methods and development of 

predictive models. 
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3.2 Effect of samples heterogeneity on spectral variability 

Although visually homogeneous regions of interest (ROI) on dry-cured ham were selected 

(sample set A, Figure 1b), obtained spectra from these samples were found to have high to 

moderate variability. For this reason, five spectra for each sample were acquired and averaged 

before preprocessing and developing the models when using both spectrometers A and B. Thin 

fat streaks, tyrosine precipitates, colour variations and even slight variations in salt and water 

composition inside the ROI can produce an important variability. In fact, variability caused by 

sample’s heterogeneity can be in some cases as high as the variability caused by external factors 

such as temperature (see Figure 2). This fact could be aggravated to the small measurement area 

of the used sensors, having 15- and 12-mm diameter for spectrometer A and B, respectively. 

Similar results were found when analysing ROIs on sample set B (homogenized samples) since 

still some heterogeneity can be found. Therefore, samples heterogeneity might be a big challenge 

for the development of bespoke sensors for the compositional prediction of food at a supermarket 

level. Number of spectra acquired for each kind of food should be optimized [21, 34, 35]. Use of 

hyperspectral imaging systems that allows visualisation and averaging of the whole sample and 

allow the segmentation of unwanted parts that might be not representatives for the prediction of 

a given component, might also be a solution to solve sample’s heterogeneity problem. 

3.3 Effect of temperature variation and packaging materials on spectral variability. 

Temperature and packaging materials are common external factors occurring when measuring 

food products on site which produce important spectral variations. Figure 3 shows the spectral 

variation caused by temperature in spectrometer A and B using no packaging. Increases in 

temperature produce molecules to move up to higher energy levels resulting in spectral shifts and 

changes in absorption intensity [21, 36, 37]. Consequently, these variations must be considered 

inside the predictive model. Another factor increasing predictive error is the presence of 

packaging films. Figure 4 shows spectral variations caused by packaging materials of different 

composition and thickness at a constant temperature. In the case of spectrometer A, P1 and P2 

produce a similar absorbance to non-packaged samples. In contrast, in the case of spectrometer 

B, the observed shift is higher which was attributed to the higher working distance between the 

sample and the sensor, that can increase scattering and reflectance of light. 

3.4 Comparison of Temperature compensation methods 

Temperature compensation methods were investigated in spectra acquired using spectrometer A. 

Table 2 shows the model characteristics and the predictive errors when using different strategies 

to correct temperature-induced spectral variations using this spectrometer on non-homogenized 

samples. These kinds of samples were used to be the real scenario found in a supermarket. 

However, as presented in this table, LSS correction was performed using both homogenized and 
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non-homogenized samples to evaluate the increase of performance of this method when using 

more homogeneous samples to create the compensation LSS model. Results in Table 2 show the 

use of temperature in GM-X and GM-Y do not help to increase performance of salt and water 

content predictive models in comparison to the GM. Food matrixes are complex and 

heterogeneous matrixes and including temperature information in X or Y variables did not 

decrease predictive error. Haroon et al [38] found that GM also performed better than GM-X and 

GM-Y when predicting viscosity in micellar liquids by recognising temperature effects more 

readily. LSS, when predicting salt, seems to slightly decrease RMSEP from 0.530% to 0.501% 

when sample set B was used to develop the LSS compensation algorithm. This fact could be 

attributed to the higher sample’s homogeneity. However, similar prediction errors using sample 

set A and B were obtained when applied to water content prediction, thus we cannot say that the 

use of homogenized samples to develop the LSS model helps to increase performance of 

predictive models. LSS compensation method has been demonstrated to work when there is a 

constant deviation of the spectra due to temperature in synthetic samples [39]. However, in this 

study, heterogeneity of both sample sets A and B, might produce a spectral variation that can 

interfere with the constant spectral variations caused by temperature. This fact could lead to an 

insufficient correction of temperature effects and thus not providing an improvement of the 

model’s performance. GLSW showed to be the best compensation method to retrieve temperature 

effect on the studied food model since decreases both salt and water content predictive errors to 

those found when using only spectra acquired at 15ºC±2.55% (which were 0.450% for salt and 

1.961% for water). Salt content predictive errors using GLSW pretreatment were found to be 

significantly lower than other pre-treatments tested whereas water content predictive errors were 

lower but not significantly different than LSS pre-treatment (p<0.05). The optimal α value was 

0.000001 for salt and 0.0001 for water since further decreases in α resulted in increases of model 

error suggesting that variance in the data associated with composition was being removed. A 

possible explanation for this could be the fact that GLSW can retrieve simultaneously not only 

temperature effects, but also other interferences present in food complex matrices. 

Additionally, for comparison of heterogeneity effect, GM and GLSW methods were also used to 

develop predictive models using spectra acquired on homogenized samples (sample set B) (Table 

3) which, although having some heterogeneity, are more homogeneous than non-homogenized

samples. Salt and water content predictive errors were lower after GLSW pretreatment but only 

significantly different in the case of water (p<0.05). Results show that there is an important 

difference on using sample set A and B for the performance of predictive models, especially in 

the case of water content prediction, (see Table 2 for comparison). This fact suggests that samples 

heterogeneity on samples non-homogenized might produce disturbance, but it is not relevant for 

compensation strategies correction. 
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3.5 Comparison of compensation methods for packaging films-induced variations 

Since spectral variations caused by packaging were mainly observed in spectra acquired using 

spectrometer B (see Figure 4b), packaging compensation methods were investigated in this data 

set. First, it must be remarked that prediction ability of spectrometer B is lower than spectrometer 

A probably due to the higher noise found in these spectra. Spectrometer B showed RMSEP values 

of 0.703% for salt and 2.932% for water when using only NP samples and conventional spectral 

pretreatments (Mean scattering correction and First derivative) whereas spectrometer A provided 

RMSEP values of 0.496% for salt and 2.118% for water in the same conditions. In the case of 

salt, correlation coefficient was very low (R2=0.529) indicating that salt content might be difficult 

to be predicted using spectrometer B. For this reason, compensation methods for retrieving 

packaging effect using NIRTA were only evaluated on water content parameter. Performance of 

GM, GLSW and MEM methods for the subtraction of packaging materials variations when 

developing predictive models for water content at a constant temperature using spectrometer B is 

presented in Table 4. GM show similar values to those obtained when using spectra from NP 

samples. MEM method it is not correcting the variation caused by plastic even worsen the results 

in the validation dataset, showing significantly higher predictive errors (p>0.05). GLSW did 

neither significantly reduce the predictive error. 

To ascertain if plastic material has a real effect on the measurement, the developed predictive 

model using only NP samples was used to predict water content in packaged and non-packaged 

samples. The obtained RMSEP value was 2.668% with a bias of -1.35 %. In contrast, when using 

models developed using NP, P1 and P2, RMSEP was lower (2.019%) and the bias was reduced 

to 0.012 (Figure 6). Therefore, GM including samples acquired on different packaging materials 

is preferable to ensure performance and robustness of the model. Ding et al [18] also found that 

different packaging materials (polyvinyl chloride , polyethylene and expandable polyethylene) 

used for mango fruit could result in intensive spectral interference at 1150–1250 nm and 2320–

2400 nm, and significantly decreased the NIR prediction accuracy of mango quality attributes. 

Similarly, Zhang et al [19] reported that reflectance spectra of beef in the presence of PE and PP 

films were affected by the light scattering, transmission and interference of films, leading to a 

certain effect on the prediction of beef total volatile basic nitrogen content, which could be 

properly eliminated by using different spectral preprocessing and modelling methods. 

In overall, it must be remarked that factors such as the studied temperature and packaging film 

and other factors could affect the robustness of the models simultaneously. Therefore, the 

synergistic effect of several factors should be studied in future works. 

4. Conclusions
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The use of compensation strategies to overcome spectral variations caused by temperature and 

packaging materials when using affordable low-cost spectrometers intended for consumers can 

help to provide more robust and reliable predictions. GLSW method was found to be the most 

convenient compensation method for temperature when using spectrometer A whereas GM 

together with conventional spectral pretreatments was enough for retrieving packaging effect 

when using spectrometer B, although including spectra acquired on different packaging is 

recommended. Furthermore, sample heterogeneity must be also considered since inherent sample 

variation could produce as much spectral variation as external factors. More experimental work 

on compensation strategies for different types of food matrixes would help to increase 

predictability of models developed on food products. 
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FIGURES 

     A 

     B C 

Figure 1. Experimental procedure (A) and description of the samples used in this study. 
Sample set A refers to the samples obtained from different regions of interest (ROIs) 
corresponding to Biceps femoris, Semitendinosus and Semimembranosus muscles (B), and 
Sample set B refers to the same samples after homogenization (C). NP: non-packaged 
samples, P1: packaged samples in plastic film 1, P2: packaged samples in plastic film 2. 
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Figure 2. Spectral variability caused by sample’s heterogeneity at 
three different temperatures. Spectra with the same colour represent 
replicates acquired on the same sample (from samples set A) using 
SCIO spectrometer. 
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Figure 3. Spectral variations of the mean raw spectra acquired on sample set A using SCIO (A) and NIRTA 
(B) spectrometers at different temperatures without packaging.  
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Figure 4. Spectral variations of mean raw spectra acquired on non-packaged (NP) and packaged using 
different packaging films (P1 and P2) using SCIO (A) and NIRTA (B) spectrometers at a constant temperature.  
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Figure 5. Measured vs predicted water content for a data set containing NP, P1 and P2 samples 
when using a model developed with spectra acquired only on NP samples (A) and a model 
developed with spectra acquired on NP, P1 and P2 samples (B). NP: non-packaged samples, 
P1: packaged samples in plastic film 1, P2: packaged samples in plastic film 2. 
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 Table 1. Chemical composition of the different data sets used in the study. 
Data set n Salt content (%) Water content (%) 

Mean std min max Mean std min max 
LSS 20 5.09 0.98 3.39 7.11 50.09 5.64 40.39 56.23 
Calibration 104 5.17 0.90 3.14 7.50 49.94 5.60 38.61 62.80 
Validation 51 5.17 0.85 3.42 7.33 50.49 5.50 40.22 61.39 

 LSS: Loading Space Standardisation , n is the number of samples   
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Table 2. Characteristics and Prediction Errors of models developed applying 
different temperature compensation strategies on spectra acquired using SCIO 
spectrometer on non- homogenized samples. 

Temperature 
compensation 
strategies 

Calibration Validation 
n*spectra LV R2 RMSEC n*spectra R2 RMSEP 

** 
Salt content % 
GM1 364 10 0.665 0.530 185 0.638 0.619 a 
GM-X 364 10 0.623 0.562 185 0.586 0.607 a 
GM-Y 364 10 0.623 0.562 185 0.586 0.607 a 
LSS-non homogenized 
samples2 

364 10 0.667 0.528 183 0.617 0.642 a 

LSS-homogenized 
samples3 

364 10 0.700 0.501 185 0.664 0.598 a 

GLSW4 364 3 0.787 0.422 183 0.719 0.461 b 
Water content % 
GM1 364 10 0.929 1.955 185 0.914 2.192 a 
GM-X 364 6 0.913 2.161 185 0.899 2.242 a 
GM-Y 364 10 0.901 2.036 185 0.899 2.277 a 
LSS-non-homogenized 
samples2 

364 6 0.916 2.118 183 0.909 2.100 ab 

LSS-homogenised 
samples3 

364 5 0.911 2.185 185 0.911 2.108 ab 

GLSW4 364 3 0.929 1.948 183 0.925 1.935 b 
1Model developed using spectra acquired at different temperatures from -9.6 to 18.3ºC. 
2Model developed after application of LSS Correction Model with two significant factors and using 
non homogenized samples (in LSS set). 
3Model developed after application of LSS Correction Model with two significant factors and using 
homogenised samples (in LSS set). 
4Alpha value was 0.000001 in salt content predictive model and 0.00001 in water content predictive 
model. 
*Number of spectra acquired at different conditions on samples used to develop or validate the
model.  
abDifferent letters indicate significant differences on predictive ability between the models according 
to the F-distribution (p-value < 0.05). 
All the spectra were pre-processed using mean center and first derivative before model development 
except for models developed using GLSW that were not pre-processed. 
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Table 3. Characteristics and Prediction Errors of models developed applying GM and GLSW as  
temperature compensation strategies on spectra acquired using SCIO spectrometer on  
homogenized samples. 
Temperature  
compensation 
strategies 

Calibration Validation 
n* spectra LV R2 RMSE

C 
n* spectra R2 RMSEP

** 
Salt content % 
GM1 324 10 0.842 0.429 156 0.649 0.519 a 
GLSW2 324 5 0.853 0.413 155 0.687 0.458 a 
Water content % 
GM1 315 8 0.935 1.458 154 0.843 2.095 a 
GLSW2 315 3 0.935 1.462 151 0.924 1.400 b 
1Model developed using spectra acquired at different temperatures from -9.6 to 18.3ºC. Spectra 
were pre-treated using mean center and first derivative before model development. 
2Alpha values were 0.0001 in both salt and water content predictive models. 
*Number of spectra acquired at different conditions on samples used to develop or validate the
model.  
abDifferent letters indicate significant differences on predictive ability between the models 
according to the F-distribution (p-value < 0.05). 
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Table 4. Characteristics and Prediction Errors of models developed applying different packaging 
compensation strategies on spectra acquired using NIRTA sensor on homogenized samples. 

Packaging 
compensation strategies 

Calibration Validation 
n*spectra LV R2 RMSEC n*spectra R2 RMSEP

** 
Water content % 
GM1 312 7 0.868 2.028 150 0.726 2.887 a 
MEM2 312 10 0.836 1.539 150 0.637 3.382 b 
GLSW3 312 3 0.888 1.866 150 0.856 2.603 a 
1Model developed using spectra acquired at a constant temperature (10ºC) on samples non packaged 
(NP) and vacuum packaged using different plastic films (P1 and P2). 
2MEM were developed using 10 OPLEC components.
3Alpha value was 0.001 in water content predictive model. 
*Number of spectra acquired at different conditions on samples used to develop or validate the model.
All the spectra were pre-processed using a Mean scattering correction and First derivative before model 
development except for models developed using GLSW that were not pre-processed. 
abDifferent letters indicate significant differences on predictive ability between the models according to 
the F-distribution (p-value < 0.05). 
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