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Abstract
We propose a coupled electrical and mechanical bidomain model for the myocardium tissue. The structure that we
investigate possesses an elastic matrix with embedded cardiac myocytes. We are able to apply the asymptotic homog-
enization technique by exploiting the length scale separation that exists between the microscale where we see the
individual myocytes and the overall size of the heart muscle. We derive the macroscale model which describes the
electrical conductivity and elastic deformation of the myocardium driven by the existence of a Lorentz body force. The
model comprises balance equations for the current densities and for the stresses, with the novel coefficients accounting
for the difference in the electric potentials and elastic properties at different points in the microstructure. The novel
coefficients of the model are to be computed by solving the periodic cell differential problems arising from application
of the asymptotic homogenization technique. By combining both the mechanical and electrical behaviors, we obtain a
macroscale model that highlights how the elastic deformation of the heart tissue is influenced and driven by the difference
in the electric potentials at various points in the material.
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1. Introduction
The heart is a muscular organ that pumps blood around the body. The muscular walls (myocardium) of the
heart are formed from individual cardiac muscle cells which are connected together to form what is known as
a functional electrical syncytium. This means there are strong electrical and mechanical connections between
adjacent cardiac muscle cells in every direction allowing the myocardium to behave as a single contractile unit
[1]. The cardiac muscle cells are known as myocytes and are connected at each end by the gap junctions at the
intercalated disks. The heart contracts to pump blood around the body because of the electrical activation of the
myocytes. In order to understand the physiology and electrical activity of the heart more thoroughly, we direct
the reader to Katz [2], Opie [3], and Weidmann [4].
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Many approaches have been made to model the electrophysiology and mechanical behavior of the heart
[5–7]. One of the most important and prominent approaches is the constitutive nonlinear elastic modeling using
the Holzapfel–Ogden law [8]. Holzapfel and Ogden [8] described the myocardium as a non-homogeneous,
anisotropic, nonlinear elastic, and incompressible material. They then propose a strain energy function to
describe the material. The parameters of the law are determined by biological measurements. This work has
been subject to a variety of extensions that aim at understanding the behavior of the heart, such as in Wang et
al. [9], and numerically in Pezzuto et al. [10].

Another very important approach is to consider an electrical bidomain model. This approach considers the
propagation of cardiac action potentials and was first proposed in Barr and Jakobsson [11], Eisenberg [12], and
Miller and Geselowitz [13]. The model is used to describe the development of the electrical potential through
the heart muscle. The model accounts for the fact that at the microscopic scale, the action potentials arise due
to the flow of specific types of ions through ion channels covering the cell membrane. We should note that
the bidomain modeling approach is not exclusively considered for cardiac electrophysiology and can indeed be
applied to the electrophysiology of neurons, e.g., Ellingsrud et al. [14] and Schreiner and Mardal [15].

Traditionally, the bidomain model was proposed for the electrical conductivity; however, there has been the
development of the mechanical bidomain model to describe the elastic behavior of the heart, see Roth [16–
19]. The mechanical bidomain model is able to account for the forces acting across the cell membrane which
arise from the differences in the elastic displacement of the intracellular (inside the myocyte) and extracellular
domains.

Each of the different bidomain models focuses on only either the mechanical or the electrical behavior and
each has different advantages. The electrical bidomain model is used to simulate the electrical stimulation of
the heart to understand how a voltage develops across the membrane between intracellular and extracellular
domains. This is particularly useful to investigate cardiac pacing or defibrillation [20]. On the contrary, the
mechanical bidomain model is used when considering mechanical forces are acting on and across the membrane,
such as in the case of heart diseases and aging.

The heart has many structural features which are generally found at different microstructural levels (or
scales). We are considering the heart muscle where we wish to look at the interactions between the myocytes
and the extracellular matrix. Due to this, it is appropriate to consider a scale where we can see the myocytes
and matrix clearly resolved. We call this scale the microscale. This is a fine microstructural level and has an
associated length which is much smaller than the one characterising the whole heart. The complete heart muscle,
however, can be described by a scale which we denote the macroscale.

The heart comprises multiple scales so we wish to create a model for it that can correctly characterize the
effective properties but is also computationally feasible. To meet this goal, we require to relate the macroscale
governing equations to the properties and interactions of the microscale. We approach this by creating a problem
that describes the behavior and interactions of all constituents on the microscale. Once you have a problem of
this type, it can be used in an upscaling process to obtain macroscale governing equations. There are a variety
of techniques proposed in the literature that can be used for upscaling, and these are collectively known as
homogenization techniques. Techniques such as mixture theory, effective medium theory, volume averaging,
and asymptotic homogenization come under this category. Each technique has a variety of benefits and choice
of method should be made depending on the application of the model and the information you wish to be
encoded or available from the macroscale model. Each of the above-mentioned techniques has been reviewed
and discussed in Hori and Nemat-Nasser [21, 22], while, e.g., Taffetani [23] provides an overview in context of
mechanobiology.

Here, we make use of the asymptotic homogenization technique. Previously, this has been popularly used in
modeling poroelasticity [24, 25], elastic composites [26, 27], and electroactive materials [28–30]. The technique
has also proved useful in extending the theory such as to include growth and remodeling and vascularization of
poroelastic materials [31, 32]. Recently, the technique was used in the derivation of the models of poroelastic
composites and double poroelastic materials [33, 34]. To illustrate that the technique produces computationally
feasible results, a micromechanical analysis of the effective stiffness of poroelastic composites has been inves-
tigated in Miller and Penta [35]. The technique has also previously been used in the context of heart modeling.
In Miller and Penta [36], it has been used to investigate the structural changes involved in myocardial infarction
and has even been used in the context of the electrical bidomain model (see Bader et al. [1] and Richardson and
Chapman [37]).

This work involves applying the asymptotic homogenization technique to the problem that we have setup to
describe the electrical and mechanical interactions between the cardiac myocytes and the surrounding matrix.
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Figure 1. A 2D sketch representing a cross-section of the three-dimensional myocardium which we call our domain �. The myocytes
�i are shown in pink and the extracellular matrix �e is in blue.

We consider the heart muscle at a scale where the myocytes are distinct from the matrix. This scale is our
microscale. The microscale has an associated length which is much smaller than the one of the entire heart
muscle (where we cannot see individual myocytes) and so the scale of the heart is known as the macroscale. We
then apply the asymptotic homogenization technique to upscale the problem, accounting for the continuity of
current densities, stresses and elastic displacements as well as the difference in the electric potentials across the
interface between the myocyte and the matrix. The novel macroscale model that is derived is a first attempt at an
asymptotic homogenization model for a coupled electrical and mechanical bidomain model. The novel model
comprises balance equations for the current densities and for the stresses as well as additional terms accounting
for the difference in the electric potentials at different points in the microstructure. The coefficients of the model
encode the properties of the microstructure and are computed by solving the microscale differential problems
arising as a result of applying the asymptotic homogenization technique.

We have organized this work as follows. Section 2 focuses on introducing the mechanical and electrical
problem that describes the microscale of the heart that we are considering. This problem describes the interac-
tions between the intracellular domain (myocyte) and the extracellular domain (matrix). Then, in section 3, we
perform the multiscale analysis of the problem. This procedure allows us to derive the new macroscale model
governing the homogenized mechanical and electrical behavior of the heart tissue. In section 4, we present the
new macroscale model and discuss the novel terms arising from considering both mechanical and electrical
bidomain models coupled together. Then, in section 5, we consider the limit case where there is no change in
electric potential at the interfaces between phases and reduce the model. We also provide a scheme that could
be followed to solve the model numerically. In section 6, we summarize and draw conclusions to our work and
provide further perspectives.

2. Electrical and mechanical problem
We begin by considering the microstructure of the myocardium which we call a set � ∈ R

3 where � is the union
of the extracellular matrix �e and the intracellular myocyte �i, with �̄ = �̄i ∪ �̄e. A sketch of a cross-section
of the myocardium � is shown in Figure 1.

We can then zoom in around one individual myocyte, and we see the clear microstructure which we have
shown in Figure 2.

We now wish to describe the equations that govern each domain and the chosen interface conditions to close
the problem. We begin with the steady-state electrical bidomain equations:

∇ · (Gi∇φi) = βG(φi − φe) in �i, (1a)

∇ · (Ge∇φe) = −βG(φi − φe) in �e, (1b)

where Gi and Ge are the second rank conductivity tensors in the intracellular domain and extracellular domain,
respectively, φi and φe are the scalar electric potentials of each phase, β is the ratio of membrane area to tissue
volume, and G is the membrane conductance. Equations (1a) and (1b) are the balance equations for the electric
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Figure 2. A 2D sketch representing a cross-section of the three-dimensional domain �. The intracellular domain (myocyte) �i is
shown in pink and the extracellular domain �e is in blue. There is an interface � between the two domains.

current density for each phase given by:

ji = −Gi∇φi in �i, (2a)
je = −Ge∇φe in �e, (2b)

which are Ohm’s law with the conductivity tensors Gi and Ge and the applied electric fields ∇φi and ∇φe.
In order to close the electrical part of the problem, we prescribe the following conditions on the interface �

between the phases:

Gi∇φi · n = Ge∇φe · n on �, (3a)

φi − φe = V on �, (3b)

where V is a given and is the potential drop across the membrane [37], and n is the normal to the interface �
pointing into the intracellular domain.

There are also the mechanical equations for each phase. We have the balance equations given by:

∇ · Ti = K(u − w) − Gi∇φi × B in �i, (4a)
∇ · Te = −K(u − w) − Ge∇φe × B in �e, (4b)

where Ti and Te are the stress tensors in each compartment, u and w are the elastic displacements of the
intracellular and extracellular domains, respectively. Each domain is subject to the body forces given by the
magnetic part of the Lorentz forces on the action potential currents, ji and je, in a magnetic field B [17]. The
body forces are therefore:

ji × B = −Gi∇φi × B and je × B = −Ge∇φe × B. (5)

The choice of these body forces is for a variety of reasons. The first being there has been previous use of
this force in Puwal and Roth [17] where they examine a mechanical bidomain model and the effect of magnetic
forces on action currents associated with a propagating action potential wavefront. By considering the same
force, this will allow for future comparison with the numerical results obtained within Puwal and Roth [17].
There are also important applications such as the imaging of the elastic displacement due to Lorentz force
which has been recently proposed as a potential use of MRI (see conclusions in section 6 for further discussion
on this application). For further details of electroelastic materials and applied electric body forces, see, e.g.,
Dorfmann and Ogden [38, 39] and Maugin [40]. We should also note that the intracellular and extracellular
domains are not separate from each other and interact through a variety of transmembrane proteins. This means
that any displacement in the intracellular domain will cause displacements in the extracellular domain and vice
versa. To cope with this, we follow the approach taken by Roth [16–18] where these interactions are described
using Hooke’s law for the displacement difference and so K can be thought of as the spring constant of the law.
We assume that both the phases are anisotropic linear elastic materials with the stress tensors:

Ti = Ci∇u in �i, (6a)

Te = Ce∇w in �e, (6b)
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where Ci and Ce are the fourth rank elasticity tensors with corresponding components (Ci)αδγ ν and (Ce)αδγ ν ,
for α, δ, γ , ν = 1, 2, 3. We have that Ci and Ce are equipped with right minor and major symmetries, namely:

(Ci)αδγ ν = (Ci)αδνγ ; (Ce)αδγ ν = (Ce)αδνγ , (7a)
(Ci)αδγ ν = (Ci)γ ναδ; (Ce)αδγ ν = (Ce)γ ναδ, (7b)

and therefore also left minor symmetries follow by combining equations (7a) and (7b). In particular, by applying
right minor symmetries, we can equivalently rewrite the stress equations (6a) and (6b) as:

Ti = Ciξ (u) in �i, (8a)

Te = Ceξ (w) in �e, (8b)

where

ξ (•) = ∇(•) + (∇(•))T

2
, (9)

is the symmetric part of the gradient operator.
Finally, we need to close the problem by prescribing conditions on the interface �, these are continuity of

stresses and continuity of elastic/mechanical displacements:

Ti · n = Te · n on �, (10a)
u = w on �, (10b)

where again n is the normal to the interface � pointing into the intracellular domain. In the next section, we
perform a multiscale analysis. This involves (1) non-dimensionalizing the partial differential equations (PDEs)
that we have described in this section, (2) introducing two well-separated length scales, (3) applying the asymp-
totic homogenization technique to the resulting non-dimensional systems of PDEs, and (4) deriving the effective
governing equations for the material as a whole.

3. Multiscale analysis
We now perform a multiscale analysis of the problem introduced in the previous section, which is summarized
below:

∇ · (Gi∇φi) = βG(φi − φe) in �i, (11a)
∇ · (Ge∇φe) = −βG(φi − φe) in �e, (11b)

ji = −Gi∇φi in �i, (11c)
je = −Ge∇φe in �e, (11d)

Gi∇φi · n = Ge∇φe · n on �, (11e)
φi − φe = V on �, (11f)

∇ · Ti = K(u − w) − Gi∇φi × B in �i, (11g)
∇ · Te = −K(u − w) − Ge∇φe × B in �e, (11h)

Ti = Ciξ (u) in �i, (11i)
Te = Ceξ (w) in �e, (11j)

Ti · n = Te · n on �, (11k)
u = w on �. (11l)

The problem (11a)–(11l) is closed by prescribing suitable external boundary conditions on ∂�. We make the
assumption that there exist two different length scales in the system. We denote the average size of the whole
domain by L (the macroscale), while d refers to the microscale, which here is assumed to be comparable with
the distance between adjacent myocytes. In order to emphasize the difference between such scales, it is helpful
to perform a non-dimensional analysis of the system of PDEs (11a)–(11l).
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3.1. Non-dimensionalization of the problem

We wish to formulate our model in non-dimensional form so as to clarify the mutual weight of each of the
relevant fields in the problem. The intention is that the derived model will be general in regard to the heart
microstructure so as to allow specification at a later stage to certain conditions or diseases. For this reason,
we do not motivate the non-dimensionalization via specific parameters but instead perform a formal non-
dimensionalization that will highlight the proper asymptotic behavior of each of the relevant fields. We make the
choice to scale the spatial variable and the elastic displacement, and therefore the stresses and elasticity tensors,
by the characteristic length scale L of the domain and an elastic scaling parameter E, �0 is the typical potential
drop, and G0 is the typical conductance. We therefore carry out the non-dimensional analysis by assuming the
following:

x = Lx′, Ci = ELC
′
i, Ce = ELC

′
e, Ti = ELT′

i,

Te = ELT′
e, u = Lu′, w = Lw′, φi = �0φ

′
i ,

φe = �0φ
′
e, V = �0V ′, Gi = G0G′

i,

Ge = G0G′
e, B = L

G0�0
B′.

(12)

We are then able to use equation (12) and observe that:

∇ = 1

L
∇′. (13)

These are substituted into equations (11a)–(11l) to obtain the following non-dimensional form of the system
of PDEs:

∇ · (Gi∇φi) = β̂(φi − φe) in �i, (14a)

∇ · (Ge∇φe) = −β̂(φi − φe) in �e, (14b)

ji = −Gi∇φi in �i, (14c)
je = −Ge∇φe in �e, (14d)

Gi∇φi · n = Ge∇φe · n on �, (14e)
φi − φe = V on �, (14f)

∇ · Ti = K̂(u − w) − Gi∇φi × B in �i, (14g)

∇ · Te = −K̂(u − w) − Ge∇φe × B in �e, (14h)
Ti = Ciξ (u) in �i, (14i)

Te = Ceξ (w) in �e, (14j)
Ti · n = Te · n on �, (14k)

u = w on �, (14l)

where

β̂ = βGL2

G0
and K̂ = LK

E
, (15)

are the dimensionless parameters.
In the next section, we introduce the asymptotic homogenization technique which is used to upscale the

non-dimensional system of PDEs (14a)–(14l) by formally assuming that the microscale and the macroscale are
well separated.

3.2. The asymptotic homogenization technique

In this section, we introduce the two-scale asymptotic homogenization technique which is used to derive a
macroscale model for equations (14a)–(14l). We first assume that the microscale (where individual myocytes
are clearly resolved from the matrix), denoted by d, is small compared to average size of the domain L, i.e.:

ε � 1. (16)
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We then introduce a local spatial variable to capture microscale variations of the field via setting:

y = x

ε
. (17)

The spatial variables x and y are to be considered formally independent and represent the macroscale and
the microscale, respectively. The gradient operator then transforms as:

∇ → ∇x + 1

ε
∇y. (18)

We further assume that all the fields u, w, Ti, Te, φi, φe, V , as well as the elasticity tensors Ci and Ce, are the
functions of both x and y. We also assume that the fields u, w, Ti, Te, φi, φe, and V can be represented in terms
of a series expansion in powers of ε, i.e.:

ϕε(x, y, t) =
∞∑

l=0

ϕ(l)(x, y, t)ε l, (19)

where ϕ collectively denotes each field involved in the present analysis. We do, however, make the assumption
that the difference in the electric potentials V is given and has the following expansion:

V = V (0)(x, t) + · · · , (20)

i.e., it depends only on the macroscale at order zero. This assumption has also been made in Richardson and
Chapman [37].

We make the following two assumptions in the next sections of this work.

Remark 1. Microscale periodicity. To simplify the analysis in this work, we restrict our attention to a single
subset of the domain which we call the periodic cell. For this to be possible, we assume that every field ϕ(l) in our
problem (14a)–(14l) is y-periodic. By making this assumption, we can solve the microscale differential problems
arising from using the asymptotic homogenization technique on just a finite bounded subset of the material. This
assumption need not be made and the analysis can be carried out by assuming local boundedness of fields only.
This approach, however, only allows us to determine the functional form of the macroscale model and the
model coefficients are related to microscale problems that need to be solved on the whole microstructure of the
material. This makes solving the model very computationally expensive when using the local boundedness of
fields approach in comparison with microscale periodicity. Some examples of this are found in Burridge and
Keller [24] and Penta and Gerisch [24].

Remark 2. Macroscopic uniformity. At individual macroscale points, it is clear that the microstructure can
vary. This variation has been investigated by Burridge and Keller [24], Penta and Gerisch [26], Penta et al.
[31], Holmes [42], and Dalwadi et al. [43]. The dependence of the microscale on the macroscale adds addi-
tional terms to the final model by proper application of the Reynolds transport theorem. In this work, we will
neglect this dependence to simplify the derivation of the model. This means we assume that at every macroscale
point, the microstructure will be the same. That is, the microscale geometry does not depend on x. This property
is known as macroscopic uniformity. We will make this assumption in this work. We therefore have the simple
differentiation under the integral sign: ∫

�

∇x · (•)dy = ∇x ·
∫

�

(•)dy, (21)

where (•) is a tensor or a vector quantity.

3.3. Multiple scales expansion

We apply the asymptotic homogenization assumptions (18) and (19) to equations (14a)–(14l) to obtain,
accounting for periodicity, the following multiscale system of PDEs:

ε2∇x · (Gi∇xφ
ε
i ) + ε∇x · (Gi∇yφ

ε
i ) + ε∇y · (Gi∇xφ

ε
i ) + ∇y · (Gi∇yφ

ε
i ) = ε2β̂(φε

i − φε
e ), (22a)
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ε2∇x · (Ge∇xφ
ε
e ) + ε∇x · (Ge∇yφ

ε
e ) + ε∇y · (Ge∇xφ

ε
e ) + ∇y · (Ge∇yφ

ε
e ) = −ε2β̂(φε

i − φε
e ), (22b)

Gi∇yφ
ε
i · n + εGi∇xφ

ε
i · n = Ge∇yφ

ε
e · n + εGe∇xφ

ε
e · n, (22c)

εjεi = −εGi∇xφ
ε
i − Gi∇yφ

ε
i , (22d)

εjεe = −εGe∇xφ
ε
e − Ge∇yφ

ε
e , (22e)

φε
i − φε

e = V ε , (22f)

ε∇x · Tε
i + ∇y · Tε

i = εK̂(uε − wε) − εGi∇xφ
ε
i × Bε − Gi∇yφ

ε
i × Bε , (22g)

ε∇x · Tε
e + ∇y · Tε

e = −εK̂(uε − wε) − εGe∇xφ
ε
e × Bε − Ge∇yφ

ε
e × Bε , (22h)

εTε
i = εCiξx(uε) + Ciξy(uε), (22i)

εTε
e = εCeξx(wε) + Ceξy(wε), (22j)

Tε
i · n = Tε

e · n, (22k)

uε = wε . (22l)

We can now substitute power series of the type (19) into the relevant fields in equations (22a)–(22l). Then,
by equating the coefficients of ε l for l = 0, 1, ..., we derive the macroscale model for the material in terms of the
relevant leading (zeroth) order fields. Whenever a component in the asymptotic expansion retains a dependence
on the microscale, we can take the integral average, which we define as:

〈ϕ〉k = 1

|�|
∫

�i

ϕ(x, y, t)dy k = i, e, (23)

where the integral average can be performed over one representative cell due to y-periodicity and |�| is the
volume of the domain and the integration is performed over the microscale. We note that |�| = |�i| + |�e|.
Due to the assumption of y-periodicity, the integral average can be performed over one representative cell.
Therefore, equation (23) represents a cell average.

Equating coefficients of ε0:

∇y · (Gi∇yφ
(0)
i ) = 0, (24a)

∇y · (Ge∇yφ
(0)
e ) = 0, (24b)

Gi∇yφ
(0)
i · n = Ge∇yφ

(0)
e · n, (24c)

Gi∇yφ
(0)
i = 0, (24d)

Ge∇yφ
(0)
e = 0, (24e)

φ
(0)
i − φ(0)

e = V (0), (24f)

∇y · T(0)
i = −Gi∇yφ

(0)
i × B(0), (24g)

∇y · T(0)
e = −Ge∇yφ

(0)
e × B(0), (24h)

Ciξy(u(0)) = 0, (24i)

Ceξy(w(0)) = 0, (24j)

T(0)
i · n = T(0)

e · n, (24k)

u(0) = w(0). (24l)

From equations (24i) and (24j), we see that u(0) and w(0) are rigid body motions and therefore, by
y-periodicity, do not depend on the microscale variable y. That is:

u(0) =u(0)(x, t), (25a)

w(0) =w(0)(x, t). (25b)

Since we have the interface condition (24l) u(0) = w(0) on �, we can use that:

u(0) = w(0), (26)
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throughout the following sections.
Due to the assumption (20) that V (0) is given and does not depend on the microscale variable y, we can write

the ε0 problem for φi
(0) and φe

(0). We first define a new variable:

φ̄(0)
e = φ(0)

e + V (0). (27)

We then write the ε0 problem in terms of φi
(0) and our new variable φ̄(0)

e :

∇y · (Gi∇yφ
(0)
i ) = 0, (28a)

∇y · (Ge∇yφ̄
(0)
e ) = 0, (28b)

φ
(0)
i = φ̄(0)

e , (28c)

Gi∇yφ
(0)
i · n = Ge∇yφ̄

(0)
e · n. (28d)

The boundary value problem (28a)–(28d) is a linear-elastic type problem with no source terms in equations
(28a) and (28b). It is equipped with the jump condition (28d) between the current densities and with the con-
tinuity condition between the zero-order electric potentials (28c). For problems of the type (28a)–(28d), it has
been proved that the only solutions are constant with respect to the macroscale variable y (see Bakhvalov and
Panasenko [44] and Cioranescu and Donato [45]). Therefore, the problem admits the solution that φi

(0) and
φ̄(0)

e do not depend on the microscale variable y. It then follows that both φi
(0) and φe

(0) do not depend on that
microscale, so we write:

φi
(0) =φi

(0)(x, t) (29a)

φe
(0) =φe

(0)(x, t). (29b)

This means that balance equations (24g) and (24h) can be rewritten as:

∇y · T(0)
i = 0, (30a)

∇y · T(0)
e = 0. (30b)

Similarly, we can now equate the coefficients of ε1:

∇y · (Gi∇xφ
(0)
i ) + ∇y · (Gi∇yφ

(1)
i ) = 0, (31a)

∇y · (Ge∇xφ
(0)
e ) + ∇y · (Ge∇yφ

(1)
e ) = 0, (31b)

Gi∇yφ
(1)
i · n + Gi∇xφ

(0)
i · n = Ge∇yφ

(1)
e · n + Ge∇xφ

(0)
e · n, (31c)

j(0)
i = −Gi∇xφ

(0)
i − Gi∇yφ

(1)
i , (31d)

j(0)
e = −Ge∇xφ

(0)
e − Ge∇yφ

(1)
e , (31e)

φ
(1)
i − φ(1)

e = V (1), (31f)

∇x · T(0)
i + ∇y · T(1)

i = K̂(u(0) − w(0)) − Gi∇xφ
(0)
i × B(0) − Gi∇yφ

(1)
i × B(0), (31g)

∇x · T(0)
e + ∇y · T(1)

e = −K̂(u(0) − w(0)) − Ge∇xφ
(0)
e × B(0) − Ge∇yφ

(1)
e × B(0), (31h)

T(0)
i = Ciξx(u(0)) + Ciξy(u(1)), (31i)

T(0)
e = Ceξx(w(0)) + Ceξy(w(1)), (31j)

T(1)
i · n = T(1)

e · n, (31k)

u(1) = w(1). (31l)

Now that we have equated the coefficients of powers 0 and 1 of ε, we can use these equations to form
problems for the order 1 electric potentials and elastic displacements.
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3.4. Problem for electric potentials φ
(1)
i and φ(1)

e

Using equations (31a)–(31c) and (31f), we can form the following problem for the electric potentials φ
(1)
i and

φ(1)
e . That is:

∇y · (Gi∇xφ
(0)
i ) + ∇y · (Gi∇yφ

(1)
i ) = 0 in �i, (32a)

∇y · (Ge∇xφ
(0)
e ) + ∇y · (Ge∇yφ

(1)
e ) = 0 in �e, (32b)

φ
(1)
i − φ(1)

e = V (1) on �, (32c)

(Gi∇yφ
(1)
i − Ge∇yφ

(1)
e ) · n = (Ge∇xφ

(0)
e − Gi∇xφ

(0)
i ) · n on �. (32d)

Exploiting the linearity of problem (32a)–(32d), we can propose the following ansatz:

φ
(1)
i = �i∇xφ

(0)
i + �̂i∇xφ

(0)
e + φ̃i, (33a)

φ(1)
e = �e∇xφ

(0)
e + �̂e∇xφ

(0)
i + φ̃e, (33b)

where �i, �e, �̂i, and �̂e are the vectors, and φ̃i and φ̃e are scalars. The auxiliary fields �i, �e, �̂i, �̂e, φ̃i, and
φ̃e satisfy the following cell problems:

∇y · (Gi∇y�i) + ∇y · Gi = 0 in �i, (34a)

∇y · (Ge∇y�̂e) = 0 in �e, (34b)

�i = �̂e on �, (34c)

(Gi∇y�i − Ge∇y�̂e) · n = −Gi · n on �, (34d)

and

∇y · (Gi∇y�̂i) = 0 in �i, (35a)

∇y · (Ge∇y�e) + ∇y · Ge = 0 in �e, (35b)

�̂i = �e on �, (35c)

(Gi∇y�̂i − Ge∇y�e) · n = Ge · n on �, (35d)

and

∇y · (Gi∇yφ̃i) = 0 in �i, (36a)

∇y · (Ge∇yφ̃e) = 0 in �e, (36b)

φ̃i − φ̃e = V (1) on �, (36c)

(Gi∇yφ̃i) · n = (Ge∇yφ̃e) · n on �. (36d)

where periodic conditions also apply on the boundary ∂�\�, and we require a further condition on the auxiliary
fields �i, �e, �̂i, �̂e, φ̃i, and φ̃e for the solution to be unique. We propose zero average on their own domains,
i.e.:

〈�i〉i = 0, 〈�e〉e = 0, 〈�̂i〉i = 0, 〈�̂e〉e = 0, (37)
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Since we now have expressions for φ
(1)
i and φ(1)

e from the ansatz (33a) and (33b), then it is possible to write

Ohm’s law for the current densities j(0)
i and j(0)

e (equations (31d) and (31e)) as:

j(0)
i = − Gi∇xφ

(0)
i − Gi∇yφ

(1)
i

= − Gi∇xφ
(0)
i − Gi∇y�i∇xφ

(0)
i − Gi∇y�̂i∇xφ

(0)
e

− Gi∇yφ̃i

= − (Gi + Gi∇y�i)∇xφ
(0)
i − Gi∇y�̂i∇xφ

(0)
e

− Gi∇yφ̃i

= − (Gi + GiRi)∇xφ
(0)
i − (GiQi)∇xφ

(0)
e

− Gisi, (38)

and

j(0)
e = − Ge∇xφ

(0)
e − Ge∇yφ

(1)
e

= − Ge∇xφ
(0)
e − Ge∇y�e∇xφ

(0)
e − Ge∇y�̂e∇xφ

(0)
i

− Ge∇yφ̃e

= − (Ge + Ge∇y�e)∇xφ
(0)
e − Ge∇y�̂e∇xφ

(0)
i

− Ge∇yφ̃e

= − (Ge + GeRe)∇xφ
(0)
e − (GeQe)∇xφ

(0)
i

− Gese, (39)

where we have used the notation:

Ri = ∇y�i, Re = ∇y�e, Qi = ∇y�̂i,

Qe = ∇y�̂e, si = ∇yφ̃i, se = ∇yφ̃e.
(40)

We now require a balance equation for the current densities. This requires us to equate the powers of ε2 in
equations (22a) and (22b) and use the ε2 definition of equations (22d) and (22e). That is, we need:

∇x · (Gi∇xφ
(0)
i ) + ∇x · (Gi∇yφ

(1)
i ) + ∇y · (Gi∇xφ

(1)
i )

+ ∇y · (Gi∇yφ
(2)
i ) = β̂(φ(0)

i − φ(0)
e ), (41a)

∇x · (Ge∇xφ
(0)
e ) + ∇x · (Ge∇yφ

(1)
e ) + ∇y · (Ge∇xφ

(1)
e )

+ ∇y · (Ge∇yφ
(2)
e ) = −β̂(φ(0)

i − φ(0)
e ), (41b)

with the ε2 expansions of Ohm’s law:

j(1)
i = −Gi∇xφ

(1)
i − Gi∇yφ

(2)
i , (42a)

j(1)
e = −Ge∇xφ

(1)
e − Ge∇yφ

(2)
e . (42b)

We can then use equations (42a) and (42b), along with equations (31d) and (31e) in equations (41a) and
(41b) to obtain:

∇x · j(0)
i + ∇y · j(1)

i = β̂(φ(0)
i − φ(0)

e ), (43a)

∇x · j(0)
e + ∇y · j(1)

e = −β̂(φ(0)
i − φ(0)

e ), (43b)
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Now, we can take the integral average of the sum of equations (43a) and (43b) to obtain:
∫

�i

∇x · j(0)
i dy +

∫
�i

∇y · j(1)
i dy −

∫
�i

β̂(φ(0)
i − φ(0)

e )dy

+
∫

�e

∇x · j(0)
e dy +

∫
�e

∇y · j(1)
e dy +

∫
�e

β̂(φ(0)
i − φ(0)

e )dy = 0. (44)

This can be rewritten as the following when applying macroscopic uniformity to the first and fourth integrals
and the divergence theorem to the second and fifth integrals:

∇x · 〈j(0)
i 〉i + ∇x · 〈j(0)

e 〉e +
∫

∂�i\�
j(1)
i n∂�idS+

∫
�

j(1)
i ndS +

∫
∂�e\�

j(1)
e n∂�edS −

∫
�

j(1)
e ndS−

∫
�i

β̂(φ(0)
i − φ(0)

e )dy +
∫

�e

β̂(φ(0)
i − φ(0)

e )dy = 0. (45)

Due to periodicity, the terms on the external boundaries will cancel out, and using the ε2 coefficient of
equation (22c) with equations (42a) and (42b), we see that the terms on � will also disappear leaving:

∇x · 〈j(0)
i 〉i + ∇x · 〈j(0)

e 〉e −
∫

�i

β̂(φ(0)
i − φ(0)

e )dy +
∫

�e

β̂(φ(0)
i − φ(0)

e )dy = 0. (46)

Since we have equations (24f) and (29a) and (29b), we can rewrite equation (46) as:

∇x · 〈j(0)
i 〉i + ∇x · 〈j(0)

e 〉e − β̂V (0)(|�e| − |�i|) = 0, (47)

where

〈j(0)
i 〉i = − 〈Gi + GiRi〉i∇xφ

(0)
i − 〈GiQi〉i∇xφ

(0)
e

− 〈Gisi〉i (48a)

〈j(0)
e 〉e = − 〈Ge + GeRe〉e∇xφ

(0)
e − 〈GeQe〉e∇xφ

(0)
i

− 〈Gese〉e. (48b)

3.5. Problem for the elastic displacements u(1) and w(1)

We now require a problem for u(1) and w(1), so by taking equations (30a), (30b), and (31k) with equations (31i)
and (31j) along with the interface condition (31l), we can write:

∇y · (Ciξx(u(0))) + ∇y · (Ciξy(u(1))) = 0, (49a)

∇y · (Ceξx(w(0))) + ∇y · (Ceξy(w(1))) = 0, (49b)

u(1) = w(1), (49c)

(Ciξy(u(1)) − Ceξy(w(1))) · n = (Ceξx(w(0)) − Ciξx(u(0))) · n. (49d)

Since we have condition (26), u(0) = w(0), then we can replace the w(0)s in equations (49a)–(49d) to obtain:

∇y · (Ciξx(u(0))) + ∇y · (Ciξy(u(1))) = 0, (50a)

∇y · (Ceξx(u(0))) + ∇y · (Ceξy(w(1))) = 0, (50b)

u(1) = w(1), (50c)

(Ciξy(u(1)) − Ceξy(w(1))) · n = (Ce − Ci)ξx(u(0)) · n. (50d)
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We can exploit the linearity of the problem to propose the ansatz:

u(1) = Aiξx(u(0)), (51a)

w(1) = Aeξx(u(0)), (51b)

where Ai and Ae are the third rank tensors which solve the following cell problem:

∇y · (Ciξy(Ai)) + ∇y · Ci = 0, (52a)
∇y · (Ceξy(Ae)) + ∇y · Ce = 0, (52b)

Ai = Ae, (52c)
(Ciξy(Ai) − Ceξy(Ae)) · n = (Ce − Ci) · n. (52d)

For uniqueness of solution, we require an additional condition on the auxiliary tensors Ai and Ae, so we
propose:

〈Ai〉i = 0, and 〈Ae〉e = 0. (53)

Using the expressions, we have just obtained for u(1) and w(1), we can write the leading order stresses (31i)
and (31j) as:

T(0)
i = Ciξx(u(0)) + Ciξy(Ai)ξx(u(0))

= (Ci + CiMi)ξx(u(0)), (54)

and

T(0)
e = Ceξx(u(0)) + Ceξy(Ae)ξx(u(0))

= (Ce + CeMe)ξx(u(0)), (55)

where we have used the notation:

Mi = ξy(Ai), Me = ξy(Ae). (56)

We now want to consider a balance equation that takes into consideration each compartment. Taking the
integral average of equations (31g) and (31h) gives:

∫
�i

(∇x · T(0)
i )dy +

∫
�i

(∇y · T(1)
i )dy −

∫
�i

K̂(u(0) − w(0))dy

+
∫

�i

(Gi∇xφ
(0)
i × B(0))dy +

∫
�i

(Gi∇yφ
(1)
i × B(0))dy

+
∫

�e

(∇x · T(0)
e )dy +

∫
�e

(∇y · T(1)
e )dy

+
∫

�e

K̂(u(0) − w(0))dy +
∫

�e

(Ge∇xφ
(0)
e × B(0))dy

+
∫

�e

(Ge∇yφ
(1)
e × B(0))dy = 0. (57)

Since we have that u(0) = w(0) (26), we can cancel the third and eighth integral, we can then apply the
divergence theorem to the second and seventh integral and use the expressions (33a) and (33b) that we have for
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φ
(1)
i and φ(1)

e to write:

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e +
∫

∂�i\�
(T(1)

i · n∂�i)dS

+
∫

�

(T(1)
i · n)dS +

∫
∂�e\�

(T(1)
e n∂�e)dS

+
∫

�

(T(1)
e · n)dS +

∫
�i

(Gi∇xφ
(0)
i × B(0))dy

+
∫

�e

(Ge∇xφ
(0)
e × B(0))dy

+
∫

�i

(Gi∇y(�i∇xφ
(0)
i + �̂i∇xφ

(0)
e + φ̃i) × B(0))dy

+
∫

�e

(Ge∇y(�e∇xφ
(0)
e + �̂e∇xφ

(0)
i + φ̃e) × B(0))dy = 0. (58)

The terms of the external boundaries cancel due to periodicity and the terms on � cancel due to equation
(31k) so that we have:

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e +
∫

�i

(Gi∇xφ
(0)
i × B(0))dy

+
∫

�e

(Ge∇xφ
(0)
e × B(0))dy +

∫
�i

(Gi∇y�i∇xφ
(0)
i × B(0))dy

+
∫

�i

(Gi∇y�̂i∇xφ
(0)
e × B(0))dy +

∫
�i

(Gi∇yφ̃i × B(0))dy

+
∫

�e

(Ge∇y�e∇xφ
(0)
e × B(0))dy

+
∫

�e

(Ge∇y�̂e∇xφ
(0)
i × B(0))dy

+
∫

�e

(Ge∇yφ̃e × B(0))dy = 0. (59)

Collecting integrals together and using the notation (40), we have:

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e + 〈GiRi + Gi〉i∇xφ
(0)
i × 〈B(0)〉i

+ 〈GeRe + Ge〉e∇xφ
(0)
e × 〈B(0)〉e

+ 〈GiQi〉i∇xφ
(0)
e × 〈B(0)〉i + 〈Gisi × B(0)〉i

+ 〈GeQe〉e∇xφ
(0)
i × 〈B(0)〉e + 〈Gese × B(0)〉e = 0. (60)

This can then be written as:

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e

= −〈GiRi + Gi〉i∇xφ
(0)
i × 〈B(0)〉i

− 〈GeRe + Ge〉e∇xφ
(0)
e × 〈B(0)〉e

− 〈GiQi〉i∇xφ
(0)
e × 〈B(0)〉i − 〈GeQe〉e∇xφ

(0)
i × 〈B(0)〉e

− 〈Gisi × B(0)〉i − 〈Gese × B(0)〉e. (61)

We have now derived all the equations required to be able to state our macroscale model.



420 Mathematics and Mechanics of Solids 30(2)

4. Macroscale model
The macroscale equations describe the effective behavior of the heart in terms of the leading order elastic
displacement u(0) and the leading order electric potentials φ

(0)
i and φ(0)

e . The model is given by:

∇x · 〈j(0)
i 〉i + ∇x · 〈j(0)

e 〉e = β̂V (0)(|�e| − |�i|), (62a)

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e = −〈GiRi + Gi〉i∇xφ
(0)
i × 〈B(0)〉i

− 〈GeRe + Ge〉e∇xφ
(0)
e × 〈B(0)〉e − 〈GiQi〉i∇xφ

(0)
e × 〈B(0)〉i

− 〈GeQe〉e∇xφ
(0)
i × 〈B(0)〉e − 〈Gisi × B(0)〉i

− 〈Gese × B(0)〉e, (62b)

φ
(0)
i − φ(0)

e = V (0), (62c)

where we have the averaged leading order current densities:

〈j(0)
i 〉i = − 〈Gi + GiRi〉i∇xφ

(0)
i − 〈GiQi〉i∇xφ

(0)
e

− 〈Gisi〉i, (63a)

〈j(0)
e 〉e = − 〈Ge + GeRe〉e∇xφ

(0)
e − 〈GeQe〉e∇xφ

(0)
i

− 〈Gese〉e, (63b)

and the averaged leading order solid stresses:

〈T(0)
i 〉i = 〈Ci + CiMi〉iξx(u(0)), (64a)

〈T(0)
e 〉i = 〈Ce + CeMe〉eξx(u(0)). (64b)

The novel model comprises the balance equation for the leading order current densities (62a). The current
densities (63a) and (63b) comprise both the electric fields of each compartment premultiplied by second rank
tensors that are to be obtained by solving the cell problems (34a)–(34d) and (35a)–(35d) and a vector term
that arises from premultiplying the solutions to the cell problem (36a)–(36d) by the conductivity tensors. These
coefficients arising from the cell problem solutions account for the differences in the electric potentials at each
point in the microstructure and encode these in the model. We also have the balance equation for the solid
stresses (62b), where the stresses are (64a) and (64b) with the standard effective elasticity tensors Ci + CiMi

and Ce + CeMe found for elastic composite problems such as in Penta and Gerisch [26, 27]. These coefficients
encode the difference in elastic properties at different points in the microstructure. Equation (62b) also has
terms that show how the electric potentials and Lorentz forces influence and drive the elastic deformations of
the material. These terms again arise by solving the cell problems (34a)–(34d) and (35a)–(35d) and (36a)–(36d)
which encode the difference in electric potentials in the microstructure.

5. Limit case and scheme to solve the model
In this section, we will consider some modifications to the model setup and the outcome they will have on the
cell problems and overall model. We will also propose a scheme that can be used to solve the macroscale model.

5.1. Limit case here V = 0

Throughout this work, we have assumed that there is a potential drop V across the interface between the intra-
cellular and extracellular domains. We can here, however, consider what will happen to the model (62a)–(62c)
and the corresponding cell problems in the case in which V = 0.

Under this assumption, the macroscale equation (62c) will become:

φ
(0)
i = φ(0)

e . (65)
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We can then consider the problem (32a)–(32d) assuming V = 0, i.e.:

∇y · (Gi∇xφ
(0)
i ) + ∇y · (Gi∇yφ

(1)
i ) = 0 in �i, (66a)

∇y · (Ge∇xφ
(0)
e ) + ∇y · (Ge∇yφ

(1)
e ) = 0 in �e, (66b)

φ
(1)
i = φ(1)

e on �, (66c)

(Gi∇yφ
(1)
i − Ge∇yφ

(1)
e ) · n = (Ge∇xφ

(0)
e − Gi∇xφ

(0)
i ) · n on �. (66d)

We can use the fact that φ
(0)
i and φ(0)

e do not depend on the microscale variable y and using equation (24f)
under the assumption V = 0, we have:

φ
(0)
i (x, t) = φ(0)

e (x, t) = φ(0)(x, t). (67)

We can then propose the following ansatz:

φ
(1)
i = �i∇xφ

(0), (68a)

φ(1)
e = �e∇xφ

(0), (68b)

where �i and �e are the vectors. The auxiliary fields �i, �e, satisfy the following cell problem:

∇y · (Gi∇y�i) + ∇y · Gi = 0 in �i, (69a)

∇y · (Ge∇y�e) + ∇y · Ge = 0 in �e, (69b)
�i = �e on �, (69c)

(Gi∇y�i − Ge∇y�e) · n = (Ge − Gi) · n on �. (69d)

This is a vector problem which is driven by the difference in the conductivity tensors on the normal to the
interface between the phases.

We can also use this ansatz to determine the current densities j(0)
i and j(0)

e in the case where V = 0. We can
write equations (31d) and (31e):

j(0)
i = −Gi∇xφ

(0) − Gi∇yφ
(1)
i

= −(Gi + GiRi)∇xφ
(0), (70)

and

j(0)
e = −Ge∇xφ

(0) − Ge∇yφ
(1)
e

= −(Ge + GeRe)∇xφ
(0). (71)

The macroscale balance equation for the current densities (62a) can be simplified to:

∇x · 〈j(0)
i 〉i + ∇x · 〈j(0)

e 〉e = 0. (72)

The leading order solid stresses will remain unchanged as in equations (64a) and (64b) while the balance of
the solid stresses (62b) will simplify to:

∇x · 〈T(0)
i 〉i + ∇x · 〈T(0)

e 〉e

= −〈GiRi + Gi〉i∇xφ
(0) × 〈B(0)〉i

− 〈GeRe + Ge〉e∇xφ
(0) × 〈B(0)〉e. (73)

This means that we can summarize the simplified macroscale model using equations (72), (73), and (65)
with amended leading order current densities (70) and (71) and the unchanged leading order solid stresses (64a)
and (64b).
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5.2. Scheme for solving the macroscale model

We now propose a scheme that can be implemented to solve the macroscale model (62a)–(62c). We progress
in a step-by-step manner explaining how to find the effective model coefficients. We also explain how these
coefficients will be used in later steps when solving the macroscale model (62a)–(62c). The model coefficients
encode the structural details such as geometry, elastic, and electrical properties. Since we have assumed macro-
scopic uniformity of the material (see Remark 2) and assumed that the two scales are fully decoupled, then we
can propose the following steps to solve the model. The process is as follows:

1. The first step is to set the original material properties of the intracellular and the extracellular domains
at the microscale. We choose to make the assumption that each of the domains is isotropic. This means
we require two parameters for each domain. These are two independent elastic constants that can be
Poisson’s ratio and Young’s modulus (or alternatively the Lamé constants). We could, however, not make
this assumption and just provide the elasticity tensor with up to 81 components depending on the symmetry
that exists in each phase. We also must fix the original electrical properties such as the conductivity tensors
in each phase with up to nine components and the potential drop V across the interface. The last property
we need to fix is the magnetic field B.

2. We must determine the microscale geometry; this includes defining the specific geometry of a single
periodic cell and the volume of each of the phases.

3. We now begin the process that allows us to determine the macroscale model coefficients. We will begin
with the elastic coefficients. We are able to solve the elastic-type cell problem (52a)–(52d) which has the
solution auxiliary tensors Me and Mi. These tensors then appear in the macroscale model coefficients,
such as in the leading order stress. The cell problem to be solved is, in components:

∂

∂yδ

(
(Ci)αδτκξ

γ ν
τκ (Ai)

)
+ ∂(Ci)αδγ ν

∂yδ

= 0 in �i, (74a)

∂

∂yδ

(
(Ce)αδτκξ

γ ν
τκ (Ae)

)
+ ∂(Ce)αδγ ν

∂yδ

= 0 in �e, (74b)

(Ai)αγ ν = (Ae)αγ ν on �, (74c)

(Ci)αδτκξ
γ ν
τκ (Ai)nδ − (Ce)αδτκξ

γ ν
τκ (Ae)nδ = (Ce − Ci)αδγ νnδ on �. (74d)

The solution to problem (74a)–(74d) is found by fixing the couple of indices τ , κ = 1, 2, 3 such that we
are solving six elastic-type cell problems. When we do this, we obtain the strains ξ

γ ν
τκ (Ai) and ξ

γ ν
τκ (Ae) so

that for each fixed couple of indices τ , κ , we have a linear elastic problem. For other examples of where
this process has been carried out and utilized (see also Miller and Penta [35] and Dehghani [46, 47]). We
have used the notation:

ξγ ν
τκ (Ai) = 1

2

(
∂(Ai)τγ ν

∂yκ

+ ∂(Ai)κγ ν

∂yτ

)
;

ξγ ν
τκ (Ae) = 1

2

(
∂(Ae)τγ ν

∂yκ

+ ∂(Ae)κγ ν

∂yτ

)
.

(75)

4. We now will solve the problems that will allow us to determine the tensors and vectors that contribute to
the coefficients in the electrical current densities. We have the problems in components:

∂

∂yδ

(
(Gi)αδξαδ(�i)

)
+ ∂(Gi)αδ

∂yδ

= 0 in �i, (76a)

∂

∂yδ

(
(Ge)αδξαδ(�̂e)

)
= 0 in �e, (76b)

(�i)α = (�̂e)α on �, (76c)

((Gi)αδξαδ(�i) − (Ge)αδξαδ(�̂e))nδ = −(Gi)αδnδ on �, (76d)

and

∂

∂yδ

(
(Gi)αδξαδ(�̂i)

)
= 0 in �i, (77a)
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∂

∂yδ

(
(Ge)αδξαδ(�e)

)
+ ∂(Ge)αδ

∂yδ

= 0 in �e, (77b)

(�̂i)α = (�e)α on �, (77c)

((Gi)αδξαδ(�̂i) − (Ge)αδξαδ(�̂e))nδ = (Ge)αδnδ on �, (77d)

and

∂

∂yδ

(
(Gi)αδ

∂(φ̃i)

∂yδ

)
= 0 in �i, (78a)

∂

∂yδ

(
(Ge)αδ

∂(φ̃e)

∂yδ

)
= 0 in �e, (78b)

(φ̃i) − (φ̃e) = V (1) on �, (78c)(
(Gi)αδ

∂(φ̃i)

∂yδ

)
nα =

(
(Ge)αδ

∂(φ̃e)

∂yδ

)
nα on �, (78d)

where we have used the notation:

ξαδ(�i) = 1

2

(
∂(�i)α

∂yδ

+ ∂(�i)δ
∂yα

)
; (79a)

ξαδ(�̂i) = 1

2

(
∂(�̂i)α

∂yδ

+ ∂(�̂i)δ
∂yα

)
, (79b)

ξαδ(�e) = 1

2

(
∂(�e)α

∂yδ

+ ∂(�e)δ
∂yα

)
; (79c)

ξαδ(�̂e) = 1

2

(
∂(�̂e)α

∂yδ

+ ∂(�̂e)δ
∂yα

)
. (79d)

The problems (76a)–(76d) and (77a)–(77d) are the vector problems. These have driving forces of con-
ductivity tensor of each phase applied to the normal of the interface. The problem (78a)–(78d) is a scalar
problem.

5. When solving the cell problems, we need the solution to be unique. We therefore require one additional
condition. We make the choice that the cell averages of the auxiliary variables are zero. That is:

〈�i〉i = 0, 〈�e〉e = 0, 〈�̂i〉i = 0,

〈�̂e〉e = 0, 〈Ai〉i = 0, 〈Ae〉e = 0.
(80)

6. The auxiliary second rank tensors and vectors arising from the cell problems (Qe, Qi, Re, Ri, se, and si) are
then substituted in where they appear in the macroscale equations and this leads to a macroscale model
with coefficients that encode the microstructural details.

7. The structure and geometry of the macroscale must be set. This includes giving boundary conditions for
the homogenized cell. We also must provide initial conditions for the macroscale solid elastic displacement
and the electric potential drop V .

8. Finally, after carrying out all the above steps, our macroscale model (62a)–(62c) can then be solved.

6. Conclusion
In this work, we have derived a novel system of PDEs describing the effective electrical and mechanical behavior
of an elastic composite designed to represent the myocardium tissue. Our structure comprises an elastic matrix,
known as the extracellular domain, and embedded elastic subphases, known as the intracellular domain. This
structure has been designed to account for the cardiac myocytes that are surrounded by a matrix which creates
the heart muscle.
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In order to derive the new model, we set up a microscale problem that describes the electrical and mechanical
interactions between the cardiac myocytes and the surrounding matrix. We close the problem by accounting for
the continuity of current densities, stresses and elastic displacements as well as the difference in the electric
potentials across the interface between the myocyte and the matrix. We consider the heart muscle at a scale
where the myocytes are distinct from the matrix. The microscale has an associated length much smaller than
the one of the entire heart muscle (where we cannot see individual myocytes) and so the scale of the heart is
known as the macroscale. Since we have this sharp scale separation, we are then able to apply the asymptotic
homogenization technique to upscale the problem. The novel macroscale model that is derived is a first attempt
at an asymptotic homogenization model for a coupled electrical and mechanical bidomain model. The novel
model comprises balance equations for the current densities and for the stresses as well as additional terms
accounting for the difference in the electric potentials at different points in the microstructure. The coefficients
of the model encode the properties of the microstructure and are computed by solving the microscale differential
problems arising as a result of applying the asymptotic homogenization technique.

The novel model obtained in this work is a first example of combining both the electrical and mechanical
bidomain models of the heart via asymptotic homogenization. This can be considered as the next natural step in
deriving computationally feasible electro-mechanical models for the heart based on the underlying microstruc-
ture. The key novelty of this work resides in considering how the mechanical deformations of the heart are
influenced by the different electric fields arising from the electric potentials in each of the domains. The cou-
pled cell problems (34a)–(34d), (35a)–(35d), as well as (36a)–(36d) encode the details of the difference in
electric potentials at different points in the microstructure. The problem (52a)–(52d) is to be solved in order to
obtain the tensors Mi and Me which encode the details of the geometry and stiffness of the microstructure in
the macroscale equations.

This model is designed to describe the behavior of the heart and can be used in both healthy and diseased
scenarios including growth and remodeling of cardiac tissue. We could use the model to investigate the displace-
ment of the heart tissue due to the body forces that can be applied, such as the Lorentz force that we used in
this work. This could provide some important results as the imaging of the elastic displacement due to Lorentz
force has been recently proposed as a potential use of MRI [48]. This would allow traditional MRI to be used
to measure bio-currents and differs from functional MRI that need to use blood oxygenation level-dependent
signaling to detect currents [48].

The differences in intracellular and extracellular displacements that the new model includes can be con-
sidered to determine the role they play in mechanotransduction. This investigation would suggest whether a
bidomain formulation, of the type in this work, is necessary when considering growth and remodeling. The
mechanical element of the model can be used to predict tissue changes in the border zone surrounding a region
of ischemia following myocardial infarction. It may also be considered when trying to explain why the com-
plete heart muscle thickens during hypertrophy. In Puwal [49], the mechanical bidomain model has been used
to predict how the heart responds to elevated blood pressure and other structural abnormalities.

Having a model that can describe the electrical activity of the heart is a very useful tool to aid the under-
standing of how the electrical function is impaired or changed by various diseases or disorders of the heart
conduction system. With the novel model, we have derived here we can investigate how the structural changes
caused by myocardial ischemia induce differences in the heart electrophysiology. The ischemia causes a change
in the action potentials and the membrane potential increases with a larger uptake of potassium ions [50].

The current model assumes that both the matrix and myocytes are anisotropic linear elastic materials. We
could, however, allow for these materials to be hyperelastic. This would involve a method similar to that carried
out in Miller and Penta [51], Collis et al. [52], and Ramírez-Torres et al. [53]. Using nonlinear elasticity for
the phases, we complicate the numerical simulations involved in computing the model coefficients and the
macroscale model solution. The complication is due to the fact that the two length scales in the system remain
coupled and massively increase the computational load. Recently, there has been the emergence of techniques
to try to overcome this coupling of the scales (see Dehghani and Zilian [54, 55]).

By allowing for the matrix and myocytes to be hyperelastic, we could approach using nonlinear elasticity the-
ory [56] and the Holzapfel–Ogden law [8]. This would allow us to treat the myocardium as a non-homogeneous,
anisotropic, nonlinear elastic, incompressible material, with a strain energy function to describe the material.
The parameters of the law would be to be determined by biological measurements using techniques such as
those that have been investigated in Ogden et al. [57] and Gao [58]. Using such an approach, we could even
consider the influence of residual stresses as investigated by Wang et al. [9] or different filling phases of the
individual heart chambers [59].
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In this work, we have assumed that both the myocyte and the matrix are anisotropic elastic solids. This
could, however, be modified to provide slightly more realistic behavior of the phases. In Puwal and Roth [17],
the assumption that the matrix is isotropic is made. This would be an easy enough modification to be made in this
work. Puwal and Roth [17] assumed that the myocyte is not isotropic and therefore used a fluid-fiber continuum
to represent the mechanical properties. They make the assumption that the myocardial fibers are directed along
unit vectors which are in general a function of position. We can therefore modify the stress equation to comprise
the intracellular pressure and the fiber tension. The fiber tension has two parts [60]: an active isometric tension
at zero strain and a passive linear stress–strain relationship characterized by Young’s modulus. This allows for
curving fibers in the myocyte to be accounted for as in Chadwick [60] and Holzapfel et al. [61]. These changes
to the properties of the elastic phases could be incorporated in our model to improve the applicability to the
heart and to provide a framework that can be used with experimental data.

The current work could be further developed in many ways, however, potentially the most important and
useful of these would be to carry out the numerical simulations. This would mean obtaining solutions to the
model using a specific microstructure with the parameters chosen by real-world data for the heart, myocytes, and
electrical conductivity. Comparison between the numerical results and experimental data will allow for model
validation and will give an insight into the predictive capabilities of the model as a potential diagnostic tool.
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