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The propagation characteristics of nonlinear electron-acoustic (EA) waves are studied in a four component magneto-
plasma, containing inertial cold electrons, warm drifting beam electrons, trapped superthermal hot electrons, and static
ions. A linear dispersion relation for EA waves is derived to analyze the impact of electron superthermality on the ω −k
relation. For nonlinear analysis, a reductive perturbation formalism is adopted to solve the set of model equations in
the form of a trapped Zakharov-Kuznetsov (tZK) equation. The latter is analyzed to determine the solitary structures in
terms of phase portraits and exact soliton solutions showing the impact of electron trapping efficiency (γ), hot electron
superthermality (κ), drifting speed, temperature and density of beam electrons, and temperature and density of cold
electrons, using typical parameters from the short-duration burst of broad-band electrostatic noise emissions observed
by the Viking spacecraft in the auroral region. The solitary structures propagate as positive potential pulses and become
modified with superthermal trapped electrons, leading to hole (hump) in cold (hot) electron density excitations. The
electric field structures of the EA waves are found to be in exact agreement with the observed solitary structures in
the auroral region. It is observed that electric field strength associated with these waves decreases as the magnetic
field effect increases. The present model can be used to understand the transport of energy and momentum between
plasma particles and to comprehend magnetic reconnection region in magnetopause, where two-temperature electrons
and large-amplitude parallel electrostatic waves have been reported by Magnetopause Multiscale observations.

I. INTRODUCTION

Electron-acoustic (EA) waves have been widely studied
since their first investigation in 1961 by Fried and Gould who
studied numerical solutions of the electrostatic Vlasov dis-
persion relation1. The waves were later confirmed experi-
mentally in 1972 by Henry and Treguier in an unmagnetized
plasma2. The EA waves essentially require two populations
of electrons with different temperatures and number densi-
ties in the static background of ions such that Th ≥ 10Tc and
0.2 < nc/ne < 0.8, where c, h and e refer to cold, hot and total
electrons3. These waves are electrostatic in nature and have
been observed by many missions, e.g., S3-3 and THEMIS in
the auroral region4,5, POLAR in the polar cusp6, Viking and
FAST satellites in the polar cusp boundary layer7–9, GEO-
TAIL in the plasma sheet boundary layer10, CLUSTER in
the Earth’s magnetosphere/magnetopause11,12, etc. The ob-
servations show large bipolar electric field component paral-
lel to the magnetic field, in the range from a few mV/m to
100mV/m, observed as broadband electrostatic noise (BEN)
in frequency domain. Scarf et al.13 and Gurnett et al.14 re-
ported the initial measurements of BEN in frequency domain
using IMP 7 and 8 satellite data, later reported by many more
researchers. By studying the waveforms, these emissions
were interpreted as electrostatic solitary waves15–17. The exis-
tence of EA waves have also been reported by Magnetospheric
Multiscale (MMS) observations during asymmetric magnetic
reconnection at the Earth magnetopause18,19.
The trapping of plasma particles in electrostatic waves is a
peculiar phenomenon, in which plasma particles are trapped,
showing back and forth oscillations in a finite region of phase
space. Several distinct features of plasma waves have been

discussed in the past by taking into account the particle trap-
ping effect via numerical simulations20,21 and laboratory ex-
periments, investigating the basics of electron phase space
vortices22 and holes propagation in magnetoplasma column23.
Space observations have confirmed the presence of solitary
structures as electron hole modes at the Earth magnetopause24

and electron phase space holes in the upward and down-
ward current regions of the aurora25,26. Recent observations27

by MMS have identified the large-amplitude bipolar electric
field structures with trapped electrons in electron phase space
holes.
In 1957, Bernstein, Greene, and Kruskal28 analytically inves-
tigated the nonlinear properties of the electrostatic waves with
particle trapping effects. Later, new equilibrium solutions
have been analyzed using trapped/vortex-like distribution29.
Small-amplitude ion-acoustic waves have also been described
by the help of Korteweg de Vries (KdV)-like Schamel
equation30, showing a fractional nonlinearity caused by
the trapped electrons31. Mamun and co-workers investi-
gated EA waves with vortex electron distribution both in
unmagnetized32 and magnetized33 plasmas. They expressed
the nonlinear EA waves as positive potential excitations in
the presence of a hole/dip in the cold electron number den-
sity. Recently, Rufai et. al.34 discussed various properties
of finite-amplitude EA waves in the electron diffusion re-
gion, obtaining a trapped KdV equation to show the propaga-
tion of EA waves at supersonic speeds. On the other hand,
EA waves with a transverse distortion were analyzed in a
cylindrical geometry with vortex electron distribution35 and
revealed an exact analytical solution for modified cylindri-
cal Kadomtsev-Petviashvili (CKP) equation. In addition, the
trapped Zakharov-Kuznetsov Burger’s (tZKB) equation has
been derived by Guo et. al.36 for studying shock waves in
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magnetized ionic-pair plasmas.
Apart from the formation of phase space holes due to parti-
cle trapping, particle superthermality is caused by energetic
plasma particles and cannot be dealt with the Maxwell par-
ticle distribution. In such a situation, the use of a vortex-
like/trapped non-isothermal distribution37 could be an ad-
equate choice for investigating the wave phenomenon and
plasma instabilities as alternative scheme in describing the
phase space holes. In this perspective, Williams et. al.38 have
introduced particle trapping in a kappa-distributed plasma and
solved the KdV-like Schamel equation for planar IA solitons
with superthermal-trapped electrons and cold ions. Sultana et.
al.39 developed a model for oblique propagation of EA waves
with trapped superthermal electrons in a magnetized plasma.
In the laboratory, EA waves are often excited by lasers40 or
by the electron beams and therefore the field aligned elec-
tron beam may act as a source of energy for excitation of
EA waves in the presence of two temperature electron popu-
lations. Berthomier et. al.41 described the properties of EA
waves with the beam electrons in a plasma system. They
found that a non-zero streaming velocity of the beam elec-
trons generates a new class of the EA waves. They also exam-
ined critical conditions in terms of temperature and density for
the beam electrons in which the electron density holes appear
due to the presence of cold electrons. The study was later
extended by including higher order nonlinearities with the
electron beam and hot electron vortex distribution, strongly
modifying the wave amplitudes and widths of the solitonic
structures42. Singh et. al.43 have explained the EA wave
characteristics in a magnetoplasma with nonthermal electrons
in the presence of electron beam. They applied their model
to numerically analyze the auroral plasmas observed by the
Viking satellite.
Over recent years, bifurcation analysis of dynamical systems
has been performed by solving nonlinear partial differential
equation, which has attracted lots of interest in the plasma
physics community. Bifurcation stands for a significant sud-
den change in the dynamics of the system, which is sub-
jected to a parametric variation. The phase plane portraits
provides a qualitative analysis of a dynamical system, iden-
tifying the trajectories and equilibrium points for the stabil-
ity within the system. Kumar et al.44 utilized the bifurca-
tion theory and investigated the properties of solitary and
travelling waves by solving the Kadomtsev-Petviashili (KP)
equation for dust-ion-acoustic waves in a magnetoplasma.
Later, this theory for the small-amplitude nonlinear waves has
been extended to a number of nonlinear partial differential
equations including the modified KP equation45, Zakharov-
Kuznetsov (ZK) equation46, trapped KdV equation47, Burgers
equation48, Burgers-type equation with quartic nonlinearity49,
etc.
The motivation of this work is manyfold: Firstly, it delves
into the significance of the magnetic field, which plays a cru-
cial role in altering the amplitudes of electric fields for elec-
trostatic waves. Secondly, the inclusion of energetic parti-
cles, specifically superthermal trapped hot electrons, provides
a more realistic depiction of the auroral region. Lastly, the
analysis of phase portraits associated with the tZK solitons in

the context of plasma systems is a novel contribution. These
research gaps have spurred the modeling of EA waves in a
magnetized plasma, allowing for a comprehensive investiga-
tion of the linear and nonlinear properties of these waves, tak-
ing into account superthermal trapped and beam electrons.
The model’s findings are analyzed both analytically and nu-
merically for the Earth’s magnetosphere and compared with
observational data.
The paper is organized as follows. Section II begins with
the physical model to study EA solitary waves, contain-
ing fluid equations for inertial cold and beam electrons with
hot superthermal trapped electrons, and static ions. Within
the framework of reductive perturbation technique, a trapped
Zakharov-Kuznetsov (tZK) equation is derived in Sec. III.
The qualitative and quantitative analyses, in terms of Sagdeev
potential and localized soliton solution with electric field com-
ponents, are presented in Secs. IV and V, respectively. Section
VI presents numerical findings, studying nonlinear EA waves
in the context of BEN emission in the dayside auroral zone.
Sec. VII summarizes the main results of this article.

II. MODEL FOR ELECTRON-ACOUSTIC (EA) WAVES

We study small but finite amplitude electron-acoustic (EA)
waves in a magnetized, homogeneous plasma, comprising in-
ertial cold electrons, superthermal hot trapped electrons, and
stationary ions with a warm drifting electron beam. The wave
propagates in a three-dimensional space along the x−, y−
and z−axes, namely, ∇ = (∂/∂x,∂/∂y,∂/∂ z). The plasma
holds an equilibrium quasi-neutrality condition of the form
nh0 + nc0 + nb0 = ni0 and is subjected to a magnetic field in
the z−axis, i.e., B = B0ẑ, where B0 is the strength of magnetic
field, ẑ is the unit vector along the z-axis, and ns0 is the equi-
librium number density of the each species (s equals h for hot
electrons, c for cold electrons, b for beam electrons and i for
positive ions). It is also assumed that there is a small finite
temperature of the cold electrons (viz., Th ≥ 10Tc)

3 such that
the wave is not Landau damped. The linear and nonlinear dy-
namics of the EA waves in a magnetoplasma is governed by
the following normalized continuity, momentum, thermody-
namical equation of state and Poisson equations, respectively.

∂n j

∂ t
+

∂

∂x
(n jv jx)+

∂

∂y
(n jv jy)+

∂

∂ z
(n jv jz) = 0, (1)

(
∂

∂ t
+v j.∇

)
v j = α∇φ −Ωv j × ẑ−α

σ j

n j
∇p j, (2)

(
∂

∂ t
+v j.∇

)
p j +3p j∇.v j = 0, (3)

and

∇
2
φ = nh +

1
α

nc +
1
β

nb −
(

1+
1
α
+

1
β

)
, (4)
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with the ratios

α =
nh0

nc0
,β =

nh0

nb0
,σc =

Tc

Th
,σb =

Tb

Th
, and Ω =

ωce

ωpc
. (5)

where j (= c,b) stands for cold and beam electrons, ωpc =(
4πe2nc0/me

)1/2 and ωce = ωcb = eB0/mec are the cold elec-
tron plasma oscillation frequency and cyclotron frequency, re-
spectively. In the above equations, nh,c,b represent the number
densities of the hot, cold and beam electrons and are scaled
by their corresponding equilibrium values nh0, nc0 and nb0, re-
spectively. The cold and beam electron fluid velocities vc,b are
normalized by the electron-acoustic speed cea = (Th/αme)

1/2,
where Th is the hot electron temperature (in energy units), φ

is the electrostatic potential normalized by Th/e, while p j is
the pressure normalized by n j0Tj. Furthermore, the space and
time coordinates are scaled by the hot-electron Debye length
λDh =

(
Th/4πe2nh0

)1/2 and the inverse cold electron plasma
frequency ωpc, respectively. Since the superthermal hot elec-
trons are assumed to be trapped in the wave potential, so
they are described by the following trapped kappa distribution
function38:

f κ
T h (υ ,φ) =

nh0√
πκθ 2

Γ(κ)

Γ(κ −1/2)

1+ γ

mhυ2

2kBTh
− eφ

kBTh

κ −3/2

−κ

.

(6)
For γ = 1 in Eq. (6), the distribution function f κ

Fh (υ ,φ)
is obtained for superthermal free electrons. The parameter
γ (= ThF/ThT ) identifies the efficiency of electron trapping,
where ThF and ThT denote the free and trapped hot electron
temperatures. Note that the limit γ = 0 determines a plateau
and γ > 0 (γ < 0) describes the hump (dip) in the distribution
function of hot electrons37. On the other hand, the spectral
index κ represents the highest electron superthermality effect
at the lower bound 3/2 and shows completely the Maxwellian
behavior at infinity, while an intermediate domain determines
the impact of superthermal electrons. The gamma function is
denoted by the symbol Γ.
To calculate number density for superthermal (hot) trapped
electrons, we first decompose the total distribution func-
tion into the trapped and free distribution functions
[i.e., f κ

h (υ ,φ)= f κ
T h (υ ,φ)+ f κ

Fh (υ ,φ)] and define integration
limits, as

nh =
∫

∞

−∞

f κ
h (υ ,φ) dυ ≡

∫ −
√

2eφ/kBTh

−∞

f κ
Fh (υ ,φ) dυ

+
∫ √

2eφ/kBTh

−
√

2eφ/kBTh

f κ
T h (υ ,φ) dυ +

∫
∞

√
2eφ/kBTh

f κ
Fh (υ ,φ) dυ ,

(7)

Now performing integrations in the above equation and ex-
panding the potential φ by the Taylor expansion, one even-
tually arrives at an un-normalized density for superthermal
trapped hot electrons38, as

nh

nh0
= 1+A

eφ

kBTh
+B

(
eφ

kBTh

)3/2

+C
(

eφ

kBTh

)2

+ ... (8)

Equation (8) in a normalized form becomes as

nh = 1+Aφ +Bφ
3/2 +Cφ

2... (9)

with the following expansion coefficients

A =
κ −1/2
κ −3/2

, B =−4(1− γ)

3
√

π

κΓ(κ)

(κ −3/2)3/2
Γ(κ −1/2) ,

(10)
and

C =
κ2 −1/4

2(κ −3/2)2 . (11)

See that if γ = 1, then the coefficient B = 0 vanishes and
consequently the effect of trapped electrons is ignored in
Eq. (9). This immediately gives rise to the number den-
sity of superthermal hot electrons only. Upon further con-
sidering the limit κ → ∞, we recover the standard Boltzmann
(Maxwellian) density relation for hot electrons from Eq. (9).
Conversely, if we only take into account the electron trapping
effect, ignoring electron superthermality effect in Eq. (9), then
Schamel’s electron density37 that causes fractional nonlinear-
ity in Maxwellian-distributed plasma is recovered.

III. TRAPPED ZAKHAROV–KUZNETSOV EQUATION
WITH BEAM ELECTRONS

To investigate the propagation properties of small-
amplitude EA waves in a magnetoplasma, in the presence of
superthermal electrons with a trapped population, cold elec-
trons and beam electrons, we use the well-known reductive
perturbation technique (RPT), in which all the dependent vari-
ables are expanded in powers of ε around the equilibrium val-
ues, whereas independent (i.e., space and time) coordinates
are stretched in terms of new coordinates50. To express the
propagation of a stable solitary structure in a particular di-
rection, the wave is assumed to move along the z−direction
that dominates over the perturbations in y− and x− directions.
Thus, one can define the required stretchings in this form:

ξ = ε
1/4x, η = ε

1/4y, χ = ε
1/4(z−λ t), and τ = ε

3/4t, (12)

where λ represents the phase speed of the wave normalized
by cea and ε is the dimensionless parameter (0 < ε ≤ 1) de-
scribing the small amplitude of nonlinearity. Similarly, using
the RPT, all the dependent variables nc, nb, vcx, vbx, vcy, vby,
vcz, vbz, pc, pb and φ , are expanded in terms of ε as

n j
v jx
v jy
v jz
p j
φ

=


1
0
0

v j0
1
0

+



εn j1 + ε3/2n j2 + ...

ε5/4v jx1 + ε3/2v jx2 + ...

ε5/4v jy1 + ε3/2v jy2 + ...

εv jz1 + ε3/2v jz2 + ...

ε p j1 + ε3/2 p j2 + ...

εφ1 + ε3/2φ2 + ...

 . (13)

Since we are assuming that velocity perturbations are weaker
in the transverse direction compared to the velocity perturba-
tions along the propagation direction, therefore, the transverse
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velocity components are expressed in higher orders of ε rel-
ative to the parallel velocity component. Consequently, the
powers of ε in the expansion of transverse and parallel veloc-
ity components [v jx, jy and v jz] start with 5/4 and 1, respec-
tively. The high (low) orders of ε correspond to weak (strong)
velocity perturbations in the transverse direction (propagation
direction). Similarly, it is also noted from (13) that only beam
electrons stream along the parallel direction with a constant
speed vb0, while the streaming of cold electrons is neglected
in this model, vc0 = 0.
Now, employing Eqs. (12) and (13) into the governing Eqs.
(1)-(4) along with (9), we get a set of equations for various
orders of ε . The lowest–order (i.e.,ε5/4-order) terms yield the
following expressions:

(λ − v j0)
∂n j1

∂ χ
=

∂v jz1

∂ χ
,

−(λ − v j0)
∂v jz1

∂ χ
= α

∂φ1

∂ χ
−ασ j

∂ p j1

∂ χ
,

(λ − v j0)
∂ p j1

∂ χ
= 3

∂v jz1

∂ χ
,

Ωv jx1 =−α
∂φ1

∂η
+ασ j

∂ p j1

∂η
,

and

Ωv jy1 = α
∂φ1

∂ξ
−ασ j

∂ p j1

∂ξ
. (14)

The above set of equations represent the first order equations
that can be solved simultaneously, obtaining the following lin-
ear dispersion relation

A− 1
λ 2 −3ασc

− α

β ((λ − vb0)2 −3ασb)
= 0. (15)

This is a quartic equation in terms of the phase speed λ =ω/k,
indicating four distinct roots of the equation, two of which are
positive while other two are negative51. The negative roots
represent the wave propagation in the negative direction. The
positive roots however, correspond to the slow and fast EA
modes in the positive direction. Furthermore, as the roots
are distinct, so the value of positive roots is greater than the
value of negative roots. The above dispersion well-concurs
with the previous result42, highlighting a special case involv-
ing Schamel’s distribution function with trapped Maxwellian
electrons in the limit κ → ∞. It may be noted from (15) that
this dispersion relation does not include the trapping effect or
parameter γ , and so the electron trapping does not affect the
linear EA waves, only appearing through the fractional non-
linearity in the nonlinear systems. The dispersion relation is
however modified by the electron superthermality index κ via
A, as well as number densities and temperatures of all three
electron populations and beam electrons (via vb0). In the ab-
sence of beam electrons (vb0 → 0 and β → ∞), the dispersion

relation reduces to λ =
√

3ασc +1/A, which is an agreement
with the result of Mamun and Shukla32 for neglecting cold
electron temperature Tc = 0.
It is worth mentioning here that the frequency of EA waves in-
termediates the Langmuir and ion-acoustic wave frequencies,
exhibiting an acoustic behavior. Due to smaller frequency of
the EA waves compared to Langmuir waves, these waves can
be studied within the framework of the reductive perturbation
technique (RPT). This technique is often utilized to investi-
gate weakly nonlinear waves that propagate on slow tempo-
ral and spatial scales. Accordingly, the wave amplitude or its
shape gradually changes over a long distance or time. The
RPT is applicable for the waves in the long wavelength limit,
i.e., kλdh << 1. This means that the leading-order equations
derived from the RPT give rise to non-dispersive waves in the
linear limit, even though the original system is dispersive. The
dispersive effects can be captured when higher orders of ep-
silon are included.
Figure 1 represents the linear characteristics of the EA waves

κ=2.5

κ=5

Maxwellian

-0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

k

ω

FIG. 1. The linear frequency ω of the EA waves changes with su-
perthermal parameter κ . The numerical values such as α=4, β=2,
vb0=0.1, σc=0.001, σb=0.01 and γ=0.1 correspond to burst a of BEN
emission.

via Eq. (15) and plots normalized wave frequency (ω/ωpc)
against the normalized wavenumber (kλDh) for different val-
ues of superthermality index κ . It may be noted that trap-
ping being a nonlinear phenomenon, does not affect the linear
properties of the EA waves. Also observe that negative and
positive slow modes do not get influenced by the superther-
mality parameter. Both positive and negative fast modes at-
tain higher magnitudes for the higher values of κ . In other
words, the phase speed of the wave reduces (increases) at high
superthermality as compared with low superthermality. We,
therefore, focus on the nonlinear properties of the fast posi-
tive EA mode later in our manuscript.
Now collection of next-order (i.e., ε7/4-order) terms leads to
the derivation of nonlinear equations containing the second or-
der perturbed quantities in terms of first order perturbed quan-
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tities, as

−(λ − v j0)
∂n j2

∂ χ
+

∂v jz2

∂ χ
=−

∂n j1

∂τ
−

∂v jx2

∂ξ
−

∂v jy2

∂η
,

(λ − v j0)
∂v jz2

∂ χ
+α

∂φ2

∂ξ
−ασ j

∂ p j2

∂ χ
=

∂v jz1

∂τ
,

(λ − v j0)
∂ p j2

∂ξ
−3

∂v jz2

∂ χ
=

∂ p j1

∂τ
−3

∂v jx2

∂ξ
−3

∂v jy2

∂η
,

(λ − v j0)
∂v jx1

∂ χ
= Ωv jy2,

(λ − v j0)
∂v jy1

∂ χ
=−Ωv jx2,

Aφ2 +
1
α

nc2 +
1
β

nb2 =

(
∂ 2

∂ξ 2 +
∂ 2

∂η2 +
∂ 2

∂ χ2

)
φ1 −Bφ

3/2
1 .

(16)

After some algebraic steps, expressions of (16) can be solved
together to obtain the following simplified nPDE

∂φ1

∂τ
+Pφ

1/2
1

∂φ1

∂ χ
+Q

∂ 3φ1

∂ χ3 +S
∂

∂ χ

(
∂ 2φ1

∂ξ 2 +
∂ 2φ1

∂η2

)
= 0.

(17)
This is the trapped Zakharov–Kuznetsov (tZK) equation that
accounts for the fractional nonlinearity due to the elec-
tron trapping effect, modifying the propagation of nonlinear
waves. Here, the coefficients of fractional nonlinearity P, dis-
persion Q and S are defined, respectively, as

P =−3
2

B
X1

, Q =
1

X1
, and S =

X2

X1
. (18)

with

X1 =
2λ

(λ 2 −3ασc)2 +
2α(λ − vb0)

β ((λ − vb0)2 −3ασb)2 , (19)

and

X2 = 1+
1

Ω2

(
λ 4

(λ 2 −3ασc)2 +
α(λ − vb0)

4

β ((λ − vb0)2 −3ασb)2

)
.

(20)
Note that the dispersive term in the parallel direction of prop-
agation (i.e., Q) arises entirely due to the Poisson’s equation,
whereas the dispersion along the perpendicular direction (i.e.,
with coefficient S) is also affected by an additional effect of
magnetic field. Observe that the trapping parameter γ changes
the nonlinearity coefficient P (through B) only, while the pa-
rameters of the beam electrons modify all the coefficients. Ne-
glecting trapping effect, i.e.,γ = 1, the fractional nonlinearity
vanishes in Eq. (17) and no solitons exist. In such a case, the
above stretchings become invalid and one needs to construct
new stretching for independent coordinates for the formation
of solitary structures. In the absence of electron beam vb0 → 0
and β → ∞.

IV. PHASE PORTRAITS

It is well-known that the phase portrait analysis or bifur-
cation theory provides a qualitative analysis of a dynamical

system, without evaluating an exact solution of the system.
From the phase portraits, one may easily identify the impact
of various plasma parameters on the system trajectories and
equilibrium points for stability in the system. This can be in-
vestigated by first transforming Eq. (17) for the formation of
a dynamical system. Thus, we assume that φ1 depends only
on the variable:

ζ = l1ξ + l2η + l3χ −u0τ, (21)

where l1, l2, and l3 represent the direction cosines in the ξ ,
η and χ directions, such that l2

1 + l2
2 + l2

3 = 1, respectively,
and u0 is the speed of transformed frame. After using above
transformation and performing integration once, Eq. (17) is
simplified to

−u0φ1 +
2
3

Pl3φ
3/2
1 +Q1l3

∂ 2φ1

∂ 2ζ
= 0. (22)

Note that Q1 = Ql2
3 +R(1− l2

3) and the constant of integra-
tion becomes null under the vanishing boundary conditions,
i.e., φ1 → 0 and ∂ 2φ1/∂ζ 2 → 0 at ζ →±∞. As a result, the
dynamical system represents the following set of ordinary dif-
ferential equations:{ dφ1

dζ
= z,

dz
dζ

= φ1(
u0

Q1l3
− 2P

3Q1
φ

1/2
1 ).

(23)

where z, φ1, and ζ represent the velocity, position and time,
respectively, while keeping in view the terminology of a me-
chanical system. The Hamiltonion of the system (23) can
be derived by utilizing the Hamilton’s equations ∂H/∂φ1 =
−dz/dζ , and ∂H/∂ z = dφ1/dζ , as

H =
z2

2
+V (φ1), (24)

where the Sagdeev potential is defined by

V (φ1) =
4P

15Q1
φ

5/2
1 − u0

2Q1l3
φ

2
1 . (25)

To find stationary points and stability of a dynamical system,
there is a crucial role of the equilibrium points upon which the
system does not exhibit any temporal variation. These points

are found from (23) as P1 = (0,0) and P2 =

(
0,
(

3u0
2Pl3

)2
)

.

Moreover, the stability and type of fixed points (i.e. node,
saddle, or spiral) can be determined by linearizing the system
around each fixed point. So, the Jacobian matrix for the sys-
tem Eq.(23) is given by:

J =

(
0 1

u0
Q1l3

− 2P
3Q1

φ
1/2
1 0

)
, (26)

and the eigenvalues by det
(

J− λ́ I
)
= 0, (with I being the

identity matrix), obtaining.

λ́1,2 =±

√
u0

Q1l3
− 2P

3Q1
φ

1/2
1 . (27)
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These eigenvalues are then analyzed for the fixed points P1

and P2. One obtains λ́1,2

∣∣∣
P1

= ±
√

u0/Q1l3 at fixed point

(0,0) and λ́1,2

∣∣∣
P2

= ±
√
−u0/2Q1l3 at (0,( 3u0

2Pl3
)2). There

are two situations for these eigenvalues: For instance, if
u0/Q1l3 > 0, then λ́1,2

∣∣∣
P1

acts as real, making P1 the saddle

point, whereas λ́1,2

∣∣∣
P2

being the complex, making P2 a cen-

tre point. Conversely, if u0/Q1l3 < 0, then P1 acts as a centre
point while P2 gives a saddle point. However, Q1 remains
positive for all plasma parameters besides the velocity u0 and
direction cosine l3, so later case is unphysical. Therefore, P2
acts as a stable centre point for the closed elliptical trajecto-
ries. Additionally, the centre point P2 may be located on the
right or left of the saddle point P1 corresponding to the com-
pressive (positive hump) or rarefactive (negative dip) solitary
waves. The EA waves generally characterized by the rarefac-
tive solitons, but due to the presence of trapping effect in the
present model, the equilibrium point contains squared value
of 3u0/2Pl3, which remains positive irrespective of the sign
of nonlinearity coefficient P. Thus, the centre point lies on
the right of the saddle point and consequently, leading to the
compressive solitons. Furthermore, it is important to note that
qualitative analysis also provides the periodic solutions be-
sides the solitary waves for different initial conditions.

V. SOLITON SOLUTIONS

From the tZK equation (17), we find an exact soliton solu-
tion. For this purpose, we use the transformed Eq. (22) and
integrate it under the vanishing boundary conditions at infin-
ity of localized solution. As a result, the following soliton
solution for the potential is obtained

φ1(ζ ) = φmsech4
(

ζ

∆

)
, (28)

where φm = (15u0/8Pl3)
2 is the amplitude and ∆ =

4
√

Q1l3/u0 is the width of the soliton. We have noted that
the soliton solution gives exactly the same graphical results
as obtained by the qualitative analysis under correct boundary
conditions. An EA soliton with positive potential appear due
to the presence of superthermal trapped electrons. The corre-
sponding electric field can be expressed into its components
for complete analysis as

E⃗(ζ ) =

 Eξ ξ̂

Eη η̂

Eχ χ̂

=

 −∂ξ φ1ξ̂

−∂η φ1η̂

−∂χ φ1χ̂

 ,

where, ξ̂ , η̂ and χ̂ are unit vectors along the ξ , η , and χ

directions. The electric field then becomes,

E⃗(ζ ) =
4φm

∆
sech4

(
ζ

∆

)
tanh

(
ζ

∆

)
(l1ξ̂ + l2η̂ + l3χ̂). (29)

The amplitude of the electric field is |E| =
(4φm/∆)sech4(ζ/∆) tanh(ζ/∆) which corresponds to a
bipolar electric field for the localized EA waves.

VI. RESULTS AND COMPARISON WITH
OBSERVATIONS

The nonlinear effects play a significant role in the gener-
ation of BEN emissions, as observed by the Viking satellite
in the aurora and other magnetospheric regions. The observa-
tions have shown solitary potential excitations associated with
electric fields in the range from a few mV/m to ∼ 100mV/m.
In particular, Dubouloz et. al.52 considered two short duration
bursts of BEN emission at an altitude of about 10,000km in
the dayside auroral zone, studying turbulence generated by the
EA waves. The typical plasma parameters53 involving burst b
of the BEN emission are chosen here, namely nc0 = 0.2cm−3,
nh0 = 1.5cm−3, nb0 = 1cm−3, Th = 100eV , and Tc = Tb ∼ 1eV
with normalized values of vb0 ∼ 0.01− 0.6 for the beam ve-
locity in the range 40− 2000km/s. Relying on these values,
Singh et al.53 have shown that the electric field associating
the solitons are in the range ∼ 10−400mV/m. For this burst
α=7.5, β=1, σc=σb=0.01 which give φm ∼ 35V and the width
∆ ∼ 75km for a hump shaped soliton. These values can be
derived by un-normalizing the scaled variables, in which the
maximum amplitude φm and width ∆ are multiplied by Th/e
and λdh, respectively. Furthermore, Dubouloz et al.52 con-
sidered the parameters of burst a with slightly higher den-
sities of the cold and hot electrons, namely nc0 = 0.5cm−3,
nh0 = 2.0cm−3, nb0 = 1cm−3, Th = 250eV and vb0 ∼ 0− 1
for studying the EA waves with superthermal hot electrons.
They showed a reduction in the electric field amplitude (i.e.,
∼ 3− 6mV/m) in a magnetized plasma, while the amplitude
φm and the width ∆ of the soliton change to ∼ 100V and
∼ 35km, respectively. This section corresponds to the param-
eters of the burst a of BEN in the dayside auroral region, in-
vestigating nonlinear properties of the EA waves in the pres-
ence of superthermal trapped hot electrons. Since trapping
is a nonlinear phenomenon, it does not affect the linear EA
wave modes, whereas the superthermality parameter signifi-
cantly affects the waves modes.
For nonlinear investigation of EA waves, we analyze both the
phase portraits and the soliton solutions. The phase portraits
lead to the formation of solitary and periodic waves under spe-
cific initial conditions. On the other hand, the tZK equation is
solved to obtain the potential and electric field of soliton so-
lutions. Figure 2 (a) presents the phase portraits of the EA
waves in the dayside auroral zone using the plasma param-
eters of the burst a from BEN, where an equilibrium point

P2 =

(
0,
(

3u0
2Pl3

)2
)

acts as the center of closed curves. The

closed curves follow elliptical or homoclinic trajectories and
periodic trajectories. It is worth mentioning here that a homo-
clinic trajectory refers to a loop-like curve that leaves a spe-
cific fixed point (a saddle point) and eventually returns back
to the same point. Hence, a homoclinic trajectory of a pseu-
doparticle first passes through the saddle point P1 =(0,0) with
zero velocity, moves with a finite velocity (∂φ1/∂ζ ) along
the φ1-axis and reaches back to the saddle point with nega-
tive velocity. The wave potential then starts to oscillate be-
tween the two zeros of the pseudo-Sagdeev potential. Fur-
thermore, homoclinic and periodic trajectories occur on the

Beam-driven electron-acoustic waves in auroral region of magnetosphere with superthermal trapped electrons
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(a)

(b)

(c) (d)

FIG. 2. Nonlinear EA waves exhibit different features showing (a)
the phase portrait (pp) trajectories, (b) the Sagdeev potential curve,
(c) the hump soliton profile (corresponding to blue curve in the pp),
and (d) periodic wave profiles (identifying green, red and purple tra-
jectories in the pp) for fixed values of α=4, β=2, vb0=0.1, σc=0.001,
σb=0.01, κ=2, ω=0.01, and γ=0.1.
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FIG. 3. Nonlinear features of EA waves are shown for different trap-
ping parameter values, significantly affecting (a) The phase portraits,
(b) The Sagdeev potential, (c) The corresponding solitary wave pro-
file, and (d) The corresponding electric field profiles. Here, α=4,
β=2, vb0=0.1, σc=0.001, σb=0.01, κ=2, and ω=0.01.

positive φ1-axis [see Fig. 2(a)], leading to the existence of
compressive solitons and periodic waves with positive ampli-
tude. Thus, the homoclinic trajectory passing through the sad-
dle point P1 = (0,0) in Fig. 2(a) and the points indicated on
the Sagdeev potential in Fig. 2(b) correspond to the formation
of a compressive soliton pulse shown in Fig. 2(c). The width
of the homoclinic trajectory along the φ1-axis corresponds to

the amplitude of the soliton while the depth of the Sagdeev
potential determines the width of the soliton. It may also be
noted that the amplitude of solitary structures remains positive
due to the presence of electron trapping, therefore the phase
trajectories only appear on the positive φ1 axis.
On the other hand, different periodic trajectories in Fig 2(a)
correspond to the periodic waves shown in Fig. 2(d) in the re-
spective colors. In phase space representation, periodic waves
are depicted as closed orbits around a stable center, demon-
strating stable regular oscillations. These waves avoid passing
through the saddle point in phase space and can be affected by
superthermal trapped particles having a crucial role in main-
taining the stability of periodic waves. However, we have ob-
served that these phase trajectories are obtained for the fixed
values of plasma parameters and the amplitude of the soliton
may change with the values of plasma parameters, and the pe-
riodic waves rely on the initial conditions.
To illustrate numerically the impact of hot-electron trapping
via the trapping parameter γ on the nonlinear profiles of EA
waves, various distinct features including the Sagdeev poten-
tial, phase portraits, electric potential and electric field are de-
picted in Figs. 3(a-d). See that the depth and amplitude of
the Sagdeev potential are strongly influenced by the variation
of trapping parameter γ in Fig. 3(a). The phase portraits are
shown in Fig. 3(b), representing a graphical view of the dy-
namical system for various values of γ . The shape of the ho-
moclinic trajectories changes and contributes to the amplitude
and width of the soliton structure. The potential curves shown
in Fig. 3(c) represent a significant modification caused by the
variation of trapping efficiency of hot electrons. Here, the case
γ < 0 would be of vital interest for the vortex distribution.
The maximum amplitude of the electric potential is obtained
for positive trapping parameter, and as the trapping parameter
γ becomes more and more negative, the magnitude of poten-
tial amplitude reduces accordingly. This happens because the
trapping parameter only affects the nonlinearity coefficient P
via B, keeping the dispersion terms unchanged. Thus, the am-
plitude of the soliton being inversely proportional to the non-
linearity coefficient, reduces with more negative values of γ

and consequently solitons become shorter. The corresponding
bipolar electric field is plotted in Fig 3(d), where an unnormal-
ized amplitude of the electric field ranges ∼ 2.7−8.4mV/m.

Figures 4(a-d) display how superthermality index κ modi-
fies the qualitative and quantitative characteristics of the EA
soliton. It is clear that increase of spectral index κ leads to
enhancement of amplitude of the potential of solitary struc-
tures. However, increasing κ tantamounts to decreasing the
superthermal electrons, so lower amplitudes correspond to
higher superthermality. The corresponding electric field am-
plitude varies from 4.0mV/m to 4.8mV/m in Fig. 4(d). It may
also be deduced from the plot that as the distribution function
approaches the Schamel’s distribution function for κ → ∞, we
get the soliton of maximum amplitude. However, one can-
not reduce these results to the pure Maxwellian distributed
electrons, i.e., κ → ∞ and γ → 1, since the nonlinearity van-
ishes at γ = 1 and the stretching then needs to be changed for
Maxwellian plasmas.

The nonlinear characteristics of the EA solitons are illus-
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FIG. 4. Nonlinear features of the EA waves such as (a) phase por-
traits, (b) Sagdeev potential, (c) corresponding solitary wave profiles,
and (d) corresponding electric field profiles, are influenced by the
variation of superthermality parameter κ . Here, α=4, β=2, vb0=0.1,
σc=0.001, σb=0.01, γ=0.1, and ω=0.01.
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FIG. 5. Nonlinear features of the EA waves such as (a) Phase por-
traits, (b) Sagdeev potential, (c) The corresponding solitary wave
profile, and (d) The corresponding electric field profiles are shown
with variation of magnetic field parameter Ω. Here, α=4, β=2,
vb0=0.1, σc=0.001, σb=0.01, γ=0.1, and κ=2.

trated by Figs. 5(a-d) for varying the background magnetic
field effect. In this respect, the profiles of the Sagdeev po-
tential, homoclinic trajectories, and the electric potential are
shown in Figs. 5(a-c). It is found that the amplitude of soli-
tary waves remains unchanged, while the width of the wave
reduces with the increase of background magnetic field. Here,
it is important to mention that the coefficient Q of the disper-
sion term in the ZK equation does not depend on the mag-
netic field, so both the amplitude and width will remain un-
changed along the parallel direction of propagation. On the

other hand, the dispersion along the perpendicular direction
of propagation involving the coefficient S is strongly influ-
enced by the magnetic field through Ω, effectively changing
the width of the soliton. Furthermore, the curves of the elec-
tric field, see Fig. 5(d) show a change with magnetic field.
Since the electric field is essentially the negative slope of the
electric potential, therefore, the slope for the maximum po-
tential becomes zero and consequently the electric field van-
ishes for all curves, while the soliton potential with a smaller
width has greater slope, thus the shape of electric field curves
is obtained with the electric field amplitude varying from
6.3mV/m−13.3mV/m.
Next, we observe how the beam parameters alter the proper-
ties of EA solitons as clearly shown in Fig. 6. The Fig. 6(a)
illustrates the impact of beam speed vb0 on the EA soliton in
a trapped superthermal plasma. Note that as the beam stream-
ing velocity is enhanced, the soliton amplitude becomes pro-
nounced. Here, the velocity of the beam electrons contribute
as a source of free energy, thus enhancing the amplitude of
solitons. The effect of number density of beam electrons on
the EA waves is depicted in Fig. 6(b) through the parame-
ter β , which enhances the amplitude of solitons. However,
an increase of β value is equivalent to a decrease of beam
number density, therefore there is a net reduction of ampli-
tude of EA soliton with the increase of beam density from
(0.9 − 1.1)cm−3. Figure 6(c) delineates the effect of beam
temperature through the parameter σb on the solitary struc-
ture with superthermal trapped electrons. It is apparent from
the plot that enhancement of the beam temperature 0eV -to-
25eV leads to increase the electric potential. Thus, at lower
value of σb, shorter and narrower solitons are formed, while
at higher value of σb the potential pulses become taller and
wider.
In Figs. 7(a-b), we show how the cold electron density and

cold electron temperature affect the solitary structures of EA
waves. With the increase of hot-to-cold beam electron density
ratio α(≡ nh0/nc0), the amplitude of solitons reduces which
results into the enhancement of soliton amplitude with the in-
creasing density of cold electrons. This is in accordance with
the fact that EA waves are associated with the enhancement
of dynamical cold electrons and reduction of finite (more than
∼ 20%) hot electrons. The effect of cold electron tempera-
ture is depicted in Figure 7(b) through the ratio of cold-to-hot
electron temperature σc, which shows that the amplitude of
soliton is enhanced with increasing temperature of cold elec-
trons.
It is worth mentioning that the parametric range of the elec-
tric field associated with the EA solitons is well-agreed with
observational data8, where the parallel electric field varies
upto 100mV/m. For the case of burst a, the electric field
of solitary structures in the presence of magnetic field re-
duces to ∼ 15mV/m in accordance with the results of Singh
et al.43. This value is much lesser than the magnitude of bipo-
lar electric fields for electrostatic waves in an un-magnetized
plasma54. Therefore, the present model is valid to explain
electrostatic solitary structures during BEN emissions in auro-
ral region of Earth’s magnetosphere. The study has advanced
existing research by modeling superthermal trapped hot elec-
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FIG. 7. The electric potential of EA waves is plotted against the spa-
tial coordinate for changing (a) the hot-to-cold beam electron density
ratio (for σc=0.001) and (b) cold-to-hot electron tamperature ratio
(for α=4). Here, β=2, vb0=0.1, σb=0.01, κ=2, ω=0.01, and γ=0.1.

trons to better represent the auroral region and identified vari-
ous new features of phase portraits involving the tZK solitons.
The model has relevance to understand transport of energy and
momentum between plasma particles, electron dynamics, and
plasma turbulence in auroral region of Earth’s magnetosphere.
Future perspectives of this work include investigations of
long wavelength perturbations and instabilities at different
timescales in dispersive and dissipative plasmas. In addition,
interaction of nonlinear coherent structures will be studied
to explain phase shifts, and formation of bipolar and tripolar
electric fields in the presence of beam electrons.

VII. CONCLUSION

To conclude, we have presented the linear and nonlinear
properties of the electron acoustic (EA) waves in a four com-
ponent magnetoplasma, containing cold inertial electrons, su-
perthermal (hot) trapped electrons and static ions with warm
drifting beam electrons. In linear analysis, quartic roots in
terms of linear phase speed are analysed with the variation of
superthermality index κ . For nonlinear features of EA waves,
fluid equations are solved by using the reductive perturba-
tion technique, obtaining a trapped Zakharov Kuznetsov (tZK)
equation. The latter is analyzed both qualitatively and quan-

tatively. In qualitative analysis, the EA waves produce phase
portraits and Sagdeev potential whereas quantitative analysis
leads to the soliton solution of tZK equation under the depen-
dent variable transformation technique. A positive potential
pulse is produced due to trapping effect which corresponds
to the hole for cold electron density. The soliton solution
is numerically analyzed for plasma parameters of short burst
of BEN emission in auroral region, varying the trapping effi-
ciency γ and superthermality κ . It may be noted that particle
trapping (superthermality) leads to reduction (enhancement)
of pulse amplitude of EA soliton. A parametric analysis is car-
ried out to examine the impact of parameters such as drifting
speed, temperature and density of beam electrons, and tem-
perature and density of cold electrons on the characteristics
of EA solitons. The electric fields associated with solitary
structures reveal a good agreement with observed data of au-
roral region. This model can also be applied to magnetopause,
where two temperature electrons and large-amplitude parallel
electrostatic waves exist, reported by MMS observations.
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within the article.
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