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Abstract: Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) continue
to be global public health issues. Globally, about 39.9 million persons live with HIV in
2023, according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024
Fact Sheet. Consequently, the World Health Organisation (WHO) reported that about
1.5 million new cases of HBV occur, with approximately 820 thousand mortalities yearly.
Conversely, the lower percentage of HBV (30%) cases that receive a diagnosis is a setback
in achieving the WHO 2030 target for zero HBV globally. This has necessitated a public
health concern to repurpose antiretroviral (ARV) drugs for the treatment of HBV diseases.
This review provides an introductory background, including the pros and cons of repur-
posing antiretrovirals (ARVs) for HBV treatment. We examine the similarities in replication
mechanisms between HIV and HBV. We further investigate some clinical studies and trials
of co-infected and mono-infected patients with HIV–HBV. The topical keywords including
repurposing ARV drugs, repurposing antiretroviral therapy, Hepatitis B drugs, HBV ther-
apy, title, and abstracts are searched in PubMed, Web of Science, and Google Scholar. The
advanced search includes the search period 2014–2024, full text, clinical trials, randomized
control trials, and review. The search results filtered from 361 to 51 relevant articles. The
investigations revealed that HIV and HBV replicate via a common route known as ‘reverse
transcription’. Clinical trial results indicate that an early initiation of ARVs, particularly
with tenofovir disoproxil fumarate (TDF) as part of a regimen, significantly reduced the
HBV viral load in co-infected patients. In mono-infected HBV, timely and correct precise
medication is essential for HBV viral load reduction. Therefore, genetic profiling is pivotal
for successful ARV drug repurposing in HBV treatment. Pharmacogenetics enables the
prediction of the right dosages, specific individual responses, and reactions. This study
uniquely explores the intersection of pharmacogenetics and drug repurposing for opti-
mized HBV therapy. Additional in vivo, clinical trials, and in silico research are important
for validation of the potency, optimum dosage, and safety of repurposed antiretrovirals
in HBV therapy. Furthermore, a prioritization of research collaborations comprising of
regulators and funders to foster clinically adopting and incorporating repurposed ARVs
for HBV therapy is recommended.

Keywords: antiretrovirals (ARVs); antiretroviral therapy (ART); drug repurposing;
HIV; HBV
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1. Introduction
The Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024 Fact Sheet es-

timated the 2023 global persons infected with human immunodeficiency virus (HIV) to
be about 39.9 million [1]. HIV primarily targets the destruction of the CD4+ T cells (the
immune system’s white blood cells). The destruction of CD4+ T cells weakens the ability of
the body to fight various infections and diseases. Untreated HIV infection continuously
destroys the body’s ability to fight diseases, thereby resulting in acquired immune de-
ficiency syndrome (AIDS) at a later stage [2]. The drugs used for treating or managing
HIV are classified as antiretroviral therapy (ART). Persons with HIV are often advised
to combine therapy, known as a “treatment regimen”. The list of recommended Food
and Drug Administration (FDA) HIV drugs has been previously reported in the literature
and is shown in Table 1 below [3]. Another global viral infection called “viral hepatitis”
accounts for over 80% of five different types of hepatitis such as hepatitis A, B, C, D, and E.
Hepatitis B (HBV) and Hepatitis C (HCV) are regarded as the major causes of death from
viral hepatitis. The World Health Organisation (WHO) reported that about 1.5 million new
cases of HBV occur, with approximately 820 thousand mortalities yearly [4]. Conversely,
the lower percentage of HBV (30%) cases that receive a diagnosis is a setback in achieving
the WHO 2030 target for zero HBV globally [4,5]. Similar to HIV medications, drugs for the
treatment of HBV-infected persons have been reported in the literature and are also shown
in Table 1 below [6,7].

Table 1. Commonly used drugs for HIV and HBV infections and their suspected side effects.

Serial Number Drug Names Target Infections Likely Side Effects References

1 Tenofovir Disoproxil
Fumarate (TDF) HIV and HBV Renal failure, reduced bone mineral

density, nausea, and diarrhoea [8]

2 Lamivudine
(3TC) HIV and HBV Nausea, headache, lactic acidosis [9]

3 Emtricitabine
(FTC) HIV and HBV Headache, gastrointestinal problems,

hyperpigmentation and fatigue [10]

4 Efavirenz
(EFV) HIV Neuropsychiatric issues, rashes, and

elevated liver enzyme [11]

5 Dolutegravir
(DTG) HIV Headache, insomnia, weight gain,

hypersensitivity issues [12]

6 Zidovudine
(AZT) HIV Myopathy, nausea, vomiting,

anaemia, neutropenia [13]

7 Ritonavir/Lopinavir
(LPV/r) HIV

Gastrointestinal issues, elevated liver
enzyme, lipodystrophy, elevated level

of blood lipid (hyperlipidaemia)
[14]

8 Entecavir
(ETV) HBV Fatigue, headache, dizziness,

abdominal pain, and nausea [15]

9 Tenofovir Alafenamide
(TAF) HBV Headache, abdominal pain, renal and

bone problems [16]

10 Adefovir Dipivoxil
(ADV) HBV Headache, weakness, abdominal pains [17]

11 Pegylated Interferon
Alfa-2a (Peg-IFNα2a) HBV and HBC Fever, flu, neuropathy, anaemia [18]

12 Telbivudine
(LdT) HBV

Elevated creatine kinase, myopathy,
peripheral neuropathy, fatigue

and headache
[19]
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While ART involves the combinatory treatment (treatment regimen) of HIV with two
or more antiretrovirals (ARVs), ARVs are medications or drugs used for the treatment of
HIV. ARVs exist in different inhibitor classes, such as protease, non-nucleoside reverse
transcriptase inhibitor (NRTI), nucleoside reverse transcriptase inhibitor (NNRTI), and
other types [20–22]. Lately, ARV drugs have been repurposed or repositioned to treat
HBV diseases [23]. Although drug repurposing and repositioning differ slightly, they have
interchangeably been used to mean the same thing. Drug repurposing refers to using
approved or existing drugs to treat diseases or conditions different from the originally
approved purpose or condition.

Consequently, drug repositioning is using an approved drug for a different disease
within the same or similar therapeutic class. In other words, drug repurposing involves
using Food and Drug Administration (FDA)-approved drugs and repositioning for Non-
FDA-approved conditions. For example, some drugs, such as tocilizumab, baricitinib, and
remdesivir approved to treat other diseases, were repurposed to treat COVID-19 [24–26].
This study is aimed at investigating the potency of repurposed ARVs for treating HBV
infections, exploring mechanistic similarities in the replication of HIV and HBV while
assessing the pros and cons of selected repurposed ARVs for HBV treatment. It is essential
to repurpose ARVs for HBV therapy because of the severe global impacts of HBV and the
constraints of the current and approved HBV drugs including interferon therapies and
nucleos(t)ide analogs. These common limitations include expensiveness, undesirable side
effects, and common drug resistance. Conversely, the extensively defined and well-known
safety profile of antiretrovirals is well documented. More so, the extensive accessibility,
and two-pronged therapeutic approach for HIV and HBV is a less-costly option.

2. HIV and HBV Replication Cycle
Having a good knowledge of the viral replication mechanisms used by both HIV and

HBV is key to designing drugs for their therapy and repurposing and repositioning targets.
HIV and HBV, as viral pathogens, replicate via a common route known as ‘reverse tran-
scription’. However, HIV is a ribonucleic acid (RNA) virus and HBV is a deoxyribonucleic
acid (DNA) virus. While HIV RNA transcribes to DNA using reverse transcription inside
the host, HBV first transcribes to RNA and uses the same reverse transcription to return to
DNA within the viral particles [7,27]. Consequently, the integration of HIV’s DNA into the
genome of its host fosters it to replicate in the host’s system. Conversely, HBV integration
takes place using genomic fragments, resulting in liver cancer [28,29]. Both HIV and HBV
infection result in chronic infectious diseases but differ in their manifestation. Both HIV
and HBV exhibit a persistent nature and maintain a latent reservoir in the host’s system.
For example, HBV results in hepatocellular carcinoma and a cirrhosis of the liver, while
HIV results in acquired immune deficiency syndrome (AIDS) [30,31]. Figures 1 and 2 depict
the HIV and HBV replication cycles.

HIV replicates when the virus attaches to the host organism’s CD4 and C-C Chemokine
Receptor Type 5 receptors. The subsequent fusion of the virus with the cell membrane
allows the entrance of the viral capsid into the cytoplasm, thereby initiating the reverse
transcription and conversion of the viral RNA to DNA. The uncoating of the viral capsid
releases the DNA virus into the host’s nucleus. The viral DNA is integrated into the host’s
genome and transcribed into viral messenger ribonucleic acid (mRNA). The subsequent
translation of the mRNA results in viral proteins that aggregate in the cell membrane and
mature into infectious HIV virions that infect new cells, as shown in Figure 1 [32].
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Consequently, HBV replicates when the virus fuses to a specific receptor on the
host cell surface. The binding of the virus is followed by endocytosis, which allows the
virus entry into the host. The endocytosis is followed by uncoating the viral capsid and
attaching the viral genome to the host’s nucleus. HBV gains entrance to hepatocytes using
a receptor-mediated mechanism which involves the sodium taurocholate co-transporting
polypeptide (NTCP). HBV binds to the cell surface through heparan sulfate proteoglycans.
A consequent attachment to NTCP enhances the viral entry, followed by the Fusion and
uncoating. This allows HBV to transfer its relaxed circular DNA (rcDNA) into the host’s
nucleus for replication. Existing gaps in the relaxed circular DNA (rcDNA) are repaired
by the host’s proteins and converted into covalently closed circular DNA (cccDNA) in the
template for transcriptions. The subsequent exportation of the transcribed RNA into the
cytoplasm for the synthesis and translation into viral protein takes place at the endoplasmic
reticulum (ER). Finally, the aggregation of the viral core structure around the new viral
genome results in the maturation of new infectious viruses, which are released to infect
new cells [33].

3. Clinical Studies and Trials of Co-Infected and Mono-Infected Patients
with HIV–HBV

It has been established that ARV drugs primarily developed for HIV treatment have
shown promise in managing HBV due to the overlapping pathways in viral replication.
Further investigation into some key clinical studies and trials that demonstrate the efficacy
of ARV drugs in HBV treatment, particularly in co-infected and mono-infected patients, is
important [34].

3.1. Efficacy in Co-Infected Patients

Several studies have examined the role of ARV drugs in patients co-infected with
HIV and HBV. The Strategic Timing of Antiretroviral Treatment (START) study initiated
in 2009 was a multicentre international trial that involved over 1000 participants from
100 cities, 23 countries, and five continents [35]. It was revealed that ART can have effects
on HBV replication with some ART regimens, including drugs that are effective against
HBV, which can help manage the viral load of both HIV and HBV concurrently. While
the primary outcomes of the START study are related to HIV progression, the secondary
outcomes indirectly provided insights into how early ART may influence HBV-related
conditions, particularly liver morbidity, as early ART initiation could have implications for
liver health in HIV/HBV co-infected individuals. Results indicated that an early initiation
of ART, particularly with tenofovir disoproxil fumarate (TDF) as a part of a regimen,
significantly reduced the HBV viral load in co-infected patients. Therefore, findings from
START could inform clinical guidelines for managing patients who are co-infected with
HIV and HBV, particularly regarding the timing of ART initiation and the selection of
appropriate regimens [35–38].

Furthermore, ACTG, A5175, and A5178 were studies conducted between 2003 and
2005, while A5394 was initiated in 2022 by The AIDS Clinical Trials Group (ACTG), which
is a collaborative network involving various clinical research sites affiliated with the ACTG
in the United States and internationally. The A5175 trial evaluated the efficacy of TDF
in HIV/HBV co-infected patients; its data demonstrated that TDF was not only effective
in suppressing HIV but also led to sustained reductions in HBV DNA levels, hence sug-
gesting dual benefits for co-infected individuals [38–40]. The A5175 trial had a total of
1571 participants recruited from nine countries (Brazil, Haiti, India, Malawi, Peru, South
Africa, Thailand, Zimbabwe, and the United States) comprising of four continents (Africa
34.7%, Latin America/Caribbean 29.5%, Asia 22.6%, and North America 13.3%) [41,42].
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Conversely, another clinical trial, A5178, focused on timely ART initiation, comparing
early treatment to deferred treatment in individuals with higher CD4 counts. This is crucial
for maintaining immune function and preventing liver-related complications in co-infected
individuals. This study recruited 1200 participants from more than seven countries (United
States, Canada, Brazil, South Africa, Thailand, India, and various European countries)
across five continents (North America, South America, Africa, Asia, and Europe). It was
concluded that an early initiation of ART showed a significant reduction in the risk of
developing AIDS and serious non-AIDS events compared to deferring treatment until CD4
counts fell below 350 cells/µL. Previous studies showed that participants with early ART
had lower mortality rates, and a reduced HBV viral load compared to those who deferred
treatment [43–45]. The ACTG A5394 has proposed to recruit participants with both chronic
HBV and HIV for more studies on considerations for early phase clinical trials in the HBV
cure, safety, tolerability, and impact of certain drugs in both chronic HBV and HIV [46–48].

Urvi Rana et al. (2021) analysed data from 2419 participants within the Canadian
Observational Cohort (CANOC) collaboration. The study included individuals across
British Columbia, Ontario, and Quebec. The author’s retrospective analysis of co-infected
patients showed that 95% of these participants achieved virological suppression with ARV
therapy. This result indicated high efficacy in managing both infections and showed no
significant difference in virological suppression rates between HIV mono-infected and
HIV–HBV co-infected patients [49]. While this study reveals some clinical trials such as
START, ACTG, A5175, and A5178, it is essential to mention some of the limiting findings
from the reviewed clinical studies including inadequate and relatively selective sample
sizes, restricted special or geographical coverage, and participants selection biases which
might have compromised the accuracy of the results. More so, there are uncertainties of
employing these clinical trials to resource limited regions which could be due to poorly
equipped public health facilities. A consideration of the above-mentioned limitations will
ensure a relatively feasible repurposing of ARVs for HBV therapy.

3.2. Evidence in HBV Mono-Infected Patients

In a 5-year clinical trial conducted at five referral hospitals in South Korea, 192 patients
were enrolled and observed for 240 weeks. Among the participants, 90 were entecavir (ETV)
resistant and 102 Adefovir (ADV) resistant, with 91.2% of the total participants resistant
to lamivudine. After the 240-week study, 78.6% of the participants achieved a virological
response defined as serum HBV DNA levels < 15 IU/mL. Notably, the proportion of HBV
DNA levels was higher in the ETV resistance group (84.4%) compared to the ADV resistance
group (73.5%), although the difference was not statistically significant (p = 0.07) [50]. When
only participants who adhered to the treatment were analysed, it was seen that 85.8% of
them achieved HBV DNA < 15 IU/mL. This significant difference in favour of the ETV
resistance group (92.7% vs. 79.8%, p = 0.02, and mean change in HBV DNA (from the
baseline of 3.85 log10 IU/mL) indicated a reduction in the viral load among participants [50].
Similarly, Lim et al. (2019), in a randomized clinical trial from the above participants in
two groups, compared TDF monotherapy (n = 50) and TDF with ETV combined therapy
(n = 52) in patients with ADV-resistant HBV for 48 weeks, followed by TDF monotherapy
for additional 48 weeks. Both treatment regimens were revealed to have a high viral load
reduction potency. At week 96, some patients retained baseline resistance mutations, but
none developed new mutations with the safety profiles of both treatment regimens being
comparable [50,51].

In the Tenofovir Alafenamide (TAF) vs. TDF study in chronic Hepatitis B patients
in the United States and other participating countries, findings suggested that TAF is
effective in reducing HBV viral load, potentially offering advantages in terms of renal
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safety and tolerability as compared to TDF which is crucial for patients who may have
underlying renal issues or are at risk for nephrotoxicity [52]. One hundred and seventy-
four individuals with HBV exhibiting resistance to multiple antiviral agents (including
lamivudine, entecavir, and/or Adefovir) and undergoing TDF monotherapy for at least
96 weeks were randomly assigned in a 1:1 ratio to either switch to TAF (n = 87) or continue
TDF (n = 87) for 48 weeks. At the baseline, 84 in the TAF group and 80 in the TDF
group had HBV DNA levels under <60 IU/mL, and after 48 weeks, the proportion of
patients with HBV DNA < 60 IU/mL was 98.9% (86/87) in the TAF cohort demonstrating
non-inferiority to the TDF cohort which had 97.7% (85/87). Additionally, the TAF group
experienced significant increases in mean body weight and total low-density and high-
density lipoprotein at week 48 relative to the baseline [52].

Feng et al. (2020) studied the RO7049389, an inhibitor targeting the assembly of HBV
capsids, to evaluate its safety, tolerance, pharmacokinetics, and effects on the viral load
in healthy participants. RO7049389 binds to the HBV core protein, inducing incorrect
capsid assembly, suppressing viral replication, and depleting the functional core protein.
The study demonstrated a rapid absorption and elimination of RO7049389. A greater
than dose-proportional increases in plasma exposure were observed, particularly when
administered with food, suggesting a potential for effective dosing strategies. Although
this study primarily assessed safety and pharmacokinetics, preclinical data indicated that
RO7049389 could significantly reduce HBV DNA levels [53].

4. Benefits and Barriers Associated with Repurposing ARV for
HBV Treatment

Previous studies have established that the predisposition of HIV infections enhances
the possibility of HBV infections [54,55]. Following the common mechanisms through
which HIV and HBV are transmitted, the tendency of co-infection has been established.
It has also been reported that the enhanced life span of persons with HIV due to ART
results in HBV as a co-infection in most cases and results in the previously mentioned liver
diseases [55]. Conversely, HBV endangers the potency of ART by exacerbating hepatotox-
icity. HBV infection exacerbates hepatotoxicity by triggering cirrhosis, tissue hardness,
sclerosis, and the damaging of hepatocellular tissue, which may further be worsened by
an elongated usage of ARVs. Moreover, the poisonousness of mitochondria and fatty
liver are caused by some antiretroviral drugs such as NRTIs, nucleosides, and nucleotides,
exacerbating liver disease in HIV and HBV co-infected persons. Therefore, repurposing
or repositioning therapy is imperative in this case of established co-infections for effective
and efficient outcomes [56]. Clinical trials determining the ideal regimen for the treatment
of HBV–HIV in HIV-infected persons are still ongoing. However, Adefovir dipivoxil,
lamivudine, and interferon alpha are common FDA-approved drugs for treating HBV.
Emtricitabine, pegylated interferon alpha, and tenofovir disoproxil fumarate (DF) are also
used to treat HBV [55,57–59]. A Preference for any of these drugs depends on the infection
level of the person with HIV–HBV, the individual’s choice, and the envisaged pros and
cons of each of the drugs. Therefore, combined therapy is advised for HIV/HBV [55,60,61].
Among all the drugs, lamivudine has been strongly recommended for persons with a
HIV–HBV co-infection due to its competitive inhibition potency against the nucleoside
triphosphates naturally incorporated into the HBV DNA. A dose combination of lamivu-
dine and an antiretroviral regimen has proven to be effective in inhibiting HIV replication
in HIV–HBV co-infection cases.

Some studies have demonstrated that a long-term use of lamivudine exacerbates
the chances of mutation in the active domain of the HBV polymerase gene [55,62–64].
Consequently, emtricitabine is another active drug for treating HIV–HBV co-infections;
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however, as a fluorinated derivative of lamivudine, it exhibits the same mutation and drug
as lamivudine [10]. Afterward, a landmark achievement in the treatment of HIV–HBV co-
infection was attained by the introduction of Adefovir. Adefovir was initially approved for
the treatment of HBV and to remedy lamivudine resistance [65]. The subsequent approval
of tenofovir disoproxil fumarate (TDF), a nucleic acid analog of Adefovir for the initial
treatment of HIV, was also found to be active for HBV treatment [65–67]. However, the
likely side effects of some of the ARVs and HBV drugs are mentioned in Table 1.

Following the challenges associated with general drug repurposing and ARV to
HBV in particular, ensuring drug potency and efficacy with minimal adverse reactions
is essential. To overcome these setbacks, healthcare providers are encouraged to adhere
to management options such as periodic liver function tests, and optimal antiretroviral
therapy selection by using hepatoprotections including antioxidants or combined-ARVs.
Previous reports have shown that a prolonged treatment of HBV with ARVs results in
mutation and drug resistance, which diminishes the drug’s potency and efficacy. The
combination therapy of ARV drugs such as tenofovir and lamivudine exhibited potency
in slowing HBV replication but exacerbated a resistance to lamivudine in persons with
HBV experiencing a prolonged treatment [68,69]. The design of drug resistance to HBV
compromises the achievement of repurposing ARV combinatory treatment because of the
constant monitoring of the resistance profile involved. Another challenge of repurposing
ARV drugs for HBV is dose-optimization. Pharmacokinetics and viral load are essential
properties considered in persons living with HIV, which might differ in treatment for
persons with HBV. Drugs such as tenofovir, designed for treating HIV, have also exhibited
an effectiveness in suppressing HBV. Therefore, dosage modification is necessary to ensure
optimal dosage in HBV treatment and to prevent subsequent liver diseases [70–73]. More
so, there is the problem of cumulative toxicity in some persons treated with ARVs. Long-
term usage of ARV (such as tenofovir) has been implicated in bone demineralization
and nephrotoxicity, which are not amplified in persons with HIV as seen in HBV patients.
Therefore, the long-term usage of repurposed ARV for HBV requires adequate monitoring to
prevent the already mentioned side effects and ensure successful therapeutic effects [74,75].
The additional problems of adhering to treatment and handling side effects associated
with repurposing ARV (such as fatigue, renal failure, and gastrointestinal upsets) to treat
HBVs should be considered [76,77]. Some persons with HBV do not show symptoms of
the disease. Therefore, a strict adherence to treatment is often neglected, even in cases
of adverse side effects. This negligence results in a setback in achieving the suppression
of the virus and subsequent HBV treatment. Continuous education, awareness creation,
side effect monitoring, and support provision are essential for attaining ARV repurposing
for the treatment of HBV [78–81]. More so, the process of clinical data collection and
drug approval impedes the implementation of studies of the repurposed ARV drugs for
HBV. Apart from the already approved drugs for HIV–HVB treatment, including tenofovir
disoproxil and emtricitabine, there is a critical need to accelerate the data collection process,
and the clinical trial investigations/approval on the safety and potency of new single drugs
for HBV [82,83]. The list of currently approved/investigated ARVs repurposed for HBV
treatment and shown in Table 2. Lastly, accessing ARVs for HBV treatment globally might
encounter some setbacks in some low-income regions with a HBV endemic. There is a need
to extend the global accessibility of ARVs to target HBV treatment in these low-income
regions to ensure equitability in line with the United Nations’ development goals [84].
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Table 2. Currently approved or investigated ARVs for HBV treatment, including their mode of action and disadvantages.

Name of Drug Mechanism of Action Disadvantages Class of Drug Two-Dimensional Structures as
Adapted from PubChem References

Adefovir Dipivoxil
(ADV)

Useful for lamivudine resistance patients.
It functions by inhibiting
HBV DNA polymerase.

Lower efficiency when compared to newer
drugs and an increased resistance in
prolonged usage which needs strict

monitoring. It also has nephrotoxic effects.

Nucleoside Analog
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Table 2. Cont.

Name of Drug Mechanism of Action Disadvantages Class of Drug Two-Dimensional Structures as
Adapted from PubChem References

Emtricitabine
(FTC)

Functions as a combined therapy with
tenofovir for co-infection (HIV–HBV) by

incorporating into viral DNA and
preventing the replication.

Reduced potency due to cross resistance in
a combined therapy with lamivudine. Nucleoside Analog
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Table 2. Cont.

Name of Drug Mechanism of Action Disadvantages Class of Drug Two-Dimensional Structures as
Adapted from PubChem References

Efavirenz
(EFV)

Incorporates into HBV polymerase and
prevents the viral replication.

Neuropsychiatric side effects and reduced
potency for HBV mono-infection. Nucleotide Analog
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Tenofovir Alafenamide
(TAF)

TAF is an improved brand of TDF. It
inhibits HBV DNA polymerase replication.

TAF has kidney and bone problems,
including other side effects in comparison

to TDF.
Nucleotide Analog
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Table 2. Cont.

Name of Drug Mechanism of Action Disadvantages Class of Drug Two-Dimensional Structures as
Adapted from PubChem References

Lopinavir/Ritonavir
(LPV/r)

Functions as a combinatory therapy
for the inhibition of

HBV replication,
by modulating the host immune response.

Not originally approved as HBV drugs but
has shown a level of potency in reducing

the HBV DNA viral load. It has side effects,
including gastrointestinal and

lipid malfunctions.

Protease Inhibitor
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Dolutegravir
(DTG)

Blocks HBV DNA incorporation and
suppresses viral persistence.

Danger of hepatotoxicity and potential
weight gain.

Integrase. Strand
Transfer Inhibitors
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Dual therapy is highly recommended in low-income regions such as some Asian and 
sub-Saharan African countries where HIV and HBV are endemic and constitute public 
health challenges [111]. Dual therapy is beneficial in the public health sector because it 
allows for an easier management of HIV–HBV infections for healthcare providers, espe-
cially in low-income regions [111–113]. Targeting HIV–HBV infections, combinatory ther-
apy economically reduces the need for a variety of drug regimens and reduces the result-
ant adverse drug effects. combinatory therapy enhances patients’ adherence to the treat-
ment, thereby prohibiting the further development of HIV and reducing the associated 
liver diseases [114,115]. Clinically, a dual-therapeutic approach decreases the HBV reacti-
vation risks in persons living with HIV who are on treatment. Finally, a dual-therapeutic 
approach aligns with UNAIDS and WHO targets of the improved and increased accessi-
bility of ARTs in HIV and HBV endemic regions [116–118]. Drug resistance monitoring, 
therapeutic efficiency, and adherence are keys to a successful, long-lasting dual therapy. 
Therefore, dual therapy benefits co-infected persons and enhances a sustainable and scal-
able global public health system [119,120]. 

5. Identified Research Gaps Associated with ARV Repurposing and 
Recommendations 

Repurposing the unapproved treatment of HBV with ARVs approved for HIV pre-
sents a potential research gap. Most of the previous and ongoing clinical trials focus on 
the potency of these repurposed unapproved HBV therapies rather than the safety of the 
HBV patients in the long run, including the associated bone and liver problems. Many of 
the available studies are focused on persons who are co-infected by both HIV and HBV, 
failing to address individuals suffering from only HBV. Additionally, the lack of the 
knowledge of precise and accurate dose-optimization and ARV-resistance profiles appli-
cable to HBV treatment poses another gap for further investigation. Therefore, more clin-
ical investigations are suggested for peculiar persons with a tendency for HBV single-
treatment who exhibit adverse reactions to ARV therapies. Pharmacogenomics, phar-
macogenetics, and demographical differences should be considered when designing safe, 
specific, and efficient repurposed therapies for viral infections [121–123]. 

The essential contributions of pharmacogenomics and pharmacogenetics in unveil-
ing the therapeutic pathways for repurposing ARV for HBV treatment cannot be down-
played. Several genetically related concerns should be addressed to ensure effective and 
efficient drug repurposing. Variations in the drug-metabolizing process should be priori-
tized, considering that the metabolism of ARV takes place in the liver by specific enzymes 
such as cytochrome P450 (CYP450), resulting in the magnitude of the potency, efficiency, 
and toxicity in the bloodstream. The rate of metabolism is also affected by an individual’s 

[109,110]
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Dual therapy is highly recommended in low-income regions such as some Asian and
sub-Saharan African countries where HIV and HBV are endemic and constitute public
health challenges [111]. Dual therapy is beneficial in the public health sector because it
allows for an easier management of HIV–HBV infections for healthcare providers, especially
in low-income regions [111–113]. Targeting HIV–HBV infections, combinatory therapy
economically reduces the need for a variety of drug regimens and reduces the resultant
adverse drug effects. combinatory therapy enhances patients’ adherence to the treatment,
thereby prohibiting the further development of HIV and reducing the associated liver
diseases [114,115]. Clinically, a dual-therapeutic approach decreases the HBV reactivation
risks in persons living with HIV who are on treatment. Finally, a dual-therapeutic approach
aligns with UNAIDS and WHO targets of the improved and increased accessibility of
ARTs in HIV and HBV endemic regions [116–118]. Drug resistance monitoring, therapeutic
efficiency, and adherence are keys to a successful, long-lasting dual therapy. Therefore,
dual therapy benefits co-infected persons and enhances a sustainable and scalable global
public health system [119,120].

5. Identified Research Gaps Associated with ARV Repurposing
and Recommendations

Repurposing the unapproved treatment of HBV with ARVs approved for HIV presents
a potential research gap. Most of the previous and ongoing clinical trials focus on the po-
tency of these repurposed unapproved HBV therapies rather than the safety of the HBV
patients in the long run, including the associated bone and liver problems. Many of the
available studies are focused on persons who are co-infected by both HIV and HBV, failing
to address individuals suffering from only HBV. Additionally, the lack of the knowledge
of precise and accurate dose-optimization and ARV-resistance profiles applicable to HBV
treatment poses another gap for further investigation. Therefore, more clinical investiga-
tions are suggested for peculiar persons with a tendency for HBV single-treatment who
exhibit adverse reactions to ARV therapies. Pharmacogenomics, pharmacogenetics, and
demographical differences should be considered when designing safe, specific, and efficient
repurposed therapies for viral infections [121–123].

The essential contributions of pharmacogenomics and pharmacogenetics in unveiling
the therapeutic pathways for repurposing ARV for HBV treatment cannot be downplayed.
Several genetically related concerns should be addressed to ensure effective and efficient
drug repurposing. Variations in the drug-metabolizing process should be prioritized, con-
sidering that the metabolism of ARV takes place in the liver by specific enzymes such
as cytochrome P450 (CYP450), resulting in the magnitude of the potency, efficiency, and
toxicity in the bloodstream. The rate of metabolism is also affected by an individual’s
genetic polymorphism, the existence of two or more distinct forms of a gene or alleles,
resulting in dosage issues when used in HBV treatment. The adsorption rate of ARVs by the
liver cells and transportation by drug transporters such as p-glycoprotein are essential in
repurposing ARV for HBV treatment. Therefore, a dosage adjustment should be considered
for an effective HBV treatment with ARV drugs. Another issue to consider when repur-
posing ARVs for HBV treatments is the adverse drug effects, which are also genetically
associated. Pharmacogenetic profiling aids in predicting persons predisposed to adverse
drug reactions, such as the histocompatibility complex, class I, B 57:01 (HLA-B*5701) gene,
which is associated with hypersensitive effects to some ARV drugs. Genetic variations
of drug-target receptors also determine the pharmacodynamic responses of people living
with HBV treated with ARVs. More so, mutation on HBV poses resistance, affecting the
potency of the repurposed ARVs. For example, when HBV polymerase genes rtM204V/I
and rtL180M mutate, it results in a resistance to nucleoside and nucleotide drugs which
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reduces the potency of these repurposed antiretrovirals. The use of combinatory therapy is
recommended to improve the therapeutic aim. Genetic profiling is essential in the potency
and effectiveness of ARV efficacy. For example, HLA-B*5701 screening assists in preventing
hypersensitivity in abacavir and CYP2B6 polymorphisms, affecting efavirenz metabolism
and toxicity. Therefore, the above-mentioned markers facilitate in optimizing drug se-
lection, reduces negative drug effects, and enhances therapeutic outcomes. Case studies
in HBV treatment depict that the genetic screening for IL28B polymorphisms forecasts
interferon treatment response and improves personalized therapeutic approaches and
patient outcomes. Therefore, conducting genetic profiling to determine these differences
would be helpful in precision medicine. Finally, pharmacogenomics and pharmacogenetics
enable the prediction of the right dosages, specific individual responses, and reactions,
resulting in successful ARV drug repurposing [124–134].

6. Conclusions
The repurposing of antiretroviral drugs for the treatment of HBV represents a promis-

ing avenue for addressing the dual challenge posed by HIV and HBV co-infection. As
highlighted by the UNAIDS and WHO reports, the substantial global burden of both
viruses underscores the urgent need for effective treatment strategies. In our study, we
have elucidated the similarities in the replication mechanism of HIV and HBV, particularly
the role of reverse transcription, which forms the basis for considering ARVs as viable
therapeutic options for HBV. Clinical trials have demonstrated that an early initiation of
ARV therapy, especially with TDF, can significantly reduce the HBV viral load among
co-infected individuals. These findings emphasize the need for timely and appropriate
therapeutic interventions, particularly with mono-infected HBV patients, where precise
medication regimens are crucial for effective suppression. Summarily, the integration of
ARVs into HBV therapy is a strategic response to a pressing public health issue. Continued
research and clinical trials are vital to further elucidate the efficacy and safety of profiles
of ARV medications in HBV treatment, ultimately contributing to the WHO’s 2030 goal of
eliminating viral hepatitis as a public health threat. Furthermore, the role of pharmacoge-
netics in optimizing treatment outcomes cannot be overstated. We, therefore, recommend
that before repurposing ARVs for HBV treatment, a genetic profiling of persons living
with HBV is essential to enhance the efficacy of HBV treatment, minimize adverse effects,
and improve the overall patient adherence. We therefore recommend further studied with
a focus on the healthcare providers and patients’ compliance geared towards enhancing
the healthcare facilities provided for the repurposed antiretrovirals for hepatitis B virus
treatment. There should be a keen observation and an elongated monitoring of the pattern
of viral resistance among HBV persons treated with the repurposed ARVs.

More so, real-world research is pivotal for the validation of preclinical and clinical
trial outcomes for an easy assessment of the treatment potency within diverse populations.
Furthermore, a consideration of feasible healthcare farcicalities and the economic effects
of using dual therapy, especially among the low-income geographical areas, is essential.
This equitable access is useful in informing the right decision among policy makers, ensure
equity and fairness in line with WHO’s vision for the improved global management of HBV.
Research efforts should be geared towards the assessment of real-time evidence, focusing
on bridging the gap between controlled-trial environments and real-world clinical practices.
Also, targeted studies on mono-infected HBV persons could improve therapeutic tactics
for this subgroup. Finally, delving into specialized research areas such as the evaluation of
long-term potency, optimization of therapeutic regimens, and the identification of phar-
macogenetic markers for personalized treatment will further bridge the gap in improving
patients’ adherence to repurposed drugs.
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