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Formation of individual stripes in a mixed- 
dimensional cold-atom Fermi–Hubbard 
system

Dominik Bourgund1,2 ✉, Thomas Chalopin1,2, Petar Bojović1,2, Henning Schlömer2,3,4, Si Wang1,2, 
Titus Franz1,2, Sarah Hirthe1,2,6, Annabelle Bohrdt2,5, Fabian Grusdt2,3,4, Immanuel Bloch1,2,4 & 
Timon A. Hilker1,2 ✉

The relation between d-wave superconductivity and stripes is fundamental to the 
understanding of ordered phases in high-temperature cuprate superconductors1–6. 
These phases can be strongly influenced by anisotropic couplings, leading to higher 
critical temperatures, as emphasized by the recent discovery of superconductivity in 
nickelates7–10. Quantum simulators with ultracold atoms provide a versatile platform 
to engineer such couplings and to observe emergent structures in real space with 
single-particle resolution. Here we show, to our knowledge, the first signatures of 
individual stripes in a cold-atom Fermi–Hubbard quantum simulator using mixed- 
dimensional (mixD) settings. Increasing the energy scale of hole–hole attraction to 
the spin exchange energy, we access the interesting crossover temperature regime in 
which stripes begin to form11. We observe extended, attractive correlations between 
hole dopants and find an increased probability of forming larger structures akin to 
individual stripes. In the spin sector, we study correlation functions up to the third 
order and find results consistent with stripe formation. These observations are 
interpreted as a precursor to the stripe phase, which is characterized by interleaved 
charge and spin density wave ordering with fluctuating lines of dopants separating 
domains of opposite antiferromagnetic order12–14.

The phase diagram of high-temperature superconducting materials 
has so far eluded full understanding despite 40 years of extensive 
theoretical and experimental studies4–6. Especially, the exact nature 
of the intricate relationship between superconducting pairs and 
stripes remains an open question1–6. Although experimentally both 
phenomena may be found in close proximity, numerical studies have 
long been investigating whether stripes precede, compete or coexist 
with superconductivity15–17. Recently, by the discovery of supercon-
ductivity in bilayer nickelates7, a new class of superconducting materi-
als has been found. These materials are conjectured to be of a mixD 
nature, in which the dynamics of charge is restricted to two dimen-
sions, whereas the spins order in a bilayer system. Here we study mixD 
systems, which are predicted to show an enhanced version of stripe  
order8–10.

The repulsive, two-dimensional (2d), spin-1/2 Fermi–Hubbard model 
and its natural extensions are widely assumed to provide minimal mod-
els to capture the physics of these doped antiferromagnets (AFMs). 
Ultracold atoms in optical lattices provide natural implementations 
of the Hubbard model with a high degree of control over system 
parameters and dimensionality18,19. Although solid-state experiments 
mostly focus on spectroscopic and dynamical response measurements, 

quantum simulation, especially with single-site resolution, opened up 
access to new sets of microscopic observables and correlation func-
tions20–23. Previous studies in 2d systems found AFM correlations24–29, 
investigated the effect of doping on the spin order19,30–35 and observed 
pairing of dopants in tailored ladder systems36.

Here we present the first, to our knowledge, observation of hole 
attraction beyond nearest-neighbouring sites in a repulsive, 2d Hub-
bard system with mixD coupling. Using higher-order charge and spin 
correlators, we find signatures of extended charge structures, which 
we identify as individual stripes.

Stripe formation and mixD
Stripe phases, characterized by charge density waves in combination 
with incommensurate AFM order, have been found in measurements 
on solids1–3,37,38 as well as numerical studies12–14,17,39–43. These stripes form 
out of individual dopants of an AFM background, a process governed by 
the competition between the kinetic energy favouring delocalization 
and the magnetic energy of the AFM spin order, which is disrupted by 
dopant motion. Consequently, the energy scale at which stripe order 
is expected to occur is only around 5% of the tunnelling energy43 
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(about 10% of the superexchange energy), placing it out of reach for 
state-of-the-art quantum simulators. In particular, for temperatures 
around the superexchange energy, the effective repulsion resulting 
from the fermionic nature of the holes (Pauli blocking) disfavours 
tightly bound hole pairs and extended structures such as stripes but 
favours the formation of magnetic polarons30 (see Fig. 1a).

MixD systems allow to tilt the balance towards collective charge 
and spin ordering by restricting the hole motion to one dimension, 
thus reducing the kinetic energy while keeping spin couplings 2d. 
This leads to an increase in the characteristic energy scales of collec-
tive effects as kinetic and magnetic terms in the Hamiltonian are less 
frustrated, lifting these effects to experimentally accessible regimes44. 
In nickelates, which are mixD bilayer systems, this causes high critical 
temperatures for superconductivity7–10. Similarly, in ladder systems, 
in which the spin order is dominated by rung singlets, numerics11 and 
experiments36 confirmed strong pairing in mixed dimensions. Here 
we apply this mixD approach to the unexplored 2d system, in which 
the spin sector is not gapped and classical simulations are limited 
to very small system sizes, especially at the relevant intermediate 
temperature scales. By adding a sufficiently large potential offset to 
every other chain within the lattice, we remove nearest-neighbour 
hopping along the perpendicular direction while increasing spin 
couplings45,46. This biases hole attraction and stripe formation along 
the direction perpendicular to the hole motion because Pauli repul-
sion is suppressed in this direction. For the same reason, fully filled 
stripes are favoured but the key concept of charge ordering associ-
ated with the stripe phase is retained42,43 (see Fig. 1b). This allows 
us to study the poorly understood temperature regime around the 
superexchange energy in which individual stripes are expected  
to form.

Experimental implementation
In the experiment, we realize the spin-1/2 Fermi–Hubbard model by 
using 6Li atoms in an optical superlattice with a homogeneous, circular 
system of about 110 sites surrounded by a low-density reservoir (see 
Fig. 1c). In the limit of strong on-site interactions U, the essential phys-
ics of the system can be captured by the t–J Hamiltonian using projec-
tions P̂ onto singly occupied sites,
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spin-up/spin-down fermionic creation (annihilation) operators on site 
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†
i  ( îc ,↑/↓) and on-site spin (density) operators Ŝi (nî). This model 

suffers from the fermion sign problem, making it numerically chal-
lenging to tackle even in the mixD regime47.

Here we work at U/tx = 27(2), Jy/tx = 0.6(2), Jx/tx = 0.15(3) and a fill
ing of n ≈ 0.7–0.9 (hole doping δ = 1 − n) with a temperature of  
kBT/tx = 0.3(1) (see Supplementary Information). We make use of  
an optical superlattice along y to controllably detune neighbour
ing sites by Δ U t t= 0.65(5) , ′x y≫ , thus effectively disabling nearest- 
neighbour tunnelling along y (ty ≈ 0), and leading to a spin coupling 
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, in which t ′y is the tunnel coupling in the 2d sys-
tem without potential offsets. Owing to the staggered superlattice 
potential, there is also a second-order next-nearest-neighbour hopping 
term along y, which reintroduces a weak Pauli repulsion at distance 
dy = 2. This term, however, is smaller than Jy, such that it is still expected 
to be favourable for stripes to form (see Supplementary Information 
for more details on preparation and subdominant couplings).

Hole–hole correlations
To reveal the charge order within the system, we evaluate the con-
nected, normalized two-point hole–hole correlator
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with hole density operator înh at position i and normalization Nd the 
number of bonds with distance d. Owing to the finite size and particle 
number fluctuations in our system, there is a global, doping-dependent 
offset oδ ∈ [−0.06, −0.03] on this correlator that we subtract (see Sup-
plementary Information). A positive (negative) value of this correlator 
indicates attraction (repulsion) between holes at distance d.

We consider hole correlations in a mixD system with a doping of 
δ = 0.18 in Fig. 2a,b. We observe a positive nearest-neighbour correla-
tion along y, whereas along x, we find antibunching caused by the Pauli 
repulsion of the holes (see Fig. 2a). Furthermore, at larger distances 
dy > 1, there are positive correlations, which indicates that, instead of 
merely forming isolated, nearest-neighbour hole pairs, there is a finite 
probability that vertically aligned hole structures are extended through 
the system. Furthermore, there are significant correlations along the 
diagonals at d = (1, 1), which we interpret as signs of charge fluctua-
tions along x owing to the finite coupling tx. The correlations at dy = 2 
are slightly suppressed, which we attribute to next-nearest-neighbour 
hopping (see Supplementary Information). Finally, the positive signal 
at dx = ±5 may be related to the presence of a second, vertically aligned 
charge structure in the system.

By considering one-dimensional (1d) cuts along y and x (Fig. 2b), 
we corroborate the bunching (antibunching) along y (x) through the 
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Fig. 1 | MixD Fermi–Hubbard systems. a, Illustration of the isotropic 2d 
Fermi–Hubbard model. Holes delocalize within small regions and disturb their 
respective spin background, forming magnetic polarons. The overall hole 
density is uniform and holes repel each other owing to their fermionic statistics 
at experimentally accessible temperatures of kBT ≈ J. There are no domain walls 
in the spin order. b, By raising the potential on every other lattice site along y  
by Δ, we suppress tunnelling along this direction, thus removing the Pauli 
repulsion between holes, while preserving the superexchange coupling Jy.  

At low temperatures, the holes form collective structures, which also result in a 
domain wall in the AFM correlations of the system, indicated by the AFM parity 
change across the stripe. c, A single raw experimental shot of spin-up (red)  
and spin-down (blue) atoms and doubly occupied sites (purple), as well as its 
reconstructed spin and charge distribution with the main system being inside 
the black circle, surrounded by a low-density reservoir (see Supplementary 
Information). The green box indicates a stripe-like structure.
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system in the mixD setting. By contrast, for the standard 2d system 
(Δ = 0; Fig. 2b, inset), there is antibunching along both directions. Com-
pared with this, the anticorrelations along x are enhanced in mixD by 
removing ty as a result of the absent competition between anticorrela-
tions along x and y.

To identify whether an ideal doping level for the emergence of indi-
vidual stripes exists in our mixD system, we bin our data by doping and 
calculate ghh

(2) per bin (see Fig. 2c). Both the nearest-neighbour and 
diagonal correlations decrease with doping above δ ≈ 0.15, indicative 
of the decrease in pairing probability with doping and compatible with 
a reduction of the spin correlations responsible for the binding. For 
d = (0, 2), (0, 3), there is a non-trivial dependence on doping with pos-
itive correlator values starting at δ = 0.17. This is indicative of a possible 
transition from the formation of individual pairs to extended stripe-like 
structures41–43.

We compare the correlations along y to density matrix renormaliza-
tion group (DMRG) calculations of equation (1) on 8 × 3 sites, Jy/tx = 0.5, 
Jx/tx = 0.15, kBT/tx = 0.41 as a function of doping in Fig. 2d (see also Sup-
plementary Information for normalization). Although the trend in 
correlations at d = (0, 1) and d = (1, 1) is qualitatively comparable with 
the experimental data, the same cannot be stated about correlations 
at d = (0, 2). We attribute these differences to the strong finite size limi-
tations in the DMRG along y as well as the simulation of the t–J model 
instead of the Hubbard model. Further differences could arise owing 
to the presence of the aforementioned second-order hopping process 
that introduces further repulsion between holes, as well as the statisti-
cal distribution of holes between different chains in the experiment, 
whereas calculations feature balanced hole numbers.

Structures beyond hole pairing
The connected two-point correlator ghh

(2) only provides limited insights 
into the physics of extended charge structures and how they interact 

with each other. We extend the analysis by considering the two-point 
pair–hole and pair–pair correlators
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tors, as shown in Fig. 3a, assume the existence of nearest-neighbour 
pairs along y (established using ghh

(2)) and consider the attraction or 
repulsion of these pairs to other dopants or pairs. They may be seen as 
fully connected and normalized two-point correlators of pairs or ‘par-
tially connected’ three-point/four-point hole correlators. Note that, 
for simplicity, we neglect diagonal pairs (that is, ̂ ̂n ni i i i( , )

h
( ±1, +1)
h

x y x y
) asso-

ciated with fluctuations along x and may thus underestimate the 
amount of order within the system.

We present the pair–hole and pair–pair correlations for the mixD 
system as a function of distance along x and y in Fig. 3b,c. For improved 
statistics, we include in our analysis all hole doping levels (see Sup-
plementary Information) for which the offset oδ of equation (2) becomes 
negligible. In both cases, we observe positive correlations along y, 
which extend throughout the system, indicating that individual pairs 
are not repelled from other holes or each other but instead align along 
y and tend to form stripe-like structures. Meanwhile, there is a strong 
anticorrelation along x for |dy| ≤ 1, which we attribute to the antibunch-
ing of individual holes in the same chain. We also compute the average 
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Fig. 2 | Hole correlations beyond nearest neighbours. a, Hole–hole 
correlations in a mixD system revealing bunching (attraction) along y at 
distances dy ≥ 1 and antibunching (repulsion) along x with δ = 0.18. The 
symmetrization is indicated by the dashed lines. b, A cut along y (x) is shown 
in dark (light) green for mixD systems, with the inset showing the equivalent 
data for standard 2d systems. c, The dependency of the mixD correlator ghh

(2) 
at distance d = (0, 1), (1, 1), (0, 2), (0, 3) on doping is plotted in red, purple, blue 
and grey with a doping binning of  ±0.009. In a doping region around 0.2, the 
correlators for distances dy > 1 are positive, indicating longer range charge 
correlations. Error bars are estimated using bootstrapping. d, Results for the 
renormalized correlator (see Supplementary Information) from DMRG 
calculations for a system size Lx × Ly = 8 × 3 as a function of doping for kBT/tx = 0.41.
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correlator. We find an attraction of the pairs along y, which points towards  
the formation of larger-scale structures. Above the map, the average over dy 
(g (2)) hints at the existence of another charge structure at dx = 4. Error bars  
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not visible. d, In the symmetrized, connected three-point hole–hole–hole 
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along y, which indicates the existence of longer charge structures beyond pairs 
of two holes (see Supplementary Information for statistical significance).  
The data are evaluated over the hole doping distribution as given in the 
Supplementary Information.
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of the correlators over dy as g (2) (top of Fig. 3b,c). This reveals a slightly 
positive signal at a distance of dx = 4, qualitatively similar to Fig. 2. 
Although this signal is reminiscent of a charge density wave, future 
studies are required to confirm this hypothesis.

For further insights into the binding of larger structures, we consider 
the fully connected three-point hole–hole–hole correlator
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in which Cdisc removes all lower-order disconnected parts of the cor-
relator (see Supplementary Information). We show the correlator for 
dh = (0, 1) in Fig. 3d and find a positive signal at the closest distance along 
y, whereas all other distances are negative (along x) or vanish within 
the error bars (see Supplementary Information). This signal directly 
points to extended charge structures being favoured in excess of just 
individual hole pairs.

To provide further evidence for extended, fluctuating charge struc-
tures, we make use of the full information in our snapshots and count 
‘stripes’. To this end, we define a fully filled ‘stripe’ as a connected line 
of holes along y, for which the pairwise distance along x between holes 
in neighbouring chains is at most 1 (see Fig. 4a, inset). We designate 
the length ℓ of this structure by the number of chains involved. We 
then consider the fraction ζ(ℓ) of experimental realizations contain-
ing a ‘stripe’ of at least length ℓ. In Fig. 4a, we compare the mixD case 
(green) with the 2d system (brown) and randomly distributed holes 
(grey line; see Supplementary Information) at a doping of δ = 0.111 
analysed on a subsystem of 9 × 9 sites. For the mixD case, we find an 
excess of events for large ℓ, consistent with the tendency to form long 
fluctuating structures, whereas the results obtained for the standard 
2d case are consistent with randomly distributed holes. Full numerical 
calculations are out of reach at our system size and temperature range, 
but a mean-field model of stripes shows quantitative agreement in the 
low-doping regime (see green lines in Fig. 4a and Supplementary Infor-
mation). We next analyse the difference to the random distribution δζ(ℓ) 
as a function of doping (Fig. 4b). For all doping levels and lengths, this 
signal is positive in the mixD system, indicating the inclination of the 
system to form extended structures. The excess probability at longer 
lengths grows with doping as structures of increasing lengths form.

Spin sector
The AFM correlations in the system and their interplay with charge 
delocalization are crucial for the formation of stripes and leads to 
characteristic signatures in the spin sector13. Most prominently, one 

expects a change in the parity of the AFM order in the presence of 
stripes, manifesting as incommensurate magnetism of the system 
and splitting of the peak at (π, π) in the spin structure factor5 (as also 
known in 1d systems48). Although our anisotropic and strongly interact-
ing parameter regime is not favourable to investigate structure factors 
(see Supplementary Information), our microscopic resolution in both 
spin and charge sector allows us to evaluate real-space observables 
inaccessible in solid-state experiments. Most useful in this context 
are higher-order spin-charge correlators, such as the normalized, bare 
three-point hole–spin–spin correlator
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in which ds is the spin bond vector, dh the distance of the bond from 
the dopant and we normalize by hole density ̂n⟨ ⟩h  and the spin standard 
deviation σ S( )

ẑ .
Previous studies have shown that, in square lattice 2d Fermi– 

Hubbard systems, a single mobile dopant will be surrounded by a dress-
ing cloud of reduced spin correlations, forming a magnetic polaron30–32. 
In 1d systems, incommensurate magnetism leads to a change in the 
parity of the AFM pattern across impurities49,50. The same feature is 
predicted to prevail in stripe phases, making this correlator suited to 
revealing this specific feature in our data. We show the bare hole–spin–
spin correlator as defined in equation (5) for the mixD system in Fig. 5a, 
in which specific spin bonds are shown for varying distances from a 
hole. We focus on the diagonal and next-nearest-neighbour correla-
tors. The most prominent feature is the strongly negative correlation 
across the hole along x, which is consistent with a change in the parity 
of the local AFM pattern across a hole. Similarly, the diagonal bonds 
in the direct vicinity of the hole also become negative. This is another 
indication of fluctuations along x within charge structures. Mean-
while, the ds = (0, 2) correlations along y are largely unaffected by the 
presence of a hole and retain their positive sign. The slightly negative 
(positive) ds = (2, 0) (ds = (1, 1)) bond in the background further away 
from the dopant is a result of the overall doping level and vanishes in 
the connected correlator (see Supplementary Information).

Another way to explain the change in spin order across dopants is by 
using a spin-string correlator49,51. This spin–spin correlator has extra 
sign changes for every hole between two spins in the same chain and 
is defined as
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tend towards longer lengths with doping.
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Fig. 5 | Spin-sector analysis. a, Hole–spin–spin correlation map. We show the 
bare correlator for diagonal and selected next-nearest spin bonds as a function 
of distance from the hole. The strongest signal is found in the sign change  
of the next-nearest-neighbour bond across the hole along x pointing towards  
a domain wall in the local AFM pattern. Along y, the correlations keep their 
expected positive sign from the AFM pattern. b, Similarly, by considering the 
string spin correlator (dark green) and normal spin–spin correlator (light 
green) at distance d = 2 (see text), we observe a change in sign, consistent with 
the change in parity of the AFM pattern. Shaded regions are theory results on 
Lx × Ly = 8 × 3 at kBT/tx = 0.3. Error bars are estimated using bootstrapping and 
are smaller than the marker size if not visible.
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in which R = ei
niπ i

ĥ ̂ . Note that, for R =î �, the common spin–spin correla-
tor is recovered. For systems with spin-charge separation, this correla-
tor reveals a hidden spin structure in doped AFM systems49,50. The 
changes in the phase of the AFM pattern for stripe phases act in a 
similar fashion and can be revealed by measuring this string correlator 
along the direction perpendicular to the stripes (that is, along x). We 
show both the common spin–spin and the string correlator at distance 
d = 2 in Fig. 5b as a function of doping. We observe a change to a positive 
sign following the use of the string correlator that only varies weakly 
with doping, in agreement with theory predictions. These features can 
be directly related to the characteristic spin domain parity flips present 
in stripe phases. Note that we observe these features even without 
long-range AFM correlations—which are only expected at lower tem-
peratures—because stripe-like structures already energetically favour 
such a local spin arrangement.

Conclusion
We have realized a mixD Fermi–Hubbard model using ultracold atoms 
and found signatures of hole pairing and extended charge ordering in 
a temperature regime with short-ranged spin correlations, for which 
the collective behaviour of charges remains poorly understood. We 
detect effective hole attraction in density correlations and present 
further evidence for the onset of fluctuating individual stripes and their 
interplay with the magnetic background using real-space observables. 
Also, the spin environment is in qualitative agreement with the forma-
tion of an AFM domain wall across the dopants in both three-point and 
string correlators. We interpret these features as signatures for the 
formation of individual stripes as a precursor to the ordered stripe 
phase. The favourable energy scales of the mixD setting pave the way for 
quantum simulators to study this collective phase, including the precise 
periodicity, fluctuations and filling6, and thereby provide valuable com-
parisons with recent results in theoretical calculations17,52. The direct 
connection between mixD and 2d systems provides a possible method 
to study the adiabatic preparation of stripes using mixD couplings. 
Through the mapping to attractive interactions53, new insights into 
the stripe phase also directly relate to the exotic Fulde–Ferrell–Larkin–
Ovchinnikov phase54. Furthermore, direct extensions to bilayer mixD 
systems connect our work to recently discovered high-Tc compounds, 
for which the mixed dimensionality seems essential for the emergence 
of a superconducting phase at around 80 K in bilayer nickelates7,8,10.
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Methods

Experimental sequence
We prepare a spin-balanced sample of ultracold 6Li atoms in the 
two lowest hyperfine states |F = 1/2, mF = ±1/2⟩ in a single layer of an 
optical lattice following our previous work36,55. After magnetic evap-
oration, we load from a crossed dipole trap into a box potential (sur-
rounded by a reservoir with  approximately h × 2 kHz higher chemical 
potential) projected with a digital mirror device (see Extended Data 
Fig. 1a). From this, we load into optical lattices along x and y with 
ax = 1.11 μm and ay = 1.14 μm. Their depths in the following are given in 
units of their respective lattice recoil ER = h2/(8Ma2), in which M is the  
atomic mass.

To prepare the mixD system described in the main text without intro-
ducing large density inhomogeneities, we cannot directly load into 
the final lattice configuration but instead follow a procedure similar 
to that in ref. 36 (see Extended Data Fig. 1c). We first load into decoupled 
1d chains along x by exponentially ramping to Vx = 3ER, Vy = 35ER and a 
scattering length of 1,160aB, corresponding to our final on-site interac-
tions of U = h × 4.4(1) kHz within 200 ms. At this point, we turn on a 
superlattice along y (a a μ= 2 = 2.28 my y

SL ) to a depth of V E= 2y
SL

R within 
1 ms. By tuning the relative phase between the lattice and the superla-
ttice to the fully staggered configuration, we ensure that the spin cou-
plings remain the same in even and odd bonds along y. This staggering 
creates a potential offset of Δ = 0.65(5)U between neighbouring sites 
to suppress tunnelling along y. We then slowly restore coupling along 
y by ramping the lattices in 56 ms to their final depths of Vx = 9ER and 
Vy = 7ER. We make sure to keep the interactions constant during this 
second ramp by adjusting the scattering length accordingly, leading 
to a final scattering length of 1,293aB. For any 2d system comparison, 
we perform the same ramps without turning on the y superlattice. For 
more details on our superlattice design, see ref. 56. For detection, we 
freeze out the system by ramping to Vx/y = 43.5ER within 1.5 ms and per-
form spin-resolved single-site detection as described in ref. 36.

The resulting system can be accurately described by a Fermi–
Hubbard-type model with parameters (t, U, Δ), which can be mapped 
onto the t–J model of equation (1). For all settings, we have tunnelling 
tx = h × 163(10) Hz, interactions U = h × 4.4(1) kHz (thus U/tx = 27(2))  
and superexchange Jx = h × 24(4) Hz. For the 2d system, we have 
t h′ = × 253(13) Hzy , however for Δ ≠ 0U, the effective coupling ty is neg-
ligible. The superexchange coupling Jy is nonzero in both cases  
with J h′ = × 58(7) Hzy  for the 2d system and Jy = h × 104(23) Hz for  
Δ = 0.65(5)U. Owing to the strongly anisotropic spin couplings and 
large U/tx, the spin correlations are not sufficiently long-ranged to 
expect any signal in the spin structure factor.

We estimate the temperature of our system using the spin cor-

relations ∑C ( ) =
S S S S

σ S σ S
ss

1 ⟨ ⟩ − ⟨ ⟩⟨ ⟩
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z z
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 as a function of doping and  

compare this to matrix product states (MPS) calculations in Extended 
Data Fig. 2. We fit the individual doping bins to the numerical data and 
extract their respective temperature. As the short y direction may be 
subject to finite size effects in the DMRG calculations, we determine 
individual temperatures along x and y. By extracting temperatures 
per doping level, we estimate a temperature of kBT/tx ≈ 0.3(1) and 
kBT/tx ≈ 0.4(1) from the correlations along x and y, respectively. Owing 
to the doping and high interactions, spin correlations only extend up 
to approximately three sites along y and are shorter along x. For that 
reason, fully correlated domain walls cannot form, making structure 
factors particularly challenging to investigate.

Offset phase calibration
To calibrate the detuning Δ, we first need to precisely determine the 
relative phase between the lattice and the superlattice. For this, we 
load a dilute cloud into a system of decoupled double wells along y, in 
which Vx = 40ER, Vy = 8ER and V E= 21y

SL
R, leading to an intrawell coupling 

of ty(ϕ = 0) = h × 724(80) Hz. We vary the phase between the lattice and 

the superlattice and measure the normalized imbalance, that is, the 
difference in occupation between the different parts of the double 
well, normalized by their summed occupation (see Extended Data 
Fig. 3). When we prepare symmetric double wells, the imbalance 
approaches zero. However, when we tune away from this configuration, 
we reach an imbalance of  ±1 within less than 50 mrad. This sharp tran-
sition indicates a high degree of stability and homogeneity of the rela-
tive superlattice phase within the system (see also ref. 56 for more 
details). For the measurements presented here, we then work at a phase 
of ϕ = π/2, at which the offset between neighbouring lattice sites is 
highest for a given lattice depth and the interwell and intrawell cou-
plings are identical.

We confirm the energy scales associated with a given potential 
offset by comparing it with our interaction energy. We prepare the 
system at the lattice parameters stated in the previous section and 
a phase of ϕ = π/2 and vary the depth of the superlattice (that is, the 
potential offset) in a slightly hole doped system (see Extended Data 
Fig. 3c,d). For offsets smaller than the bandwidth, tunnelling between 
sites is not yet suppressed and we create a strong imbalance. On the 
other hand, for large offsets around the interaction energy, we enable 
resonant tunnelling between sites whenever both are occupied, thus 
creating both an imbalance and doublons within the system. The 
observed scales are consistent with band-structure calculations based 
on our lattice parameters. Between these two regimes, the imbal-
ance approaches zero. The maximum in imbalance around U/2 can 
be explained by a second-order process in which a doublon in a lower 
chain breaks into two atoms in the two adjacent chains (see also ref. 56). 
To avoid this effect and the associated extra holes and doublons, we 
perform our experiments at an offset slightly above U/2. The resulting 
mixD system has a small residual normalized density imbalance (as 
can also be seen in Extended Data Fig. 1b) of about 0.037. This does 
not affect the validity of the Hubbard Hamiltonian of equation (1) 
(as the couplings are unchanged) but only leads to a slightly worse 
doping resolution.

Data statistics, doping histograms
In total, we collect 11,675 experimental realizations. Of these, 1,254 
were taken in a 2d system with Δ = 0U, the remaining 10,421 with 
Δ = 0.65(5)U. Within these measurements, we slightly vary the doping 
level (as well as the natural fluctuations inherent to our preparation 
scheme) which yields a range of 10–30% hole doping. To ensure that 
there is no overall magnetization ∑M S= ⟨ ⟩z

i i
z  within the system, we 

check the distribution of magnetization normalized by the system size, 
which is centred around zero and shows a width below shot noise (see 
Extended Data Fig. 4).

Connected correlators and offsets
Full connected correlator expressions. We present a variety of cor-
relators to characterize the spin and charge order in our system. We here 
distinguish between bare, ‘partially connected’ and fully connected 
correlators. Although the bare correlator does not subtract anything, 
the fully connected correlator subtracts all possible lower-order contri-
butions between all of its constituents, for example, for a two-point cor-
relator, it removes the product of the mean operator values, whereas for 
a three-point correlator, it also removes all combinations of two-point 
correlators. Meanwhile, partially connected correlators only subtract 
some specific lower-order correlators: in this case, as we consider pairs 
as new objects, we do not subtract any correlations arising from the 
individual holes in the pair.

All of these different types of correlator are then helpful to extract 
slightly different information about the system. Although fully con-
nected correlators are especially useful to extract small signals in 
higher-order correlators dominated by lower-order contributions, 
the bare correlator may be more interesting when higher-order cor-
relations are actually larger than lower-order correlators.
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For this reason, as well as the partially connected pair–hole and pair–

pair correlator (equation (3)) and the bare hole–spin–spin correlator 
(equation (5)), we used the fully connected hole–hole–hole correlator 
defined as
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Similarly, we can define a connected hole–spin–spin correlator as
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For this connected correlator, we observe the same main features 
also shown in Fig. 5a with a dominant negative bond across the hole 
(see Extended Data Fig. 5). This signal is strong enough to dominate 
over the AFM background, changing the correlator sign even in the 
bare correlator shown in Fig. 5. Meanwhile, the positive diagonal and 
next-nearest-neighbour bonds along y far from the hole shown in Fig. 5a 
now vanish, as they are not related to the presence of a hole but just stem 
from the AFM background. We compare this to DMRG calculations with 
Ly = 4, δ = 0.125 and kBT/tx = 0.4, which shows the same main features 
of strong anticorrelations across the dopant and at the diagonals in 
the immediate vicinity.

Offset correction. As well as the subtraction of the disconnected 
part, we also introduce an offset correction oδ on the hole–hole cor-
relator. This correction arises owing to the doping fluctuations in our 
finite-sized system. For each realization, we prepare a system with 
random but fixed total atom number and magnetization (see Extended 
Data Fig. 4). The calculated correlations in a finite system then obey a 
sum rule depending on the particle number and variance.

We start by considering N fermions on V sites with density n = N/V. 

The local two-point correlator Γ i j( , ) = − 1
n n

n n

⟨ ⟩i j

i j

̂ ̂
 (with ̂n n= ⟨ ⟩i i ) after  

summing over all possible pairs of sites i, j can be expressed as
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Var( )

. (10)
i j

2
,

2

̂

If we now separate the on-site fluctuations and use fermionic statis-
tics in which n n=2̂  ̂(and thus Γ i i( , ) = − 1n

1 ), we obtain

̂
∑

V
Γ i j

N N n
N

1
( , ) =

Var( ) − (1 − )
. (11)

i j
2

≠
2

Unless the global fluctuations of N are also fermionic fluctuations 
(that is, multinomial, in which ̂N N nVar( ) = (1 − )), the sum rule in equa-
tion (11) leads to a nonzero value of Γ(i, j) for i ≠ j even at T = ∞. Note that 
typically ̂N NVar( ) ∝  or less, such that equation (11) is a 1/N correction, 
which vanishes in the thermodynamic limit.

Identifying ̂ ̂n n≡ h, we use this result in the calculation of the hole–hole 
correlations in Fig. 2 and thus define the offset oδ through

̂
o

N N n
N

=
Var( ) − (1 − )

( )
, (12)δ

h h h

h 2

and the corrected correlation as equation (2)

̂ ̂
̂ ̂









∑g

n n

n n
o( ) − 1 =

1 ⟨ ⟩

⟨ ⟩⟨ ⟩
− 1 − , (13)δhh

(2)
h

+
h

h
+
hN

d
d i

i i d

i i d

with d i j j i dN ∑ δ= , , +  and Kronecker delta δi, j. Most importantly, the 
doping-dependent offset we apply is global on all distances. Therefore, 
we can understand this offset as a global −1/N correction for a fixed 
number of particles in the system, whereas for exceedingly large global 
fluctuations, positive offsets can occur.

This offset correction oδ only plays a role when selecting specific 
doping levels in a finite-sized system such that the total atom number 
is almost fixed ( ̂NVar( ) → 0) and thereby leads to strong global offsets, 
that we hereby compensate (see Extended Data Fig. 6a). We show in 
Extended Data Fig. 6b the offset as a function of doping together with 
the nearest-neighbour hole–hole correlator values with and without 
applied offset. As indicated by the dashed lines, the offset without 
selection on a density bin is negligible. For this reason, we do not apply 
any corrections in Fig. 3.

Correlator from theory. When comparing the absolute values of hole–
hole correlations with simulations, care needs to be taken because of 
the differences in doping, fluctuations and boundary conditions. All 
calculations are performed with open boundary conditions along x 
and y. Meanwhile, the potential at the edges in the experiment has a 
finite width, which means that the exact position of any charge feature 
will be fluctuating and therefore be washed out. As a result, we detect 
signals in ghh

(2)  but not in the density, in contrast to theory, in which 
stripes appear as density features36. When using connected correlators 
on theory data, this will lead to reduced correlations. To analyse numeri
cal results, we hence use the slightly modified correlator g ( )hh

(2) d∼   
defined as

N
∑g

n n

n n
( ) − 1 =

1 ⟨ ⟩
− 1 (14)hh

(2)
h

+
h

h h

̂ ̂∼ d
d i

i i d
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in which, compared with equation (2), we replace the normalization 
by the local densities with the global doping level nh. This effectively 
assumes that the density is homogeneous throughout the system 
instead of bunched at the centre, allowing for easier comparison with 
the experiment.

Statistical significance in correlation maps. The correlation maps 
shown in Figs. 2 and 3 do not give any indication of which data points 
in the map are statistically significant or fall below the noise floor of 
the measurement. To address this, we show in Extended Data Fig. 6c–f 
the same maps as in Figs. 2 and 3 for which we now set all distances 
with signals compatible with zero (that is, the signal being less than 
1σ away from zero) to grey. All features mentioned in the main text are 
still clearly visible.

Further coupling terms in the mixD Fermi–Hubbard model
In the experiment, we realize a 2d Fermi–Hubbard model with aniso-
tropic tunnel couplings and energy offset on every second site along 
y. In the limit of strong interactions U ≫ tx, ty used here, this is commonly 
mapped onto the t–J model. However, this approximation neglects 
higher-order terms that can arise in the expansion, including a crucial 
second-order hopping term. Although nearest-neighbour hopping is 
suppressed owing to the potential offset, next-nearest-neighbour 



hopping remains resonant in a staggered potential. We experimentally 

confirmed the presence of this term and its scaling ∼t t= ″ +y y
t

Δ
y
2

 with 
direct next-nearest-neighbour tunnelling t″y  (which is, however, neg-
ligible for our parameters) by performing single-particle quantum 
walks56. This simple expression neglects interaction effects with atoms 
in the intermediate lattice site. For Δ = 0.65(5)U, this means that 

t ≈y
t

U

1.54 y
2∼ . This could, in principle, disfavour stripe formation, as the 

weak Pauli repulsion associated with ∼ty could inhibit pairs at distance 
2 such that only dy = 1 hole pairs would form. In this experiment, the 
contribution can mostly be neglected as the principal energy scale is 
given by ∼J t≈ 3y y, which dominates in our parameter regime over ty

∼ .

Stripe-length random data generation
To interpret the stripe-length results of Fig. 4, we compare with ran-
dom hole distributions with different short-ranged correlations. We 
first simply randomly sample holes on 9 × 9 sites (see Extended Data 
Fig. 7a), in which we observe strong positive signals in the mixD case 
and negative signals for the 2d case. However, the strong Pauli repul-
sion along x might have an influence on this signal. For this reason, we 
randomly sampled holes for which we included, in Fig. 4, the experi-
mentally obtained anticorrelations along x (see Fig. 2). Finally, we com-
pare with randomly placed pairs along y within the system in Extended 
Data Fig. 7b, exhibiting similar features. Thus, we conclude that the 
observed main qualitative features are relatively insensitive to the 
exact details of the randomly generated data and that we see a genu-
ine stripe signal that cannot be explained by random or short-ranged 
correlated holes.

Numerical simulations of the mixD t–J model
We simulate the mixD t–J model,


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
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
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i j
i j

i j

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

̂ ̂ ̂ ̂

H P P

(see equation (1)) for Jy/tx = 0.5 and Jx/Jy = 0.3 at finite temperature 
using MPS through mixed state purification schemes57–59. In particu-
lar, we expand the system by introducing one auxiliary site for each 
physical site, which allows for showing mixed physical states as pure 
states on an enlarged Hilbert space. A pure state in the enlarged system 
at finite temperature is calculated by evolving the maximally entan-
gled, infinite temperature state Ψ β( = 0)⟩ in imaginary time under 
the physical Hamiltonian, 

̂
Ψ τ Ψ β( )⟩ = e ( = 0)⟩τ− H , in which τ = β/2, with  

β the inverse temperature. Thermal expectation values O⟨ ⟩T
̂  in the 

physical subset are computed by tracing out the auxiliary degrees of 
freedom, that is,

̂
̂

O
Ψ β O Ψ β

Ψ β Ψ β
⟨ ⟩ =

⟨ ( ) ( )⟩
⟨ ( ) ( )⟩

. (16)T

During the imaginary time evolution, we conserve the particle num-
ber in each row Nℓ, ℓ = 1,…, Ly, the total particle number in the auxiliary 
system Naux.

tot  and the total spin S z
phys.+aux.

,tot  (the latter allowing for thermal 
fluctuations of the total magnetization in the physical system). This 
results in a total of Ly + 2 symmetries used by the DMRG implementa-
tion, leading to marked speed-ups over a single global U(1) conservation 
in the overall physical system11.

The maximally entangled state needed as a starting point of the 
imaginary time evolution, Ψ β( = 0)⟩, is generated using specifically 
tailored entangler Hamiltonians11,60. Because these states (being pro-
jected product states) are of low bond dimension ( Oχ τ( = 0) ≈ (100)), 
local approximations of the Hamiltonian and subsequent exponentia-
tion will suffer from large projection errors. Hence, we start by using 

global methods for a single step in imaginary time, after which the 
entanglement in the system (and the bond dimension of the thermal 
MPS) has sufficiently increased to switch to local methods.

Owing to the mapping of the (enlarged) 2d system to a 1d chain, the 
bond dimension required for a fixed accuracy scales exponentially 
with linear system size in the y direction. For doping scans, we limit 
the system size to Lx × Ly = 8 × 3 with open boundaries and hole con-
figurations Nℓ = 1, 2, 3 for each ℓ = 1, 2, 3. For a single hole per chain, 
we simulate systems up to Ly = 4. As this mixD model suffers from the 
fermion sign problem, these limited system sizes are still state of the 
art for numerical calculations while mostly allowing general qualita-
tive comparison with the much larger experimental system. Larger 
system sizes have only been achieved at zero temperature, which is 
numerically much easier to realize in DMRG. We furthermore checked 
that our temperature estimations (Extended Data Fig. 2) are not 
affected by the finite size effects of the DMRG calculation by compar-
ing spin correlations for Ly = 3 and Ly = 4 at δ = 0.125 and finding very  
similar values.

In particular, we evolve  Ψ β( = 0)⟩ using global Krylov schemes by a 
single step txΔτ = 0.01. Weight cut-offs are set to 10−10, expanding the 
bond dimension to χ τ Δτ( = ) ≈ (1, 000)O . From here on, we switch to 
the local two-site time-dependent variational principle (TDVP) 
method59 with time steps of txΔτ = 0.03, weight and truncation cut-offs 
of 10−10 and 10−12, respectively, and cutting edge maximum bond dimen-
sions of χTDVP = 30,000. We evolve the system to τtx = 2.0, correspond-
ing to a temperature of kBT/tx = 0.25.

Spin–spin correlations, as well as hole distributions in each leg, are 
exemplarily shown in Extended Data Fig. 8a for kBT/tx ≈ 0.4 for a system 
of size Lx × Ly = 8 × 4 with periodic boundaries along the short direction 
and Nℓ = 1 for all ℓ = 1,…, 4. At the centre of the chains, at which the hole 
density peaks, an AFM domain wall forms, signalling the formation of 
a single, fully filled stripe. For a higher doping of δ = 0.25 (Ly = 3, open 
boundaries), we show the hole density as well as hole–hole correla-
tions in Extended Data Fig. 8b,c, in which the two separate stripes are 
visible. Results as a function of temperature are shown in Extended 
Data Fig. 8d for dy = 1 and dy = 2.

Effective descriptions of stripes in the mixD t–J model
Mean-field theory. In this section, we present a mean-field theory for 
the stripe phase in the mixD t–J model. We focus on describing an indi-
vidual stripe in the y  direction with exactly one hole per chain, bound 
by the magnetically mediated confining potentials. In particular, we 
neglect the interaction between several stripes at positions i1 and i2, 
that is, we focus on the low-doping regime. To illustrate the concept, 
we first consider a mean-field description of the ground state, before 
generalizing to finite temperature.

For tx ≫ Jx, Jy, quantum correlations between strongly fluctuat-
ing holes and spins in squeezed space (defined in refs. 51,61) can be 
neglected62–66. Hence, we make the ansatz

ψ ψ ψ⟩ = ⟩ ⊗ ⟩ , (17)sq c

in which ψ⟩sq is the spin state of the undoped Heisenberg model in 
squeezed space and ψ⟩c is the chargon wavefunction. Our starting 
point for the description of the single stripe is the variational Gutzwiller 
wavefunction, given by

ψ ϕ⟩ = ⟩ , (18)
y

yc
=−∞

∞
(0)⨂

that is, we describe the charge sector by the product of identical 
single-leg wavefunctions ϕ ⟩y

(0)  in chain y. Assuming that the stripe is 
centred around x = 0, we express ϕ ⟩y

(0)  within the string basis,

∑ϕ ϕ y Σ⟩ = , ⟩, (19)y
Σ

Σ
(0)

=−∞

∞
(0)
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in which Σ can be understood as the length of the string measured rela-
tive to the centre of the stripe.

Within this variational ansatz, coefficients ϕΣ
(0) can be found  

by minimizing the energy of the trial state, ψ ψ ψ⟨ ⟩ = ⟨ ⟩ = (⟨ ⊗0 sqH Ĥ ̂
ψ ψ ψ⟨ ) ( ⟩ ⊗ ⟩ )c sq c∣ ̂ ∣ ∣H ,

∑ ∑L
E
L

t ϕ ϕ ϕ ϕ V Σ Σ
⟨ ⟩

= − ( * + c.c.) + ( − ′). (20)
y y

x
Σ

Σ Σ
Σ Σ

Σ Σ
0 0

+1
(0) (0)

, ′

(0) 2
′

(0) 2
pot

̂
∣ ∣ ∣ ∣

H

Here Vpot(Σ) is the interchain potential defined by the potential 
energy of two holes in neighbouring chains separated by the string Σ,

∣ ∣ ∣ ∣V Σ J Σ δ C Σ C( ) = [( − 1 + ) − ( + 1) ], (21)y Σ
y

pot ,0 2 1

in which C ψ ψ= ⟨ ⋅ ⟩μ
1 s + sμ

∣ ̂ ̂ ∣S Si i e , μ = x, y are nearest neighbours and 
∣ ̂ ̂ ∣C ψ ψ= ⟨ ⋅ ⟩2 s + + sx y
S Si i e e  are diagonal spin–spin correlations in the 

undoped Heisenberg model in the ground state. Note that there are 
also intrachain contributions, which, however, are constant and only 
lead to a trivial energy shift on top of the Heisenberg ground state 
energy E0 (see Extended Data Fig. 9a).

By averaging over the upper and lower chains for a given leg, we can 
reformulate the variational problem, equation (20), as a self-consistent 
ground state search of the mean-field Hamiltonian per chain,

̂ ̂ ̂ ̂ ̂∑ ∑E
L

t h h h h V Σ= − [ + h.c.] + ( ), (22)
y

x
Σ Σ

Σ Σ
Σ

Σ ΣMF
0

, ′
′

† †
effH

in which ̂ ∣ ∣h y y Σ, 0⟩ = , ⟩Σ
†

 and

∣ ∣∑V Σ ϕ V Σ Σ( ) = 2 ( ′ − ). (23)
Σ

Σeff
′

′
(0) 2

pot

Note the factor of 2 in the potential energy, arising from energy con-
tributions between chains y ± 1 with chain y. When considering the total 
energy of the variational wavefunction, equation (20), however, there 
is no extra factor to not double count interchain energy contributions.

In practice, we set a maximal cut-off for the string length, here cho-
sen as ∣ ∣Σ ≈ 15max . By exact diagonalization and self-consistently solving 
equation (22), the string-length distribution ∣ ∣ϕΣ

(0) 2 within the mean-field 
picture can be calculated.

At finite temperature, we generalize the ansatz to a product of den-
sity matrices,

ρ ρ ρ= ⊗ , (24)
y

sq
=−∞

∞

MF
(0)̂ ̂ ⨂ ̂
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in which

ρ
Z

=
1

e (25)β ρ T
MF
(0) − ( , )MF MF

(0)
Ĥ ̂ ̂

defines the self-consistency equation through

Ĥ ̂ ̂ ̂

̂ ̂ ̂

̂ ∣ ̂ ∣

∑

∑

∑

ρ

L
E
L

t h h

h h V Σ ρ T

V Σ ρ T Σ ρ Σ V Σ Σ T

( )
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+ ( ; , ),
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Here S Si i e
̂ ̂C T( ) = ⟨ ⋅ ⟩μ

T1 + μ
, μ = x, y and C T( ) = ⟨ ⋅ ⟩T2 + +x y

̂ ̂S Si i e e  entering 
Vpot in equation (21) are thermally averaged two-point correlators of 
the 2d Heisenberg model. Given the self-consistent solution of ̂ρMF

(0) , 
the mean-field string-length distribution is determined by the diagonal 
elements of ρMF

(0)̂ , that is, p Σ ρ Σ= ⟨ ⟩Σ MF
(0)∣ ̂ ∣ .

We use finite-temperature DMRG methods (see previous section) to 
calculate thermally averaged nearest-neighbour and diagonal correla-
tions of the undoped Heisenberg model with Jx/Jy = 0.3 on a Lx × Ly = 12 × 4 
lattice with periodic boundaries along y; see Extended Data Fig. 9b. 
Results for the corresponding mean-field estimates of the string-length 
distributions in the stripe phase are shown in Extended Data Fig. 9c  
for tx/Jy = 2 and temperatures kBT/tx = [0.2, 0.625].

Using the mean-field theory string-length distributions, we sample 
snapshots and compare the resulting stripe-length distributions to the 
experiment (see Extended Data Fig. 9f). At the expected temperature 
of kBT/tx ≈ 0.3, the effective description matches the experiment rather 
well, with only a slight overestimation of the order in the mean-field 
description.

Müller–Hartmann–Zittartz estimate. To make further comparisons 
with statistical models, we reduce the mixD system to a 1d, purely clas-
sical model of fluctuating holes bound together by the effective poten-
tial Vpot (equation (21); Müller–Hartmann–Zittartz (MHZ) approach). 
Denoting with xℓ the x position of the doped hole in leg ℓ (we again 
consider one hole per chain, that is, a single fluctuating domain wall), 
the effective Hamiltonian (excluding quantum fluctuations from the 
hopping of the holes) for a system of size (Lx + 1) × (Ly + 1) reads

̂
ℓ

ℓ ℓ∑ V x x T= ( − ; ), (27)
L

MHZ
=1

pot +1

y

H

in which again the temperature-dependent correlators C T( ) =μ
1  

̂ ̂⟨ ⋅ ⟩T+ μ
S Si i e , μ = x, y and  ̂ ̂C T( ) = ⟨ ⋅ ⟩T2 + +x y

S Si i e e  enter the effective pot
ential Vpot(|xℓ − xℓ+1|; T) in equation (21).

The partition function, Z, decouples when being expressed solely 
by distances dℓ = xℓ − xℓ+1,
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The probability of finding two adjacent holes at distance d in chains 
ℓ, ℓ + 1 is given by

p d βV d T Z( ) = exp[− ( ; )]/ , (29)pot 1

shown for various temperatures kBT/Jy in Extended Data Fig. 9d.
Fixing the first hole in the centre and sampling distances according 

to equation (29), we again generate snapshots of the hole configura-
tions. Note that, although in the mean-field theory fluctuating stripes 
pinned to the centre were described, the classical formulation as given 
above captures stripes that are not pinned to the boundary and hence 
naturally form extended hole configurations (see also Fig. 4a). We 
compare the results with the experimental data in Extended Data 
Fig. 9g, in which, for kBT/Jy = 0.8, we observe similar features to the 
experiment and the results from mean-field theory for kBT/tx = 0.36. 
Finally, we investigated the mean length of the excess stripes in the 
MHZ approach as a function of temperature (see Extended Data Fig. 9e). 
We observe an increase of this length below J, marking the onset of 
stripe-like structures.

Limitations of the effective descriptions. Both descriptions of the 
fluctuating stripe presented above are approximate, as they rely on 
assuming an effective confining potential (equation (21)) between 



holes in neighbouring chains. The latter description is derived within 
the geometric string approach, that is, assuming that the fluctuat-
ing charges merely displace spins in the background when they move 
around, without affecting their spin correlations. At low temperatures, 
this is a valid assumption, whereas at higher temperatures—when longer 
strings play an increasingly important role—we expect corrections to 
the confining potential. In particular, the question remains whether 
an unbinding transition of holes out of the stripe can take place. Latest 
for T → ∞ in the effective model this is expected to happen, for which 
spin correlations in the background Cd → 0 and thus Vpot(Σ) ≡ 0 in  
equation (21).

Another limitation of the effective models of an individual stripe is 
its limitation to one hole per chain. On one hand, extended interactions 
between neighbouring stripes at low temperatures can lead to ordering 
and the formation of a stripe phase with long-range charge and (incom-
mensurate) spin order. On the other hand, at higher temperatures, the 
spatially extended nature of the individual stripes can cause interaction 
effects between them to play a role in the expected thermal unbinding 
transitions into a deconfined chargon gas65.
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Extended Data Fig. 1 | Lattice potential and ramps. a, Pattern applied to the 
digital mirror device for potential shaping. b, Resulting density profile in the 
centre. c, Lattice ramps to prepare the mixD system. We first ramp in 200 ms to 
decoupled 1d chains before ramping to the full mixD system.



Extended Data Fig. 2 | Spin correlations as a function of doping. Nearest- 
neighbour spin correlations along x (a) and y (b) for different doping levels. We 
compare the experimental data (grey markers) to numerical data for Css(1, 0) 
for different temperatures for simulations on Lx, Ly = 8, 3 and Jy/tx = 0.5 to get an 
estimate for our temperature.
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Extended Data Fig. 3 | Offset calibration. a, We load a dilute cloud into a deep 
superlattice (Vx = 40ER, Vy = 8ER and V E= 21y

SL
R) with different phase and extract 

the imbalance in occupation between neighbouring chains to calibrate the 
symmetric phase. b, At the symmetric double-well configuration (ϕ = 0), we 
reach zero imbalance, whereas even for small deviations, we quickly occupy 
only one part of the double well. All of the main experimental results are obtained 
for ϕ = π/2. Doublon density (c) and imbalance between chains (d) as a function 
of potential offset Δ (that is, superlattice power) for a relative superlattice 
phase of π/2. The peak in the doublon density coincides with the interaction 
energy U (grey line), at which atoms are then resonantly transferred to 
neighbouring chains. For small offsets, tunnelling is not yet fully suppressed 
and an imbalance is created. Above an intermediate peak at U/2 (created by a 
higher-order process), there is a low-imbalance regime in which the experiment 
is performed (black line).



Extended Data Fig. 4 | Data statistics. Histograms of doping (a) and 
magnetization (b). We take data between 10% and 30% doping, whereas  
the total magnetization is well centred around 0.
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Extended Data Fig. 5 | Connected three-point correlator. a, Fully connected, 
symmetrized, three-point hole–spin–spin correlator. By removing the AFM 
background, we focus on the extra effect introduced by the dopant that is 
compatible with the onset of a domain wall in the local AFM pattern across  
the dopant. b, A comparison with DMRG calculations at kBT/tx = 0.4 shows 
qualitatively similar results.



Extended Data Fig. 6 | Correlator offsets and significance. a, Correlation 
map of Fig. 2a without offset correction. b, Correlator offset oδ as a function of 
doping. The nearest-neighbour hole–hole correlator as a function of doping 
with (red) and without (green) offset correction is shown in the inset. The 
horizontal dashed lines are the same correlator without binning by density,  
in which case the offset almost vanishes (dashed line in b). Symmetrized hole–
hole (c), pair–hole (d), pair–pair (e) and hole–hole–hole (f) correlation maps 
with errors. All values consistent with zero are set to grey. The signals discussed 
in the main text are all still clearly visible.
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Extended Data Fig. 7 | Stripe-length random data comparison. a, Comparing 
experimental data with randomly generated data without any correlations.  
b, Comparison with randomly placed pairs within the system. Both methods 
yield qualitatively the same result as the data in the main text.



Extended Data Fig. 8 | Finite-temperature DMRG. a, DMRG calculations  
for a Lx × Ly = 8 × 4 system with periodic boundaries along the short direction, 
temperature kBT/tx ≈ 0.4 and Hamiltonian parameters as in the experimental 
setup. Shown are the on-site hole density distributions in each leg, ̂n⟨ ⟩ii

h  (grey 
lines), as well as spin–spin correlations S S⟨ ⟩

z z
ii jj0
̂ ̂  (colour-coded) for reference site 

i0 = [x = 3, y = 2] (white box). At the maximum hole density distribution in the 
centre of the chain, a domain wall of the AFM background forms, that is, a single 
stripe is observed. b, Hole density for Ly = 3, δ = 0.25, kBT/tx = 0.41. Two separate 
stripes form at this doping level. c, Hole–hole correlations versus distance, 
reminiscent of the structure shown in Fig. 2a. d, Hole correlations as a function 
of temperature for dy = 1 (red) and dy = 2 (blue), δ = 0.125 (dashed lines) and 
δ = 0.25 (solid lines).
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Extended Data Fig. 9 | Effective models. a, Illustration of the effective 
potential between chain y with its neighbouring chain y + 1. Grey lines illustrate 
energy contributions proportional to J Cμ

μ
1 , μ = x, y; green line denotes diagonal 

correlation with energy contributions of order JyC2 starting at |Σ| ≥ 2. Intrachain 
energy corrections from the Néel state of strength J Cx

x
1  are constant and not 

written down explicitly in the potential. b, Thermally averaged two-point 
correlations of the undoped Heisenberg model ̂ ̂C T SS SS( ) = ⟨ ⋅ ⟩μ

μ Tii ii ee1 + , μ = x (grey), 
y (red) and C T SS SS( ) = ⟨ ⋅ ⟩x y Tii ii ee ee2 + +

̂ ̂  (blue) calculated from DMRG calculations for 
Jx/Jy = 0.3 on a 12 × 4 lattice with periodic boundary conditions applied along the 
short ( y) direction. c, Thermally averaged string-length distribution ∣ ̂ ∣Σ ρ Σ⟨ ⟩MF

(0)  
for temperatures kBT/tx = [0.2, 0.625] and tx/Jy = 2 using the thermal correlations 
in the Heisenberg model in b. d, Hole distance distributions in the MHZ 
approach (equation (29)) for various temperatures kBT/Jy = 0.4–0.9. e, Mean 
length of excess stripes as calculated from the MHZ approach as a function  
of temperature. The dashed line marks the experimental temperature.  
f, Difference in stripe lengths from mean-field theory to random distribution 
for temperatures kBT/tx ∈ [0.2, 0.625] and Jx/Jy = 0.3 and experimental data for 
δ = 0.111 (markers) as in the inset of Fig. 4a. g, Stripe-length histograms using 
the classical MHZ estimate for temperatures kBT/Jy ∈ [0.4, 1], which shows 
qualitatively similar results.
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