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On the relationship between urban form and amenities: A new 

perspective from Qom (Iran) 

Abstract Amenities are fundamental for urban life as they promote socio-economic interactions and enhance city dynamics. 

Previous studies investigated the relationship between metrics of street network centrality and urban amenities. However, 

they hardly focused on further aspects of the built environment. A further drawback is that relationships were mainly 

assessed through linear models even though more complex and non-linear relationships plausibly exist. In this work, we, 

first, comprehensively describe the urban form of our case study, the city of Qom (Iran), through a set of 55 morphometrics 

computed at the plot level; second, we investigate the relationship between these metrics and density of amenities, through a 

set of machine learning techniques that handle non-linear behaviours. The best model explains up to 45% of the variance of 

the density measure, with coverage ratio, plot size, floor area ratio, street canyon width, and betweenness centrality being the 

top five explanatory factors. While the findings of this work do not have universal value, the methodology can be replicated 

to explore the same research question in different contexts. It can also be used as an evidence-based tool to inform design 

choices in urban redevelopment affecting the location of amenities in cities. 

Keywords Urban morphology, Urban morphometrics, Machine learning, Amenities, Qom (Iran). 

Introduction 

Urban amenities including commerce and services are fundamental for our cities as they not only provide goods 

and services to residents, but also contribute to a set of tangible and intangible aspects, such as safety, street 

liveliness, community identity, prosperity and liveability of the urban environment. In this respect, several 

theories were proposed in the recent past. Jacobs (1961) and Gehl (1987) argue that the presence of amenities in 

streets positively contribute to neighbourhood attractiveness by promoting socio-economic interactions between 

urbanites and, more broadly, enhancing city dynamics. Jacobs (1961) also suggests that transparent surfaces, 

including shop windows, close to the streets, are of paramount importance for ensuring ‘eyes on the street’, 

hence informal control on the urban space against petty crimes and anti-social behaviours. 

More recently, with the advent of geographic information systems and diffusion of spatial data, several studies 

delved deeper into this topic by quantitatively exploring the relationship between morphological features of 

cities and density of amenities. Hillier et al. (1993) suggest that the preferential location of shops and services is 

directly associated with the so-called ‘natural movement’ of pedestrians in the public space, which, in turn, is 

shown to be linearly correlated to higher levels of ‘spatial integration’, a measure of network centrality that 

simultaneously assesses proximity and interconnectivity of street segments in a specific area. Porta et al. (2009), 

Produit et al. (2010) and Wang et al. (2011) rely on similar techniques of network analysis to assess the 

relationship between density of amenities in Bologna (Italy), Barcelona (Spain) and Baton Rouge (LA, US) 

respectively and several metrics of street network centrality. 

Results in the former show significant correlations (Pearson's r > 0.7) especially between betweenness 

centrality, a measure of through-movement in urban space that is computed at the scale of the entire city, and 

density of commerce and services measured through a kernel density estimation function at a resolution of 300 

meters. Similar results are found in Barcelona, where a composite measure of centrality, including betweenness, 

closeness and straightness, reflecting simultaneously being ‘intermediary, straight and critical’ in the street 

network, is found to be positively associated (Pearson's r > 0.6) with retail activities. 

In Baton Rouge, closeness centrality shows the strongest correlation with land use density, straightness the next 

and betweenness the last. A more nuanced analysis investigates the relationship between the kernel densities of 

different shop categories and street network centrality in Changchun (China) (Wang et al. 2014). Specialty 
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stores show the strongest correlation with closeness centrality; supermarkets and department stores with 

betweenness centrality; consumer product stores (wholesale stores) with straightness centrality. 

The outcomes of these works are undoubtedly a step forward in the study of city dynamics and, more 

specifically, of the relationship between the preferential location of amenities and street centrality. However, as 

important as it is, the latter is only one aspect of urban form and, while statistically significant correlations were 

indeed found, a large part of potential correlates are still unknown because they have never been explored. 

Furthermore, the statistical techniques used for carrying out these studies are linear (correlation and regression). 

It might well be, though, that relationships do not behave in a linear fashion, given the complexity of cities and 

the intricacy of underlying and inter-related phenomena. Araldi et al. (2020) investigated the relationship 

between a more comprehensive set of metrics of urban form and retail distribution in a non-linear fashion. 

However, the focus of this study was mainly on the comparison between different modelling solutions rather 

than on understanding how the tested metrics of urban form behaved in relation to retail distribution, in the case 

study under examination. 

In this paper, we use an urban morphometrics approach to generate a comprehensive, multidimensional 

numerical description of urban form, to then explore its relation with amenities (commerce and services) 

momepy (Fleischmann 2019), a recently developed open-source package for morphometric analysis, is used to 

comprehensively describe urban form through a set of 55 metrics and analyse their relationship with density of 

amenities in the city of Qom (Iran). More specifically, all metrics are computed at the plot level and measure a 

wide variety of spatial attributes, from street canyon width to plot size, from betweenness to straightness 

centrality. Furthermore, to avoid the assumption of linearity, we use a composite machine learning approach to 

handle non-linearity and model possible interactions among metrics. Outcomes show that a selection of 38 

morphometrics can explain up to 45% of the variance of the density of amenities, with 16 morphometrics having 

an impact of roughly 75% on the magnitude of the model output. In line with the studies mentioned above, 

global betweenness and straightness are important explanatory factors. However, plot coverage ratio, plot size, 

floor area ratio and street canyon width comparatively show stronger impacts. 

The work presented in this paper presents a novel, more comprehensive and robust approach to the study of the 

intricate relationship between urban form and amenities which includes not only metrics of street network 

centrality, but also tens of others that capture features of the urban fabric and relies on non-linear statistics. It 

furthermore paves the way to further analyses of this kind in order to ascertain whether similar relationships 

hold in different contexts. Finally, the identification of the physical characters of the urban environment most 

strongly associated with amenities can potentially inform urban design and planning strategies aimed at the 

redevelopment and revitalisation of urban form at different scales (from the neighbourhood to the entire city). 

The remainder of this paper is structured as follows. First, we describe the urban morphometrics method and the 

machine learning techniques utilised to model spatial relations: we compute, on one hand, a comprehensive set 

of morphometrics, on the other, a metric of density of amenities and, finally, we analyse the relationship 

between the two in a non-linear fashion. Second, we illustrate the application of this methodology to the city of 

Qom: we present the case study, the datasets used, the outputs of the composite machine learning approach and 

the interpretations of such outputs. Finally, we discuss possible implementations of the methodology in an urban 

redevelopment and revitalisation perspective and conclude with final remarks. 

Methodology 

This section presents the general methodological framework for analysing the relationship between features of 

urban form and amenities in any context. It relies on two main steps: (i.) computation of a comprehensive set of 

morphometrics to describe the urban form of the city as well as a metric of density of amenities; (ii.) modelling 

the relationship between the two. 

Measuring urban form and amenities 

As mentioned in the introduction, several studies analyse the relationship between street network and amenities 

in cities. However, the former is only one aspect of the much larger, nuanced and complex spatial entity we call 

‘urban form’. Since reducing the descriptive dimensions of the phenomenon results in potential selection biases, 

urban morphometric research has recently explored a more comprehensive approach (Fleischmann, Romice, et 

al. 2020) aimed at operationalizing all metrics of urban form (i.e. ‘morphometrics’) that are a) available in 

literature and b) viable and compliant with the research principles and framework. 

The point is to avoid upfront by-theory discrimination of morphometrics. Related to this, an open-source Python 

package named momepy (Fleischmann 2019) has been recently developed to boost the continuous accumulation 

of shared knowledge about morphometrics. The package makes it possible to measures different aspects of the 

three main morphological components of cities, i.e., plot, building and street (Moudon 1997), via six main 

categories of information extracted from the urban design literature: dimension, shape, spatial distribution, 
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intensity, connectivity and diversity (Fleischmann et al. 2021). In dimension, momepy includes, among others, 

building footprint, plot size and length of perimeter walls, while in connectivity proportion of 3-way 

intersections, local meshedness and all three Multiple Centrality Analysis (MCA) metrics of street centrality, i.e. 

betweenness, closeness and straightness (Porta et al. 2006). Metrics can be computed for local geographies to 

capture spill-over effects typical of spatial phenomena (Legendre 1993) and behaviours across different scales. 

Momepy usually relies on two input datasets: street network (cleaned of transportation-related geometry, e.g. 

dual carriageways), and buildings (with heights). However, it can be adapted to sub-optimal quality or 

availability of data. Venerandi et al. (2021) showed, for example, that it is possible to carry out an accurate 

morphometric analysis at city level relying on building footprints only. The spatial unit for which all 

morphometrics are computed is the morphological cell, which is obtained via a Voronoi tessellation-based 

partitioning of space from building footprints (Fleischmann, Feliciotti, et al. 2020). This system was put in place 

to overcome theoretical and geometrical inconsistencies in the definition of plots (Kropf 2018). However, it is at 

the discretion of the researcher whether to use these automatically generated spatial units, proper cadastral 

parcels or other official boundaries. 

Density of amenities measures the amount of commerce and services per areal unit. This can be computed in 

several ways depending on the granularity of the input data. For example, if amenities are made available as 

georeferenced points (like in OpenStreetMap)1, one can compute the ratio between the number of points in  

a specific unit and the area of such a unit. If one has information on the area of the plot and the total floor area 

of amenities pertaining to it, one can potentially compute a measure of commercial floor area ratio by dividing 

the latter by the former. 

A machine learning ensemble method 

Having obtained a comprehensive set of morphometrics to describe the built environment, the next step requires 

investigating the relationship between them and the density of amenities. This is a 3-step process inspired by 

previous research about urban form and house prices in the French Riviera (Venerandi et al. 2019), consisting 

in: (i.) identifying the most relevant morphometrics to model density of amenities via sequential forward 

selection; (ii.) using gradient boosting to model the relationship between the selected morphometrics and density 

of amenities and (iii.) interpreting the behaviours of each morphometric via an additive feature attribution 

method. 

Sequential Forward Selection 

While the computation of tens of morphometrics provides a comprehensive description of the urban form under 

examination, it can also potentially generate issues at the modelling stage. Using a too large number of 

explanatory variables can increase computational time and result in data redundancy, which, in turn, can 

produce noise and overfitting. To contravene this, our methodology relies on the use of the Sequential Forward 

Selection (SFS) procedure (Raschka 2018), a feature selection technique that adds one variable at the time, 

based on a regressor performance, until an optimal number of variables, within a specified interval, is reached. 

In the context of this work, the target is a measure of density of amenities and the candidate variables are the 

morphometrics computed through the momepy package. 

For statistical consistency, the regressor should be the same as the one used in the next step, i.e. gradient 

boosting, which will be detailed in the next section. Finally, to obtain a statistically robust selection  

of morphometrics, train and test sets and k-fold cross-validation must be implemented. The former consists  

in splitting the dataset in a subset used for training the model (usually 80% of the data) and in one for testing  

it (usually 20% of the data). The latter consists in repeating this process for 10 different train and test partitions. 

Gradient Boosting 

Once the most relevant morphometrics are selected, the next step consists in modelling the relationship between 

such morphometrics and density of amenities in the case study under examination. To do so, we propose the use 

of gradient boosting (Friedman 2001), a non-parametric machine learning technique relying on multiple 

decision trees for prediction. The interesting aspect of this technique compared to more standard ones (e.g. 

random forest) is that, rather than averaging the performances of single base models, it progressively fits new 

decision trees to reduce the error made at previous steps, leading to better predictions. 

Since the aim is to model a continuous variable (i.e. density of amenities), the reduction of these errors relies on 

a gradient descent that optimises a cost function based on a least squares regression pointing to the negative 

gradient direction. As in SFS, k-fold cross-validation and train and test sets must be used to ensure the 

robustness of model and results.  

                                                           
1  Wiki, Key: amenity, online https://wiki.openstreetmap.org/wiki/Key:amenity (access: 13.11.2023). 

https://wiki.openstreetmap.org/wiki/Key:amenity
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To avoid overfitting, the maximum depth of decision trees is set to a third of the number of morphometrics used 

in the model, i.e. a widely accepted value in the machine learning community (Franklin 2005). Finally, to 

quantify the explanatory power of the model, an overall adjusted R squared value can be computed by averaging 

the adjusted R squared values associated with each test set. 

Interpretative tool 

Since the aim of this work is to understand the relative importance of features of urban form in relation to 

density of amenities, a further machine learning technique, i.e. SHapley Additive exPlanations (SHAP) 

(Lundberg, Lee 2017) is used to interpret the results of the gradient boosting algorithm. SHAP is part of a set of 

statistical techniques (i.e. additive feature attribution) that explains a specific prediction from a model through 

the selection of interpretable features sampling and then fits a linear model in the local area around this 

prediction. By collecting these feature importance values at the local level for the entire study area, SHAP can 

quantify the general behaviours (negative or positive) that the selected morphometrics have in relation to density 

of amenities. 

Application 

In this section, we describe how we applied the general methodology presented above to the specific case of the 

city of Qom. We start by presenting the case study and the two datasets used to carry out the analysis. Second, 

we illustrate the morphometrics used to comprehensively describe Qom’s urban form and the measure of 

density of amenities extracted from the two input datasets. We then illustrate the application of the machine 

learning ensemble method to investigate the relationship between morphometrics and density of amenities. 

Case study 

Qom is a historical city if Iran located approximately 140 km south of Tehran (the capital of the country) 

(Figure 1). Several phases of urban development took place throughout its long history, creating an overall rich 

and stratified urban form. The very first city core, called Shahrestan and built during the Sasanian dynasty (224 

to 651), was apparently located south-east of the current one, which was established later and developed in the 

Islamic era (Saeidnia, 1986). From its creation until 1925 (end of the Qajar dynasty), the city of Qom had a slow 

growth. However, during the Pahlavi dynasty (1925 to1979) and especially after the Islamic Revolution (1979), 

Qom changed considerably both in terms of geographical and population sizes and urban structure, through the 

addition, for instance, of several radial axes (e.g., Azar, Chaharmardan, Shah Ebrahim). 

After the Islamic Revolution, Qom witnessed a constant influx of migrants from the less advantaged north-

western regions of Iran (Markazi, Hamedan, Zanjan) and east Azerbaijan, with most of them settling in an area 

located north-west of the Qomrood river, a seasonal river cutting the city in south-west north-east direction, 

increasing city size further mainly through the construction of informal neighbourhoods. 

Before the modern age, Qom has been progressively built through the addition of largely self-sufficient 

neighbourhoods units consisting of several interrelated elements: a central square, a mosque, a bazaar (i.e., 

commercial structure with several small shops organized on a tight network of covered streets), a water storage 

system, a local workshop and mainly residential ordinary urban fabric (Tavassoli 2016). This neighbourhood 

unit was thus a fundamental and constitutive component of Qom both morphologically and, more importantly, 

socially, providing sense of identity and belonging. Indeed, the historical core of the city consisted of several  

of these interrelated neighbourhood units. 

However, in the Pahlavi dynasty and subsequent period, large infrastructural works, mainly consisting of large 

Haussmannian urban arteries cutting through the historical fabric, separated and fragmented these recognizable 

units. More recently, in the last fifty years, this traditional model has been largely substituted by more repetitive 

and monotonous urban patterns, characterised by multi-storey, dense, almost exclusively residential buildings 

and gridded street layouts: these largely rely on pre-existing neighbourhoods (including their traditional 

commercial fabrics), newly planned commercial strips and shopping malls for the provision of goods and 

services. The layered complexity of the city of Qom constitutes a particularly interesting case study for 

investigating the relationship between urban form and density of amenities and understand which specific 

morphometrics – and to what extent – are more strongly associated with the latter. 
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Figure 1. Geographical context of Qom 

Source: author’s own work. 

Datasets 

The analysis presented in this paper is built on two vector datasets: a) plots (or cadastral parcels), drawn as 

polygons, and b) street segments, i.e. the ensemble of lines connecting street intersections, making up the street 

network of Qom. Both datasets were provided by the municipality of Qom, with the former dating back to 2020 

and the latter to 2019. Both covered the entire municipality, however, due to uneven coverage in the peripheral 

parts of the city (i.e., presence of one of the two datasets but not of both), only plots and streets within the area 

circumscribed by the main city ring road (i.e. Imam Ali highway) were considered in the analysis. 

Apart from polygons, the dataset of plots also contains morphological information on plot layout, e.g. number of 

floors of the building pertaining to the plot, main land use, total floor area occupied by amenities. Both datasets 

have been cleaned of topological and geometrical issues, e.g. duplicated/invalid geometries and false 

intersections (as generated, for example, by erroneously separated street segments where no intersection is 

actually present). The resulting datasets consist of 35,827 street segments and 227,165 plots. 

Computing morphometrics and density of amenities 

Since the building footprint layer was not available in Qom, only 55 morphometrics were computed out of the 

74 that a typical urban morphometric session would otherwise work with: these are the maximum number  

of metrics computable in momepy from the available input datasets. Note that the dataset of plots also contained 

information on the areas and heights of the buildings pertaining to each plot. Hence, we were able to add three 

morphometrics (i.e. building area, height and volume) which would have been otherwise impossible to compute 

without the building footprint layer. The full list of such morphometrics is provided in Table 1, together with 

labels, physical element of reference, scale of computation (context) and broad categorisation. For explanations 

on the morphometrics formulas, we refer the reader to (Fleischmann et al. 2021). 
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Table 1. The 55 morphometrics used to comprehensively describe the urban form of Qom, together with labels, physical  

                element of reference, scale of computation (context) and broad categorisation 

Morphometric Label Element Context Category 

area sdbAre building building dimension 

height sdbHei building building dimension 

volume sdbVol building building dimension 

longest axis length sdcLAL plot plot dimension 

area sdcAre plot plot dimension 

circular compactness sscCCo plot plot shape 

equivalent rectangular index sscERI plot plot shape 

solar orientation stcOri plot plot distribution 

street alignment stcSAl plot plot distribution 

coverage area ratio sicCAR plot plot intensity 

floor area ratio sicFAR plot plot intensity 

length sdsLen street segment street segment dimension 

width sdsSPW street profile street segment dimension 

height sdsSPH street profile street segment dimension 

height to width ratio sdsSPR street profile street segment shape 

openness sdsSPO street profile street segment distribution 

width deviation sdsSWD street profile street segment diversity 

height deviation sdsSPH street profile street segment diversity 

linearity sssLin street segment street segment shape 

area covered sdsAre street segment street segment dimension 

plots per meter sisBpM street segment street segment intensity 

area covered sddAre street node street node dimension 

weighted neighbours mtcWNe plot 
neighbouring plots 

(queen) 
distribution 

area covered mdcAre 
neighbouring 

plots 

neighbouring plots 

(queen) 
dimension 

reached plots misRea 
neighbouring 

segments 

neighbouring 

segments 
intensity 

reached area mdsAre 
neighbouring 

segments 

neighbouring 

segments 
dimension 

degree mtdDeg street node neighbouring nodes distribution 

mean distance to neighbouring 

nodes 
mtdMDi street node neighbouring nodes dimension 

reached plots midRea 
neighbouring 

nodes 
neighbouring nodes intensity 

reached area midAre 
neighbouring 

nodes 
neighbouring nodes dimension 

gross floor area ratio licGDe 
neighbouring 

plots 

plot queen neighbours 

3 
intensity 

weighted reached blocks ltcWRB 
neighbouring 

plots 

plot queen neighbours 

3 
intensity 

area ldkAre block block dimension 

perimeter ldkPer block block dimension 

circular compactness lskCCo block block shape 

equivalent rectangular index lskERI block block shape 

compactness-weighted axis lskCWA block block shape 

solar orientation ltkOri block block distribution 

weighted neighbours ltkWNB block block distribution 
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weighted plots likWBB block block intensity 

betweenness centrality gloBET street network streets within network connectivity 

straightness centrality gloSTR street network streets within network connectivity 

local meshedness lcdMes street network nodes 5 steps connectivity 

mean segment length ldsMSL street network segment 3 steps dimension 

cul-de-sac length ldsCDL street network nodes 3 steps dimension 

reached plots ldsRea street network segment 3 steps dimension 

node density lddNDe street network nodes 5 steps intensity 

reached plots lddRea street network nodes 3 steps dimension 

proportion of cul-de-sacs linPDE street network nodes 5 steps connectivity 

proportion of 3-way 

intersections 
linP3W street network nodes 5 steps connectivity 

proportion of 4-way 

intersections 
linP4W street network nodes 5 steps connectivity 

weighted node density linWID street network nodes 5 steps intensity 

compactness-weighted axis lddARe street network nodes 3 steps dimension 

local closeness centrality lcnClo street network nodes 5 steps connectivity 

square clustering xcnSCI street network nodes within network connectivity 

Source: author’s own work on the basis of Fleischmann et al. 2021. 

On the other side, density of amenities in each plot was computed by dividing the total floor area dedicated to 

commerce and services by the area of the plot (both data are present in the official dataset provided by the 

municipality of Qom). This metric can be considered the ‘commercial’ counterpart of floor area ratio. Due  

to length constraints, presenting maps for all the morphometrics computed in this study is not feasible. In Figure 

1, we thus present three examples, i.e. the plot’s longest axis length, the floor area ratio and the betweenness 

centrality and the metric of density of amenities (i.e. commercial floor area ratio). Visual inspection highlights 

that higher commercial densities tend to be located on main and local thoroughfares, such as Imam Khomeini 

Street and Shahid Motahhari Street (Zangaraki area), but also to spread locally in specific neighbourhoods, such 

as in the area around Qom’s Old Bazaar. 

Selecting the best morphometrics 

Having computed the 55 morphometrics and density of amenities, the next step requires identifying which of the 

former are best to model the latter. The SFS technique is thus implemented on the 227,165 plots for which the 

metrics were computed by using a gradient boosting regressor and splitting the dataset in train (80% of the 

observations) and test (20% of observations) sets, in a 10-fold cross validated regime. SFS is set to search for 

the best combination of metrics in a range between 3 and 40. Since the variable to be modelled is continuous 

(i.e. density of amenities), negative mean squared error is utilised as scoring system to evaluate the performance 

at each iteration. SFS selects a total of 38 morphometrics: plot area (sdcAre), plot longest axis length (sdcLAL), 

plot circular compactness (sccCCo), plot equivalent rectangular index (sscERI), coverage area ratio (sicCAR), 

floor area ratio (sicFAR), plot’s weighted neighbours (mtcWNe), area covered by neighbouring plots (mdcAre), 

gross floor area ratio (licGDe), weighted reached blocks (ltcWRB), plot’s street alignment (stcSAl), building 

height (sdbHei), block area (ldkAre), block’s circular compactness (lskCCo), block’s compactness-weighted 

axis (lskCWA), block orientation (ltkOri), block’s weighted plots (likWBB), street length (sdsLen), street 

profile average width (sdsSPW), street profile average height (sdsSPH), street profile average openness 

(sdsSPO), street profile average height deviation (sdsSHD), area covered by street segment (sdsAre), plots per 

meter of street (sisBpM), reached area by neighbouring streets (mdsAre), plots reached by neighbouring streets 

at three topological steps (ldsRea), node degree (mtdDeg), local meshedness (lcdMes), proportion of 4-way 

intersections (linP4W), proportion of cul-de-sac (linPDE), local closeness (lcnClo), square clustering (xcnSCl), 

mean distance to neighbouring nodes (mtdMDi), plots reached by neighbouring nodes at three topological steps 

(lddRea), sum of plot areas around node (sddAre), reached plots by neighbouring nodes (midRea), betweenness 

centrality (gloBET), straightness centrality (gloSTR). 
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Figure 2. Examples of three morphometrics (plot’s longest axis length, floor area ratio, betweenness centrality) and density 

of amenities (commercial floor area ratio). Gray corresponds to smaller values. Red corresponds to bigger values 

Source: author’s own work. 

Modelling selected morphometrics and density of amenities 

The 38 morphometrics selected via the SFS technique are then used to model the commercial floor area ratio via 

the gradient boosting algorithm. As in the previous step, in order to obtain statistically robust results, 10-fold 

cross validation is used on consecutive splits of the dataset in train and test sets (80% and 20% of observations 

respectively). The maximum number of metrics to consider at each split and the maximum depth of decision 

trees are set to a third of the total number of metrics used in the model (in this case, 13), a value commonly 

accepted in the machine learning community (Trevor et al. 2009). The total number of decision trees is set to 

128 as trial-and-error tests showed this number to be optimal both in terms of performance and to avoid overfit. 

Finally, the quality of each split in the decision trees is evaluated through mean squared error with improvement 

score by Friedman. The average adjusted R squared values for the 10 train and test sets are 0.90 and 0.38  

(+/– 0.07), respectively, meaning that the best train model can explain 90% of the variance of commercial floor 

area ratio in Qom, while the best test model can explain 45% of the latter. 

Interpreting the model through SHAP 

To investigate further this model and the behaviours of the 38 morphometrics across the case study, SHAP is 

implemented on the outputs obtained at the previous step, by firstly applying the Tree Explainer function on the 

fitted model and, secondly, by computing SHAP values for each metric. Figure 3 summarises the absolute 

impacts (measured as percentages) that the 38 morphometrics have on commercial floor area ratio in Qom. The 
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first 16 have alone a 75% impact on the model output magnitude. Figure 4 shows the impacts (positive or 

negative) of such metrics on commercial floor area ratio across the case study. Vertical dispersions of points 

mean high concentrations of plots with similar SHAP values. Conversely, slim dispersions correspond to low 

concentrations of plots with similar SHAP values. Since gradient boosting is a non-linear modelling technique, 

metrics do not have a uniform behaviour across the case study. However, general trends can still be traced by 

looking at the dominant colour patterns in Figure 4. 

 
Figure 3. Relative impacts measured as percentages of the 38 morphometric metrics on commercial floor area ratio in Qom. 

Metrics to the left of the dashed red line have alone a 75% impact on the model output magnitude 

Source: author’s own work. 

 
Figure 4. Impacts of the top 16 morphometrics on density (commercial floor area ratio) of amenities in Qom. Values on the 

x-axis represent the impact (positive or negative) of each morphometric. 

The darker the colour, the greater the value of the morphometric 

Source: author’s own work. 
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It would be impossible to analyse the relationship between each of the 38 morphometrics and commercial floor 

area ratio in the space of a single article. For this reason, we focus our interpretation on the top 16 

morphometrics which, as previously illustrated, have a 75% impact on the overall magnitude of the model 

output, thus accounting for a large part of the model’s explanatory power. The interpretation is organised around 

four main topics: built--up density, shape of plots, urban grain, and street network centrality and configuration. 

Built-up density 

The outcomes of the gradient boosting model show that metrics of built-up densities, in particular coverage area 

ratio (sicCAR), floor area ratio (sicFAR) and building height (sdbHei), are among the strongest predictors of 

density of amenities (commercial floor area ratio) in Qom, whereby greater values of the three metrics 

correspond to more square meters of commercial floor area per areal unit. This, to a certain extent, is to be 

expected since denser urban areas tend to host more commerce and services (de Nadai et al. 2016). However, 

this relationship should not be taken for granted since many new neighbourhoods in Qom tend to be 

characterised by coarser and less dense commercial tissues such as supermarkets and shopping malls lying on 

large plots, often surrounded by parking lots. 

Shape of plots 

Morphometrics referring to the shape of plots, plot area (sdcAre), equivalent rectangular index (sscERI), and 

plot’s longest axis length (sdcLAL), are also important predictors of commercial floor area ratio. More 

specifically, smaller plot areas and plots that tend to have more rectangular and elongated shapes are associated 

with more commercial floor area per areal unit. This finding seems again to recall traditional processes of city 

building, particularly that of medieval European towns where denser, longer and more elongated plots with their 

short edges abutting on main commercial streets were resulting emergent elements of the Conzenian adaptive 

cycle of change, i.e. the ‘burgage cycle’ (Conzen 1960). 

Urban grain  

Among the top 16 morphometrics, three of them, i.e. area covered by the plots surrounding a street intersection 

(sddAre), area covered by neighbouring plots (mdcAre), number of plots reached from street intersections at 

three topological steps (lddRea), measure the grain of the urban fabric. More specifically, smaller values of the 

former two and greater values of the latter are associated with more commercial floor area per areal unit, 

suggesting a relationship between finer grained urban fabrics, characterised by small plots close to one another 

and higher densities of amenities. 

Street network centrality and configuration 

Greater values of all the metrics of street network centrality considered in the model, i.e. betweenness centrality 

(gloBET), straightness centrality (gloSTR), and local closeness (lcnClo), are associated with more commercial 

floor area per areal unit, meaning that locally well-connected street layouts with a clear hierarchy, rectilinear 

axes, and more potential though-passage are related to higher densities of amenities. This is in line with previous 

research focusing on European cities, e.g. Barcelona (Produit et al. 2010) and Bologna (Porta et al. 2009), hinting to 

the existence of morphogenetic processes that go beyond specific geocultural contexts. In particular, 

betweenness centrality is the strongest predictor among the three metrics of street network centrality and the 

sixth in terms of overall importance. 

In terms of street network configuration, in Qom we observe lower levels of local meshedness (lcdMes), which 

express less gridded – i.e. more ‘dendritic’ (Marshall 2004) – street layouts, in association with more 

commercial floor area per areal unit. This is in contrast with patterns observed in western cities, where more 

gridded and therefore better interconnected configurations tend to be related to more commerce and services 

(Lunecke, Mora 2018). One interpretation of this phenomenon relates to the particular evolution of urban form 

in Islamic cultural regions. Differently from western cities, dendritic structures typically emerge in inner areas 

that are bounded by main streets – or ‘sanctuary areas’ (Mehaffy et al 2010), where prevailing cultural values 

stressing seclusion and privacy of the extended family realm appear to have enhanced processes of progressive 

street closures and cul-de-sac creation (Remali, Porta 2017). 

This is reflected in the low meshedness values detected on plots abutting on the mains streets, since meshedness 

is computed in a 5-steps context (see Table 1) that spans well over the plots lying deeper in the sanctuary areas. 

For example, we show the (relatively low) local meshedness and (relatively high) density of amenities in the 

area around Enqelab (Chaharmardan) Street, in the historical core of Qom (Figure 5). 
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Indeed, in Qom, not differently than in any western historical area, most amenities concentrate on main 

thoroughfares, which demonstrates that, as far as amenities preferential location is concerned, what really counts 

is the higher density and centrality that comes with interconnectedness at the main street network level, while 

little impact can be attributed to the local level of the sanctuary area. 

Street canyon width (sdsSPW), openness (sdsSPO) and plots per meter of street (sisBpM) are three further 

relevant metrics, whereby larger street section, more permeable street edges and less plots per meter of street are 

associated with more commercial floor area per areal unit. This finding is in line with what we found for the 

metrics of street network centrality: in particular, higher densities of amenities are predominantly present in 

symbolically representative urban spaces, i.e. Qom’s radial axes, main and secondary throughfares which not 

only have greater values of betweenness, straightness and closeness but also tend to have larger street sections, 

more permeable street frontages due to the presence of several small spaces dedicated to green areas or parking 

lots and comparatively lower density of plots than in more residential streets of Qom. 

 

Figure 5. Amenities in Qom (left) tend to concentrate in plots located on main throughfares, which have relatively small 

values of local meshedness (right) due to dendritic street layouts within sanctuary areas 

Source: author’s own work. 

Discussion 

With this analysis, we were able to characterise the typical features of urban form associated with higher 

densities of amenities in Qom, by considering not only metrics of street network connectivity as in previous 

studies (Hillier et al. 1993; Porta et al. 2009; Produit et al. 2010; Wang et al. 2011, 2014), but a comprehensive 

set of descriptors of the urban fabric (morphometrics). In particular, we show that commerce and services in 

Qom tend to be predominantly related to areas characterized by a mix of high built-up density, fine grained 

elements and representative urban spaces, such as main and secondary throughfares. These spaces are also 

characterized by higher street centrality. From an urban design, redevelopment and revitalisation perspective, 

the machine learning model built in this work can be useful for scenario-based masterplanning. More 

specifically, different urban revitalisation plans can be tested to model where higher concentrations of amenities 

will likely be located based on the plot characteristics proposed by-design. The outputs of these predictions are 

not prescriptive but mapping these outcomes at plot level can be used to inform and guide the design process 

and also engage/involve local stakeholders and communities through visual material. 

The replicability of the methodology proposed in this work makes it possible to i) analyse the relationship 

between features of urban form and density of amenities virtually anywhere, to understand whether the patterns 

found in Qom hold or different relationships emerge; ii) in policies of urban redevelopment, the gradient 

boosting model trained on the ensemble of plots of an entire city can be used for scenario testing to predict the 

commercial floor area ratio in the project area. The spatial distribution/concentration of urban amenities is not 

only associated with the morphology of cities, but also with many other factors, including socioeconomic levels, 

perceived safety at street level, existing regulations. Depending on data availability, future work may thus 

integrate these further aspects in the model to obtain a more complete picture of what drives higher 

concentrations of commerce and services in specific city parts. 
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Conclusions 

Urban amenities are of fundamental importance for providing goods and services to city dwellers, but also, 

contribute to the vibrancy of streets and neighbourhoods. This, in turn, has been shown to have positive impacts 

on a wide array of socioeconomic and well-being dynamics, affecting for example the prosperity and safety  

of urban communities. However, as of today, a comprehensive and systematic analysis of the relationship 

between urban form and density of amenities is missing since most existing studies are either purely qualitative 

or focus on a reduced set of metrics of urban form, typically street network, and only use linear techniques of 

spatial analysis. In this work, we proposed a quantitative methodology to i) describe the urban form under 

examination, through a comprehensive set of 55 metrics of urban form (‘morphometrics’) at the plot level 

measuring not only the street network, but also a large array of other urban form elements; ii) model the 

relationship between these morphometrics and density of amenities (as measured by commercial floor area 

ratio) in a non-linear fashion, through the use of sequential forward selection, gradient boosting and SHAP. 

This methodology has been applied to the Iranian city of Qom. Results showed that more square meters  

of commercial floor area per plot are associated with urban structures featuring a higher plot coverage and built-

up density, a finer grained urban fabric characterised by comparatively smaller and more elongated plots, and 

better-connected (both globally and locally), predominantly rectilinear main and secondary throughfares. While 

these findings hold for Qom, the method’s replicability paves the way for further analyses exploring the extent 

to which similar patterns would emerge across different geo-cultural contexts or change on case-by-case basis. 

Finally, from an urban redevelopment and revitalisation perspective, a model trained to learn the patterns of 

urban form and density of amenities of an entire city can help with scenario testing, to predict density of 

amenities at plot level that different design schemes would facilitate. In this approach, in fact, design decisions 

set the ‘environmental’ conditions that give a ‘selective advantage’ to certain desired land-use configurations to 

emerge and consolidate in time: in fact, an underlining evolutionary approach to urban design, as opposed to the 

conventional rational-comprehensive of the western modern tradition (Porta et al. 2018; Porta, Romice 2014; 

Romice et al. 2022). 
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