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Abstract

Background

Preeclampsia is a potentially life-threatening pregnancy complication. Among women

whose pregnancies are complicated by preeclampsia, the Preeclampsia Integrated Esti-

mate of RiSk (PIERS) models (i.e., the PIERS Machine Learning [PIERS-ML] model, and

the logistic regression-based fullPIERS model) accurately identify individuals at greatest or

least risk of adverse maternal outcomes within 48 h following admission. Both models were

developed and validated to be used as part of initial assessment. In the United Kingdom, the

National Institute for Health and Care Excellence (NICE) recommends repeated use of such

static models for ongoing assessment beyond the first 48 h. This study evaluated the mod-

els’ performance during such consecutive prediction.

Methods and findings

This multicountry prospective study used data of 8,843 women (32% white, 30% black, and

26% Asian) with a median age of 31 years. These women, admitted to maternity units in the

Americas, sub-Saharan Africa, South Asia, Europe, and Oceania, were diagnosed with pre-

eclampsia at a median gestational age of 35.79 weeks between year 2003 and 2016. The

risk differentiation performance of the PIERS-ML and fullPIERS models were assessed for

each day within a 2-week post-admission window. The PIERS adverse maternal outcome

includes one or more of: death, end-organ complication (cardiorespiratory, renal, hepatic,

etc.), or uteroplacental dysfunction (e.g., placental abruption). The main outcome measures
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were: trajectories of mean risk of each of the uncomplicated course and adverse outcome

groups; daily area under the precision-recall curve (AUC-PRC); potential clinical impact

(i.e., net benefit in decision curve analysis); dynamic shifts of multiple risk groups; and daily

likelihood ratios. In the 2 weeks window, the number of daily outcome events decreased

from over 200 to around 10. For both PIERS-ML and fullPIERS models, we observed con-

sistently higher mean risk in the adverse outcome (versus uncomplicated course) group.

The AUC-PRC values (0.2–0.4) of the fullPIERS model remained low (i.e., close to the daily

fraction of adverse outcomes, indicating low discriminative capacity). The PIERS-ML mod-

el’s AUC-PRC peaked on day 0 (0.65), and notably decreased thereafter. When categoriz-

ing women into multiple risk groups, the PIERS-ML model generally showed good rule-in

capacity for the “very high” risk group, with positive likelihood ratio values ranging from

70.99 to infinity, and good rule-out capacity for the “very low” risk group where most negative

likelihood ratio values were 0. However, performance declined notably for other risk groups

beyond 48 h. Decision curve analysis revealed a diminishing advantage for treatment

guided by both models over time. The main limitation of this study is that the baseline perfor-

mance of the PIERS-ML model was assessed on its development data; however, its base-

line performance has also undergone external evaluation.

Conclusions

In this study, we have evaluated the performance of the fullPIERS and PIERS-ML models

for consecutive prediction. We observed deteriorating performance of both models over

time. We recommend using the models for consecutive prediction with greater caution and

interpreting predictions with increasing uncertainty as the pregnancy progresses. For clinical

practice, models should be adapted to retain accuracy when deployed serially. The perfor-

mance of future models can be compared with the results of this study to quantify their

added value.

Author summary

Why was this study done?

• The fullPIERS model was considered to be the best model for predicting the adverse

outcomes of preeclampsia within 2 days following first admission, until recently when

the PIERS-ML model was introduced.

• The National Institute of Health and Care Excellence guideline in the United Kingdom

recommends using the fullPIERS model to make serial predictions; however, to the best

of our knowledge, this model has never been verified for this use.

What did the researchers do and find?

• Using the largest available data set in this field (to the best of our knowledge), we quanti-

fied the performance of both the fullPIERS and PIERS-ML models (as PIERS-ML has

even higher predictive accuracy) when they are used for serial predictions.
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• We found that the performance of both models deteriorated considerably over time in

the first 2 weeks following admission to hospital.

What do these findings mean?

• In the absence of models that have been validated for serial predictions of adverse

maternal outcomes of preeclampsia, clinicians may still use fullPIERS and PIERS-ML

models for ongoing assessments after the first admission with preeclampsia, but the pre-

dictions should be treated with increasing caution as the pregnancy progresses.

• More research is needed to develop models that perform well over time when used for

repeated predictions.

• The main limitation of this study is that we assessed the initial performance of the

PIERS-ML model on the same data used to create it. However, the model’s initial per-

formance has also been tested on data from outside sources.

Introduction

Of women whose pregnancies are complicated by preeclampsia, 5% to 20% will develop severe

complications, particularly if the syndrome is of early onset (e.g., <34 weeks gestation) [1,2].

Both over- and under-treatment—iatrogenic harm from prematurity and increased healthcare

costs—are potential consequences of inaccurate prediction of severe complications.

The existing prediction models for severe complications of preeclampsia were developed

primarily utilizing baseline information [3–5]. Notably, the fullPIERS (Preeclampsia Inte-

grated Estimate of RiSk) model was developed from data from well-resourced settings to pre-

dict the risk of the adverse maternal outcomes of both early- and late-onset preeclampsia,

within 48 h following hospital admission [5]. This interval is clinically useful, as it reflects the

opportunity to arrange in utero transfer, induce labor, and achieve the full benefit of antenatal

corticosteroids for fetal lung maturation, as relevant [6]. The recent PIERS-ML (machine

learning) model shares the fullPIERS model’s objectives, but distinguishes itself by being

trained on data from globally diverse settings [7].

To be useful during ongoing clinical care, particularly during expectant management of

preterm preeclampsia [1], risk prediction needs to be updated regularly, to monitor disease

risk progression as clinicians otherwise do informally. In the absence of a preeclampsia out-

come prediction model that can accommodate repeated measurements to guide joint deci-

sion-making by women with preeclampsia and their maternity care providers, the National

Institute of Health and Care Excellence guideline in the United Kingdom suggests that the full-

PIERS model be used iteratively for consecutive prediction for the same woman [8]. As an

updated version of the fullPIERS model, PIERS-ML may well be employed for consecutive pre-

diction in the same way. Regardless, neither PIERS-ML nor fullPIERS has been validated for

such application.

This study aimed to evaluate whether or not the performance of the PIERS-ML and full-

PIERS models justifies their application for consecutive prediction of adverse maternal out-

come in preeclampsia.
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Methods

Study design and data source

In this prospective observational study, we utilized the PIERS-ML and fullPIERS models [5,7],

and a pooled database of 8,843 women diagnosed with preeclampsia at a median gestational

age of 35.79 (interquartile range: 31.79 to 38.23) weeks. Data were collected between year 2003

and 2016 from maternity units in the Americas, sub-Saharan Africa, South Asia, Europe, and

Oceania. We chose this pooled database for its global scope and large sample size, which

enhances the generalizability of results. The baseline data of this database was used for devel-

opment of the PIERS-ML model [7]. This database includes both the development and exter-

nal validation cohorts for the miniPIERS (for low- and middle-income countries) and

fullPIERS models (for high-income countries) [5,9–12]. We assessed the performance of both

the PIERS-ML and fullPIERS models for consecutive prediction of adverse maternal outcome

using the baseline data and follow-up measurements of this pooled database. This study was

approved by the NHS Research Ethics Committee (REC reference: 02-03-033 on 11 March

2003). Written informed consent was obtained from all participants apart from those recruited

from site Canada where the data were acquired through an audit. This study was conducted

according to the guidelines of the Declaration of Helsinki and reported as per the Strengthen-

ing the Reporting of Observational Studies in Epidemiology (STROBE) guideline (S1

Checklist).

Inclusion and exclusion criteria

We used prospectively collected data from women with preeclampsia, broadly defined accord-

ing to the 2021 International Society for the Study of Hypertension in Pregnancy (ISSHP) cri-

teria [13]. Follow-up was performed via the routine prenatal and postnatal clinical visits of

women. The follow-up measurements were not used once the patient developed any compo-

nent of the combined adverse maternal outcome.

Sites that contributed data to this combined cohort had a general policy of expectant man-

agement for women with preterm preeclampsia and, post-HYPITAT study [14], a general pol-

icy of induction at term.

The PIERS combined adverse maternal outcome

The primary study outcome was a composite developed by Delphi consensus [15], and defined

as one or more of the following within a 2-day rolling window: (i) maternal mortality; (ii)

severe maternal morbidity affecting the central nervous, cardiovascular, respiratory, renal,

hepatic, or hematologic systems; or (iii) other serious complications, such as placental abrup-

tion (listed in S1 Table). This combined outcome is similar to (but not completely consistent

with) the more recent Delphi-derived iHOPE core maternal outcome set for women with pre-

eclampsia [16]. Women who did not develop the composite adverse maternal outcome were

defined as having had an “uncomplicated course.”

Prediction models

The predictors in the PIERS-ML and fullPIERS models [5,7], and the distribution of events for

each component of the composite outcome within the pooled database, are presented in S2

Table. The measurements of the predictors and assessment of the outcome components were

conducted according to the clinical guideline at each site. Quantitative variables, such as plate-

let count and gestational age on admission, were retained in their original form in both models

instead of being categorized.
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Statistical analyses

The predicted probability of the PIERS-ML model may be used to dichotomize women into

high- or low-risk groups, or to stratify them into multiple data-driven risk groups based on

likelihood ratios (LRs) [7]. Thus, we explored the performance of the model when used for

consecutive prediction for each of these risk stratification scenarios.

The date of first assessment with preeclampsia was set as day 0 in this study. Using the latest

measurements available each day, we re-calculated the predicted probability of developing an

adverse maternal outcome within 48 h based on the PIERS-ML model. This enabled us to eval-

uate a 2-week trajectory (i.e., days 0 to 13) of predicted probabilities. A duration of 2 weeks

was chosen because over 98% of the adverse maternal outcomes in preeclampsia occurred over

this timeframe, and it was considered a sufficient time window to evaluate model

performance.

We plotted the trajectory of the mean predicted probabilities and the number of patients

with measurements for both the “uncomplicated course” and adverse outcome groups, respec-

tively. This step was conducted to show the change in the mean predicted probabilities in each

group, as well as the difference between the groups.

Use of the PIERS-ML model with patients dichotomized into high versus

low-risk

The difference in mean predicted probabilities between the “uncomplicated course” and

adverse outcome groups does not reliably indicate the discriminative capacity of the model.

Typically, to assess this aspect, a receiver operating characteristic curve (ROC curve) is

employed. However, due to the relatively low number of adverse outcomes, the predominance

of negative cases can lead to a relatively high area under the ROC curve (AUC-ROC) despite

poor sensitivity (S1 Fig). To counteract this, we measured performance using the area under

the precision recall curve (AUC-PRC) value for each day (day 0 to day 13) to show how the

model’s discriminative ability changed over time [7]. The AUC-PRC value, ranging from 0 to

1, is a measure of model effectiveness based on the balance between positive predictive value

(the probability that a patient flagged as high risk by the tool actually has an adverse outcome,

termed as “precision” in this measure) and sensitivity (the probability that an individual with

an adverse outcome is flagged as high risk, termed as “recall”). While AUC-ROC values have a

fixed baseline value (0.5) for comparison, AUC-PRC values are compared to the fraction of

positives as a baseline, which is the number of cases with adverse outcomes divided by the total

participants [17]. A higher AUC-PRC value indicates superior model performance in accu-

rately identifying positive cases while minimizing false positives. In the case of data sets with a

low incidence of adverse outcomes, a low value of AUC-PRC can still indicate good model per-

formance, unlike AUC-ROC, if the value is higher than the fraction of positives.

Use of the PIERS-ML model with patients stratified into multiple risk

groups

Based on the magnitude of positive likelihood ratios (used for the high-risk groups; indicating

how much more likely a true-positive individual is flagged as high risk compared to a true-neg-

ative individual) and negative likelihood ratios (used for the low-risk groups; indicating how

much more likely a true-positive individual is flagged as low risk compared to a true-negative

individual) of the predicted risks, the PIERS-ML model categorizes women into 5 risk groups:

very low risk (negative LR [-LR] <0.1), low risk (-LR 0.1–0.19), moderate risk (LR 0.2–5.0),

high risk (positive LR [+LR] 5.1–10), and very high risk (+LR >10) with the following cut-off
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values of the predicted risks: <0.6%, 0.6% to 3.1%,>3.1% to<18.8%, 18.8% to 45.6%, and

>45.6% [7]. To evaluate the change in the potential clinical impact of the model over an

extended period, a series of decision curve analyses (on day 0, day 4, day 8, and day 13) was

developed. Net benefit was the measure of the potential clinical impact, as recommended in

the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prog-

nosis or Diagnosis) guideline [18], and threshold probability (cut-off value) is assumed to be

informative of how a clinician or patient weighs the relative harm of a false positive versus a

false negative [19]. A decision curve plots net benefit on the y-axis against threshold probabil-

ity on the x-axis, and by default, compares the model under study to “treat all” and “treat

none” policies [19–21]. In the context of this study, the “treat all” policy refers to immediate

delivery for all patients, whereas “treat none” means expectant management for all patients.

The x-axis was limited to the range of 0% to 60%, as this range was considered sufficient to

cover the clinically plausible threshold probabilities at which patients or clinicians would opt

for intervention in this study, and the threshold probabilities for risk stratification by the

PIERS-ML model (i.e., 0.6%, 3.1%, 18.8%, and 45.6%) were marked on the x-axis.

A Sankey diagram was utilized to provide an overview of the dynamic shifts in risk groups

and their respective contributions to adverse outcomes or an uncomplicated course when the

model was used for consecutive prediction. The width of “paths” in a Sankey diagram is pro-

portional to the number of participants [22].

Lastly, we quantified the daily +LR by applying predefined thresholds for both high-risk

and very high-risk groups, to illustrate how the model’s “rule-in” ability evolves over time.

Similarly, we computed the daily -LR using thresholds for the low risk and very low-risk

groups to demonstrate how the model’s “rule-out” capacity changes over time.

Performance of the fullPIERS model for consecutive prediction

The fullPIERS model, first published in 2011, was developed to dichotomize patients into

“high-risk” and “not high-risk” but in the setting of developed countries [5]. We evaluated its

performance deployed for consecutive prediction by quantifying the change of AUC-PRC

(AUC-ROC values shown on S4 Fig for comparison), plotting the trajectory of mean predicted

risks and decision curves in this study. The results can be found in the Supporting information

(S2–S5 Figs).

The percentage of missing values was around 18%. Multiple imputation (20 times) method

was used to address data missing at random or completely at random, while the last observa-

tion carried forward method was employed for data missing not at random, such as platelet

counts, where clinicians may skip measurements if biomarkers are assumed unchanged. We

had verbal agreement on the analysis plan in February 2022, and added calculation of

AUC-PRC later based on the reviewer comments on the PIERS-ML model manuscript [7].

Analyses were performed using R Statistical Software (version 4.0.5, R Foundation for Statisti-

cal Computing, Vienna, Austria), R Studio (version 1.4.1106), and the following packages:

tidyverse (version 2.0.0), MICE (version 3.16.0), easyalluvial (version 0.3.1), zoo (version 1.8–

11), ggsankey (version 1.0), magrittr (version 2.0.3), epiR (version 2.0.63), pROC (version

1.18.0) [23], and dcurves (0.4.0).

Results

Baseline characteristics of women and missingness of variables

As shown in Table 1, data of 8,843 women with preeclampsia across various continents were

analyzed in this study, 32% of them being white, 30% black, and 26% Asian. Over one third

(38.1%) of the participants were recruited from Canada. The median (interquartile range) of
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Table 1. Characteristics of women at admission.

Variables at admission Baseline on day of admission (N = 8,843;

No. of adverse outcome: 1,083)

Number (%) of women with at

least 1 missing value

Time from admission to final

discharge (days)

5 [3–11] -

Country - 0 (0%)

Australia 245 (2.77%) -

Brazil 188 (2.13%) -

Canada 3,369 (38.1%) -

Fiji 136 (1.54%) -

Finland 119 (1.35%) -

New Zealand 340 (3.85%) -

North America 1,244 (14.07%) -

Pakistan 1,083 (12.25%) -

South Africa 346 (3.91%) -

Health system
GDP per capita (US$) 43,585.51

[26,869.67–50,114.18]

0 (0%)

National maternal mortality ratio

(per 100,000 live births)

11 [11.00–15.00] 0 (0%)

Demographics
Ethnicity - 1,025 (11.59%)

White 2,832 (32.02%) -

Black 2,684 (30.36%) -

Asian 2,304 (26.06%) -

Others 1,023 (11.57%) -

Age of patient at estimated due date

(years)

31 [26.00–36.00] 21 (0.24%)

Height on admission (cm) 162.5 [157.48–167.27] 884 (10.00%)

Gestational age on eligibility

(weeks)

35.79 [31.79–38.23] 17 (0.19%)

Symptoms or lab parameters
Symptom of chest pain or dyspnea 186 (2.10%) 3,347 (37.85%)

Highest systolic blood pressure

(mmHg)

151.78 [140–161.35] 1,323 (14.96%)

Highest diastolic blood pressure

(mmHg)

96 [90–100.6] 1,324 (14.97%)

SpO2 (%) 97 [96.85–97] 987 (11.16%)

Haematocrit (%) 0.36 [0.34–0.38] 4,111 (46.49%)

Total leucocyte count (× 109 per L) 10.66 [9.32–12] 3,189 (36.07%)

Platelet count (× 109 per L) 210 [173–244] 1,820 (20.58%)

Mean platelet volume (fL) 9.99 [9.09–11.1] 5,135 (58.08%)

Serum creatinine (μmol/L) 60.15 [52.21–70] 2,481 (28.06%)

Uric acid (mmol/L) 342 [297.4–389.99] 3,147 (35.59%)

Aspartate transaminase (U/L) 30 [23.00–43.05] 3,629 (41.04%)

Alanine transaminase (U/L) 24 [15.00–37.20] 2,552 (28.86%)

Serum albumin (g/L) 28.8 [22.55–32.00] 4,823 (54.55%)

Data are n (%) or median [Interquartile range]. Ethnicity has been defined in S1 Table.

GDP: gross domestic product; SpO2: Oxygen saturation.

https://doi.org/10.1371/journal.pmed.1004509.t001
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the follow up time was 5 (3 to 11) days. In total, 1,083 developed the defined adverse outcome

event. The median age of the women at estimated due date was 31 (interquartile range: 26 to

36) years. The median gestational age at admission was 35.79 (interquartile range: 31.79 to

38.23) weeks. Around 10% of the women had missing value of height, and 20% to 58% of the

women had at least 1 missing value of each laboratory test during the 2-week window.

Trajectory of mean predicted probabilities and number of patients with

measurements

A consistent decline was seen in the number of patients with measurements from day 0 to day

13 following admission (Bars, Fig 1). The PIERS-ML-derived mean predicted probability of

adverse outcomes in the next 48 h within the adverse outcome group peaked on day 0, steadily

decreased until day 3, and then fluctuated between 0.1 and 0.2 (pink line, Fig 1); the number of

women in this group was quite small (around 300) from day 3 and kept decreasing (pink bars,

Fig 1). Conversely, the mean predicted probability of adverse outcomes in the uncomplicated-

Fig 1. Mean predicted probabilities of complications in the next 48 h (lines) and number of patients with measurements (bars) in

uncomplicated course (blue) and adverse outcome group (pink) per day since admission using the PIERS-ML model. PIERS-ML, PIERS

Machine Learning.

https://doi.org/10.1371/journal.pmed.1004509.g001
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course group was at its lowest on day 0, experienced an upward trend until day 2, and subse-

quently remained stable (blue line, Fig 1). The adverse outcome group consistently exhibited a

higher mean predicted probability than the uncomplicated course group. The mean of the

probabilities predicted by the fullPIERS model (S2 Fig) exhibited similar patterns of consis-

tently higher values in the adverse outcome group with fluctuation over time, while the

uncomplicated course group had lower and more stable values.

Area under the precision-recall curve per day

The PIERS-ML AUC-PRC values on day 0 and day 1 were 0.65 and 0.52, respectively, but

thereafter, all AUC-PRC values were within 0.1 to 0.5, and the lower boundary of the 95% con-

fidence interval (95% CI) of the AUC-PRC value overlapped with the fraction of adverse out-

comes on day 12 and day 13 (Fig 2, black line). The 95% CI became wider from day 0 to day 13

as the number of daily outcome events decreased from over 200 to around 10 (Fig 2, bars).

Although the AUC-PRC values stayed mostly above the corresponding values of the fraction

of adverse outcomes (Fig 2, pink line) within 2 days, the gap between the 2 significantly short-

ened over time. Conversely, for the fullPIERS model (S3 Fig), the AUC-PRC values fell

between 0.2 and 0.4 on most days (black line) without a clear pattern of deterioration, but

shared a similar pattern with the PIERS-ML model regarding the progressively widening 95%

CIs as the count of outcomes fell (bars), and relationship with the fraction of adverse outcomes

within 2 days (S3 Fig pink line).

Fig 2. Daily number of adverse outcomes (bars) and area under the precision-recall curve (AUC-PRC) per day of the PIERS-ML model. Dashed

vertical lines indicate 95% CIs. Fraction of adverse outcomes within 2 days is calculated as the number of women that would experience adverse

outcomes within 2 days divided by the total number of remaining women on a certain day. AUC-PRC, area under the precision-recall curve; CI,

confidence interval; PIERS-ML, PIERS Machine Learning.

https://doi.org/10.1371/journal.pmed.1004509.g002
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S1 Text provides more information for interpreting AUC-PRC values.

Decision curve analyses

Fig 3 presents the results of PIERS-ML-based decision curve analysis on days 0 (Fig 3a), 4 (Fig

3b), 8 (Fig 3c), and 13 (Fig 3d). The dashed vertical lines represent 4 threshold probabilities

(i.e., 0.6%, 3.1%, 18.8%, and 45.6%) from the PIERS-ML model [7] that stratify patients into

very low risk (<0.6%), low-risk (0.6% to 3.1%), moderate risk (>3.1% to<18.8%), high-risk

(18.8% to 45.6%), and very high-risk (>45.6%) groups. The dashed orange line represents a

Fig 3. Decision curve analysis of PIERS-ML model on day 0 (a), day 4 (b), day 8 (c), and day 13 (d). PIERS-ML, PIERS Machine Learning.

https://doi.org/10.1371/journal.pmed.1004509.g003
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“treat all” approach, the dashed blue line a “treat none” approach, and the solid black line the

PIERS-ML model performance. Net benefit of PIERS-ML is reflected by the solid black line

being above the dashed lines for the other approaches.

Dashed vertical lines (from left to right) represent 4 threshold probabilities, i.e., 0.6%, 3.1%,

18.8%, and 45.6%, respectively, that stratify patients into very low-risk, low-risk, moderate

risk, high-risk, and very high-risk groups. Net benefit indicates clinical usefulness of a model.

At a chosen threshold probability, a higher net benefit indicates a better model. Here, we show

the serial comparison between using the PIERS-ML model and scenarios without a prediction

model (either “treat all” or “treat none”).

The benefit of the PIERS-ML model was greatest for those flagged as high or very high risk

(Fig 3). On each day, when the threshold probability of receiving treatment was 0.6%, treat-

ment guided by the model was predicted to be as good as treating all patients. When the

threshold probability was 3.1%, the net benefit of treatment guided by the model was generally

predicted to be very close to that of treating all patients. However, this benefit was predicted to

be inferior to the approach of treating all patients on day 4 (Fig 3b). When the threshold proba-

bility was 18.8% or 45.6%, treatment guided by the model was predicted to result in higher net

benefit (especially on day 0: Fig 3a and day 4: Fig 3b), but relative advantage decreased over

time.

Treatment guided by the fullPIERS model (S5 Fig) was predicted to have a small advantage

over treating all patients on day 0 (S5a Fig); however, due to rapid deterioration of the net ben-

efit, there was almost no difference between treatment guided by the fullPIERS model and the

“treat all” policy beyond day of admission, on days 4 (S5b Fig), 8 (S5c Fig), or 13 (S5d Fig).

S1 Text provides more explanation to interpreting the results of decision curve analysis.

Dynamic shifts of risk groups under consecutive prediction

The Sankey diagram (Fig 4) provides a descriptive overview of the dynamic shifts of the 5 risk

groups when the PIERS-ML model was used repeatedly over days. It reveals that patients of

moderate risk (in yellow) constituted the largest daily proportion. In general, the top 3 risk

groups were the primary contributors to adverse events, while in the low risk and very low-

risk groups, adverse events were rare.

Of the 7,600 patients, 327 (4.3%) were predicted to be at very high risk of an adverse out-

come at least once in the 2 weeks following first assessment; 316/327 (96.6%) experienced their

adverse outcome within 2 days of first being classified as very high risk. Only 11/327 (3.4%)

had an uncomplicated course, with 10 having been delivered on the day that they were first

being predicted to be at very high risk.

A total of 860 (11.3%) patients were predicted to be at high risk of an adverse outcome at

least once, and 426/860 patients (49.5%) experienced an adverse outcome, 39 of whom moved

to the very high-risk group before the adverse outcome occurred. Most adverse outcomes

(388/426, 91.1%) occurred within 2 days of classification into high risk for the first time, and

only 8 patients (1.9%) experienced an adverse outcome after more than a week. Approximately

half of patients (434/860, 50.5%) had an uncomplicated course, most delivering within 2 days

of first being predicted to be at high risk (358/434, 82.5%); however, some (76/434, 17.5%)

remained under expectant management with no complications for up to 2 weeks.

For patients in the moderate risk group at admission, nearly half delivered within 2 days fol-

lowing admission; after day one, most patients remained in the moderate risk group on the

subsequent day, but on each day thereafter, there were similar proportions of patients switch-

ing to the high-risk or low-risk groups.

PLOS MEDICINE Performance drift in consecutive prediction using PIERS-ML and fullPIERS pre-eclampsia models

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004509 February 4, 2025 11 / 18

https://doi.org/10.1371/journal.pmed.1004509


A total of 3,147 patients (35.6%) were predicted to fall into the low-risk group at least once

over the 2-week period. Only a small proportion (159/3,147, 5.1%) experienced an adverse out-

come, but most (114/159, 71.7%) moved to moderate, high, and/or very high risk before occur-

rence of that outcome, and 2,988 patients (94.9%) had an uncomplicated course; most (2,636/

2,988, 88.2%) delivered within a week of first being predicted to be at low risk; however, some

remained under expectant management with no complications for up to 2 weeks.

Of the 1,125 patients classified as being at very low risk at least once, 23 (2.0%) suffered an

adverse outcome, 21 of whom moved to a higher risk category before occurrence of that out-

come, and 1,102 (98.0%) had an uncomplicated course, with 803/1,102 (72.9%) delivering

within 2 days, and some remaining under expectant management with no complications for

up to 2 weeks.

S1 Text provides more information for interpreting the Sankey diagram.

Change of likelihood ratios

Table 2 shows the change of +LRs and -LRs across different risk groups from day 0 to day 13.

In the very high-risk group, the +LR consistently exhibited high values, from 70.99 to infinity

(except for day 12 when no women were identified as being at very high risk). For the high-

risk group, the +LR exceeded 10 during the initial 48 h, and then fluctuated from 2.01 to 7.92

thereafter. The -LRs for the low-risk group were below 0.05 for the first 48 h, then fluctuated

between 0.15 and 0.80 thereafter. For the very low-risk group, the -LRs were predominantly 0

throughout.

Discussion

In this multicountry prospective observational cohort study of 8,843 pregnancies, we found

that neither the PIERS-ML nor fullPIERS model maintained good performance employed for

Fig 4. Sankey diagram showing an overview of the dynamic shifts of the 5 risk groups from day 0 to day 14 after admission. The flow

(demonstrating the shifts among the risk groups) of each risk group is featured by a distinctive color (e.g., dark blue for the very low risk group). The

white bars show the cumulative deliveries over time, while the black band represents the cumulative adverse outcome events.

https://doi.org/10.1371/journal.pmed.1004509.g004
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repeated risk stratification in women with preeclampsia. This was true over a number of ana-

lytical approaches: trajectories of mean predicted probabilities, area under the precision-recall

curve per day, decision curve analyses, dynamic shifts of risk groups under consecutive predic-

tion, and change of LRs. While the PIERS-ML model displayed good “rule-in” and “rule-out”

capacity for the very high-risk and very low-risk groups over time, performance of the much

larger high-risk and low-risk groups deteriorated substantially after 48 h following admission,

when using the latest available measurements.

In our study, we have quantified the performance of the PIERS-ML and fullPIERS models

for consecutive prediction. To the best of our knowledge, we could not identify any existing

studies that assessed static prediction models employed for consecutive prediction, much less

prediction models specifically in the context of preeclampsia. Clinical periodic assessments are

increasingly integral to patient care, rendering consecutive prediction both more common

and important.

Consecutive predictions using both the PIERS-ML and fullPIERS models revealed disparity

in the trajectories of the mean predicted probabilities in the adverse outcome group and the

uncomplicated course group, which can be attributable to various external factors. Most

adverse events occurred soon after admission, supporting the early performance of the models.

Subsequently, early interventions in the sickest patients, and less severe conditions in the

remaining patients, may have resulted in relatively lower predicted probabilities. As more

births occurred, the rapidly decreasing and small number of patients contributed to notable

variation in the estimated mean predicted probability. Conversely, those women with uncom-

plicated courses may have presented initially with milder disease and, thus, lower predicted

probabilities. However, their condition deteriorated subsequently, resulting in an increased

mean predicted probability and eventual stabilization due to medical intervention. Further-

more, both models’ inability to capture the trajectory of predictors over time could be a pivotal

Table 2. Daily positive/negative likelihood ratios calculated with thresholds of different risk groups.

Days Very high-risk$ High-risk$ Low-risk* Very low-risk*
0 70.99 (51.55, 97.77) 16.44 (13.89, 19.46) 0.04 (0.02, 0.08) 0.00

1 173.99 (85.77, 352.95) 11.73 (10.16, 13.53) 0.03 (0.01, 0.07) 0.00

2 196.70 (47.59, 813.01) 7.92 (6.36, 9.88) 0.19 (0.12, 0.31) 0.00

3 174.23 (23.07, 1,315.71) 6.68 (5.01, 8.91) 0.29 (0.18, 0.48) 0.54 (0.07, 3.98)

4 Inf 5.99 (4.03, 8.90) 0.45 (0.27, 0.75) 0.00

5 96.18 (11.99, 771.80) 3.62 (2.03, 6.48) 0.54 (0.33, 0.87) 0.00

6 Inf 4.14 (2.25, 7.63) 0.49 (0.27, 0.87) 0.00

7 Inf 4.56 (2.49, 8.37) 0.30 (0.14, 0.64) 1.56 (0.20, 12.12)

8 Inf 3.92 (1.93, 7.99) 0.19 (0.06, 0.56) 0.00

9 Inf 6.00 (2.96, 12.17) 0.15 (0.05, 0.46) 0.00

10 Inf 3.32 (1.30, 8.45) 0.21 (0.08, 0.54) 0.00

11 Inf 5.42 (2.37, 12.38) 0.24 (0.08, 0.71) 0.00

12 NA 2.01 (0.29, 13.98) 0.80 (0.35, 1.82) 0.00

13 Inf 3.63 (0.86, 15.22) 0.49 (0.20, 1.20) 0.00

Numbers in “()”: 95% confidence intervals.
$Positive likelihood ratio.

*Negative likelihood ratio.

Inf, infinite; NA, not applicable.

https://doi.org/10.1371/journal.pmed.1004509.t002
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factor in the relatively steady pattern of mean predicted probability for both groups after 48 h

following admission.

Although the AUC-PRC value of the PIERS-ML model was mostly above the fraction of the

adverse outcomes within 2 days, it generally decreased over time. This reduction, along with

the narrowing gap between the AUC-PRC value and the fraction of adverse outcomes, indi-

cates a declining discriminative capacity. This decline may be attributed to the model’s reliance

on baseline, rather than repeated, measurements [7]. Although advancing gestational age

could signify different severity, given that a longer duration allows for greater progression

towards a maternal high-risk scenario, gestational age was included as a predictor in the

model. Alternatively, the lack of consecutive prediction could lie in the static nature of the

PIERS-ML model, which essentially captures a “snapshot” of a patient’s condition at first

assessment. In contrast, clinical practice involves regular reassessment to monitor disease pro-

gression—individual trajectories of predictors.

It is noteworthy that some +LRs of the very high-risk group were infinite, which resulted

from all women in that group experiencing an outcome. However, the patient numbers in

these groups were quite small, and so may not reflect reliable discriminative capacity. In gen-

eral, both the descriptive Sankey diagram and the daily LRs demonstrated that the very low-

risk group and the very high-risk group maintained good “rule-out” and “rule-in” capacity

over time, respectively, but the very high- and very low-risk groups accounted for only a small

proportion of the patients. In contrast, the high- and low-risk groups had many more patients

and the predictive accuracy decreased substantially after 48 h following admission, making the

deterioration in the overall performance of the model over time clinically relevant.

The results of decision curve analysis, which incorporates how the harm of a false positive

prediction weighs against that of a false negative prediction, aligned with the findings of other

analyses in this study. Moreover, the time and effort needed to gather data for and implement

a model are not considered in decision curve analysis. Thus, if predictors of the model take

non-trivial efforts, the model would not be considered truly useful if it only brings a slight

increase in net benefit [20]. This means the model under study might be not helpful when

employed, e.g., on day 8 or day 13 considering its small advantage in terms of net benefit. The

change of the net benefit of the model could be explained by similar reasons responsible for

the trajectories of the mean risk and the change of AUC-PRC values described above.

The fullPIERS model underperformed in this study due to several factors. Firstly, the mod-

el’s static nature proved unsuitable for consecutive predictions as discussed above. Secondly, it

was tested on a more geographically diverse data set than the one used for training, which may

have altered its accuracy and contributed to its inferiority compared to the PIERS-ML model.

Additionally, AUC-PRC was not reported in the original study. Although the AUC-ROC value

was previously reported, it is not directly comparable to AUC-PRC and is generally not an

accurate measure of model performance when positive cases are rare [5]. Strengths of our

study include the large sample size with diverse settings and comprehensive approach, examin-

ing PIERS models derived using machine-learning and multiple regression, and taking multi-

ple analytical approaches. A limitation of this study is that the baseline performance (day 0) of

the PIERS-ML model, as a benchmark for comparing with the performance of consecutive

prediction, was evaluated on the data used for its development and internal validation. How-

ever, PIERS-ML’s baseline performance has been externally evaluated (area under the receiver

operating characteristic curve: 0.8), which shows very low risk of overfitting [7], and in this

study we focused on the performance of consecutive prediction which was evaluated using fol-

low-up data of the women, which was not used for training the model. While use of a

completely external data set would have been preferable, the considerable deterioration over

time in the most optimistic model performance is strong evidence of performance drift.
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In general, we may hypothesize that static clinical prediction models can provide unreliable

predictions when population characteristics, clinical practice, disease prevalence or the whole

healthcare system changes—so-called “performance/calibration drift” [24–26]. For consecu-

tive prediction using serial measurements, existing prediction models can be updated or new

models trained for this purpose. Potential approaches include recalibrating intercept or both

intercept and joint effects of predictors, merging previous prediction models in a meta-model,

and dynamic modeling [27,28]. Dynamic modeling is the most complicated approach, with

multiple methodological frameworks proposed, most commonly landmark prediction and

joint modeling [29,30], but also time-dependent covariate modeling, trajectory classification,

and machine learning [31]. To date, there have been attempts to construct dynamic models for

predicting preeclampsia [32–34], but not for predicting the adverse outcomes of preeclampsia.

Based on our findings of performance drift (especially in terms of clinical utility) and the

lack of better alternatives, we recommend using both the PIERS-ML and fullPIERS models for

consecutive prediction of adverse maternal outcome in preeclampsia more cautiously as preg-

nancy progresses. Clinicians should interpret consecutive predictions with increasing uncer-

tainty. To optimize maternal outcomes, future work may consider developing a dynamic

approach, to account for individual trajectories so that predictions can be updated serially. The

performance of these dynamic approaches can be compared with the results of this study to

quantify their added value.
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