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Abstract Within this work, we perform a sensitivity analysis to determine the influence
of the material input parameters on the pressure in an isotropic porous solid cylinder.
We provide a step-by-step guide to obtain the analytical solution for a porous isotropic
elastic cylinder in terms of the pressure, stresses, and elastic displacement. We obtain
the solution by performing a Laplace transform on the governing equations, which are
those of Biot’s poroelasticity in cylindrical polar coordinates. We enforce radial boundary
conditions and obtain the solution in the Laplace transformed domain before reverting
back to the time domain. The sensitivity analysis is then carried out, considering only
the derived pressure solution. This analysis finds that the time t, Biot’s modulus M , and
Poisson’s ratio ν have the highest influence on the pressure whereas the initial value of
pressure P0 plays a very little role.
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1 Introduction

The theory of poroelasticity describes the effective mechanical behavior of a porous elastic
material with fluid filled pores. The theory was first developed in Refs. [1]–[4] from experimental
observations. In physical scenarios where the interactions between the deformable solid and the
fluid take place on the porescale, the theory is applicable to capture the behavior. The approach
has been applied to many scenarios including modeling of hard hierarchical tissues such as
bones[5–6]. It is also applicable to soft biological tissues including the heart (myocardium)
and artery walls[7–10] as well as the interstitial matrix of biological tissues which can either be
healthy or tumorous[11–12]. Applications of the theory also exist beyond animal biology, such
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as in artificial constructs that are used for regenerative therapies, biomimetic materials[13–14],
soil, and porous rocks[15–16].

Solutions to boundary value problems involving partial differential equations equipped with
appropriate boundary and initial conditions are well sought when addressing real-world prob-
lems. In some cases it is possible to determine a solution only numerically; however, there are
a variety of scenarios where analytical solutions can be found. The solutions to the governing
equations of porous media have been presented for a variety of geometries and techniques in
the literature. Analytical solutions for porous cylinders, spheres, and boreholes are presented
in Ref. [17], with the cylinder problem first investigated in Ref. [18]. The solutions provide ex-
pressions for pressure, stresses, and elastic displacement. Numerically there has also been a
variety of approaches taken to determine the solution, and a review of these techniques can be
found in Ref. [19].

The solutions that can be found involve a variety of parameters. Each of these param-
eters will have a different significance on the overall pressure, stress, or displacement. The
importance of each parameter can be determined via a sensitivity analysis. Additionally, the
sensitivity analysis leads to the understanding of how the interactions between the different
input parameters affect the solution output.

The sensitivity analysis is implemented to examine the impact of the different input values
on the model behavior, and it can have a significant role in different areas of model devel-
opment such as model substantiation, research prioritization, model improvement, and model
verification[20]. Moreover, the sensitivity analysis gives a comprehensive overview of how the
interactions between the different input parameters affect the behavior of the model[22]. Re-
cently, various areas of engineering and science that investigate complex models with industrial
applications to biomechanics have utilized the sensitivity analysis technique[23–24]. This led to
the application of sensitivity analysis to study the inflation of tubular structures in Ref. [25]
and closely related problems[23–24,26–28]. Obtaining a thorough understanding of the mechan-
ical behavior of a material is important, as it requires quantifying and qualifying the degree
of significance of the input parameters and their contributions to the output of the model.
The sensitivity analysis addresses these points, and in particular, it evaluates the behavior of a
model focusing on how the input parameters interact with the output variables.

There has been a categorization for sensitivity analysis methods. One of the most promi-
nent is proposed by Frey and Patil[29]. They segmented the sensitivity analysis methods into
three groups: (i) the mathematical approach that encompasses the automatic differentiation,
the nominal range, log-odds ratio, and the break-even analysis; (ii) the graphical approach that
entails the visualization tools such as scatter plots and heat maps; (iii) the statistical approach
that includes probabilistic models with simulation methods and the corresponding estimators.
The Sobol method, the Fourier amplitude sensitivity test (FAST) method, the regression anal-
ysis, and the Morris method are defined in the framework of the statistical sensitivity analysis
methods. Some of these methods are applied under some constraints; for example the Morris
and regression methods can be applied to monotonic models, while the Sobol and FAST meth-
ods can be implemented in complex problems with non-monotonic and non-linear behavior.
Recent works[25, 30] applied the Sobol and the FAST methods to study the extension, inflation,
and torsion of a circular cylindrical tube in the presence of residual stresses.

Within this work, we first find an analytic solution to the equations that describe the
mechanical behavior of a porous material using techniques described in Refs. [17]–[18]. We
investigate a solid cylinder whose microstructure consists of a porous elastic matrix. The elastic
matrix of the solid cylinder is assumed to be isotropic. We begin by introducing the governing
equations of the porous media in cylindrical polar coordinates. We then perform a Laplace
transformation on the equations and impose radial stress boundary conditions in order to find
the solution in the Laplace transformed domain. We require our solution to be in the time
domain, and to achieve this, we perform an inverse Laplace transformation. This allows us to
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obtain an analytical solution for the governing equations of porous media. To better understand
our results and the behavior of a porous elastic cylinder, we investigate the pressure solution
via a sensitivity analysis. This allows us to determine which of the input parameters has the
greatest influence on the pressure in a porous elastic isotropic cylinder. This can be useful for
informing the design of biomimetic materials, as we can determine which material parameter
(input) provides the greatest change in the material response (output).

The isotropic porous cylinder considered in this work could well describe hard hierarchi-
cal tissues, such as bones. A porous media approach to modeling bones has previously been
studied[5,31–32]. The bone can be described as a porous solid, where the pores are filled with
bone marrow, blood, or interstitial fluid and cells[32–33]. Bones remodel due to stress, injury or
growth via a process regulated by mechanosensitive cells called osteocyte which can be found
in the interstitial fluid of the pores[32, 34].

We note that a key feature of bone remodeling is the interstitial pressure as summarized in
Ref. [35]. Solelmani et al.[35] stated that recent studies have provided evidence that the pressure
and velocity of the interstitial fluid flowing through the pores of bones play a significant role in
the bone remodeling process[36–37]. Ghiasi et al.[36] also stated that the interstitial fluid velocity
and the shear stress within the bones, which the interstitial velocity creates, may influence the
cells responsible for bone healing. For this reason, we investigate the pressure in an isotropic
porous cylinder via a sensitivity analysis with a future application to bone remodeling in mind.

The paper is organized as follows. In Section 2, we find the solution analytically to the equa-
tions governing a porous elastic cylinder. We first introduce the governing equations for porous
media in cylindrical polar coordinates. In Subsection 2.1, we perform a Laplace transform on
the equations and impose radial stress boundary conditions in order to find the solution in the
Laplace transformed domain. In Subsection 2.2, we wish to revert our solution back to the time
domain so we need to perform an inverse Laplace transformation. In Subsection 2.3, we expand
and simplify the solution obtained for the pressure to carry out the sensitivity analysis. In
Section 3, we provide an in-depth overview of the sensitivity analysis technique and explain the
methods that we use to investigate the parameters influencing the pressure in a porous elastic
isotropic cylinder. In Section 4, we apply the Sobol method to the expanded and simplified
pressure expression to investigate the role that each of the parameters has on the resulting
pressure. Finally, in Section 5, we contextualize the solution at hand and provide concluding
remarks as well as future perspectives for this work.

2 Problem formulation

In this section, we derive the analytical solution to the equations governing an isotropic
porous elastic cylinder. The analytical solution has been considered in Refs. [17]–[18], yet here
we present a re-derivation with full steps included to specifically aim at giving a first insight on
the topic and solution method to students and scientists who are not familiar with the subject.
We note that the steps carried out here are of the same type even if we were to choose a material
that is not isotropic, i.e., with different symmetries. We have the solid porous elastic cylinder
which we wish to consider under the radial inflation (see Fig. 1). To begin, we can write the
displacement field in cylindrical polar coordinates for the cylinder as

u = urer + uθeθ + uzez. (1)

We consider an axisymmetric model, plane strain, so that the displacement field u reduces to

u = urer + 0eθ + 0ez = (u(r), 0, 0) for radial inflation. (2)

There is only one equilibrium equation, which (with axial symmetry) can be written as
∂σrr

∂r
+

σrr − σθθ

r
= 0, (3)
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Porous matrix

Fig. 1 The cylinder and its zooming in the pore microstructure (color online)

in terms of the (cylindrical) components of the stress tensor σ. The stress of the material can
be written as

σ = λtr(e)I + 2µe− αMζI, (4)

where we have the strain given by

e(u) =
∇u + (∇u)T

2
, (5)

λ is the Lamé constant, which can be written in terms of shear µ and Poisson’s ratio ν as

λ =
2µν

1− 2ν
, (6)

α is Biot’s coefficient, M is Biot’s modulus, and ζ is the fluid content. It follows easily that
one can write the stress-strain relations as

σrr =
2µν

1− 2ν
e + 2µerr − αMζ, (7)

σθθ =
2µν

1− 2ν
e + 2µeθθ − αMζ, (8)

σzz =
2µν

1− 2ν
e− αMζ, (9)

and similarly the pressure yields

p = M(ζ − αe), (10)

where e = err + eθθ. Then, err, eθθ, and the trace of the strain tensor e can be written as

err =
∂ur

∂r
, (11)

eθθ =
ur

r
, (12)

tr(e) = e =
∂ur

∂r
+

ur

r
=

1
r

∂rur

∂r
. (13)

We can use the stresses (7)–(9) with the expressions (11)–(13) in the equilibrium (3) to obtain
the Navier equation as

2µ(1− ν)
(1− 2ν)

(∂2ur

∂r2
+

1
r

∂ur

∂r
− ur

r2

)
− αM

∂ζ

∂r
= 0, (14)

which can be rewritten as
∂e

∂r
=

∂

∂r

(1
r

∂(rur)
∂r

)
=

ηM

µ

∂ζ

∂r
, (15)

where η = (1−2ν)α
2(1−ν) . We can then integrate this equation once to yield

e =
1
r

∂(rur)
∂r

=
ηM

µ
ζ + 2B1(t), (16)
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where B1(t) is a constant function of the integration. This expression can be rearranged as

∂(rur)
∂r

=
rηM

µ
ζ + 2B1(t)r, (17)

and integrating again gives

rur =
ηM

µ

∫
rζ(r, t)dr + B1(t)r2 + B2(t), (18)

which, since B2(t) is a constant function of integration, can be arranged as

ur =
ηM

rµ

∫
rζ(r, t)dr + B1(t)r +

B2(t)
r

. (19)

Now using this latter expression for ur and Eqs. (11)–(13), one can write

err =
∂ur

∂r
=
−ηM

r2µ

∫
rζ(r, t)dr +

ηMζ

µ
+ B1(t)− B2(t)

r2
, (20)

eθθ =
ur

r
=

ηM

r2µ

∫
rζ(r, t)dr + B1(t) +

B2(t)
r2

, (21)

e =
∂ur

∂r
+

ur

r
=

ηM

µ
ζ + 2B1(t). (22)

We can then use these latter expressions and (7)–(10) to obtain the stresses and the pressure,
which are after some basic manipulations,

σrr = −2ηM

r2

∫
rζ(r, t)dr +

2µ

1− 2ν
B1(t)− 2µ

r2
B2(t), (23)

σθθ = −2ηM

r2

∫
rζ(r, t)dr − 2ηMζ +

2µ

1− 2ν
B1(t) +

2µ

r2
B2(t), (24)

σzz = −2ηMζ +
4µν

1− 2ν
B1(t), (25)

p = Mζ
(
1− αηM

µ

)
− 2αMB1(t). (26)

2.1 Radial stress boundary conditions
The inner surface of the cylinder is subjected to a uniform radial stress, σrr = −P0, and the

pore pressure is drained, p = 0, i.e., the boundary conditions are

σrr = −P0, p = 0 at r = r0. (27)

We begin with the diffusion equation in the axisymmetric case,
∂ζ

∂t
− c

1
r

∂

∂r

(
r
∂ζ

∂r

)
= 0, (28)

where c is the consolidation coefficient. Then, by performing a Laplace transformation on the
diffusion equation (28), we have

d2ζ

dr2
+

1
r

dζ

dr
− s

c
ζ = 0. (29)

Solving this equation, we can find ζ, which is the Laplace transformed fluid content ζ that forms
part of the complete solution to the stresses and the pressures in Eqs. (23)–(26). Therefore,
Eq. (29) has the general solution

ζ = D1I0
(
r

√
s

c

)
, (30)

where I0 is the modified Bessel function of the first kind of order 0, and D1 is a constant
function of s to be determined, with s being the transformation variable. We should note that



1504 H. ASGHARI, L. MILLER, R. PENTA, and J. MERODIO

in Eq. (30) we have omitted a term containing K0, the modified Bessel function of the second
kind of order 0, for the solution of the problem at hand to be bounded when r = 0.

We can write down the Laplace transformation of the stress σrr (see Eq. (23)) as

σrr = −2ηM

r2

∫
rζ(r, s)dr +

2µ

1− 2ν
B1(s). (31)

We now substitute the general solution (30) into the Laplace transformed σrr to obtain

σrr = −2ηM

r2

∫ r

0

r′
(
D1I0

(
r′

√
s

c

))
dr′ +

2µ

1− 2ν
B1(s), (32)

where we note that for the solution to be bounded at r = 0, we have dropped the term associated
with B2(t). Now we can perform the integration, for which we let x = r′

√
s
c , dx

dr′ =
√

s
c , and

therefore dr′ =
√

c
sdx. Under these circumstances we can write the integral in (32) as

∫ r

0

r′
(
D1I0

(
r′

√
s

c

))
dr′ = D1

∫ r
√

s
c

0

(
x

√
c

s
I0(x)

√
c

s

)
dx

= D1
c

s
(xI1(x))

r
√

s
c

0 = D1

√
c

s
rI1

(
r

√
s

c

)
. (33)

Using this latter expression and Eq. (31), one can write σrr as

σrr = −2ηM

r2

(
r

√
c

s
D1I1

(
r

√
s

c

))
+

2µ

1− 2ν
B1(s). (34)

We now move our attention to apply the Laplace transformation to the equation for the
pressure (see Eq. (26)), which gives

p = Mζ
(
1− αηM

µ

)
− 2αMB1(t). (35)

Using the general solution (30) and the Laplace transformed p, one obtains

p = M
(
1− αηM

µ

)
D1I0

(
r

√
s

c

)
− 2αMB1(s). (36)

Using the boundary conditions (27) in Eqs. (34) and (36), we can solve for the unknowns
B1 and D1. This gives

− P0 = −2ηM

r2
0

(
r0

√
c

s
D1I1

(
r0

√
s

c

))
+

2µ

1− 2ν
B1(s), (37)

0 = M
(
1− αηM

µ

)
D1I0

(
r0

√
s

c

)
− 2αMB1(s). (38)

Now, one can eliminate B1 from Eqs. (37) and (38) (use µ
1−2ν× Eq. (38)+α×Eq. (37)) to obtain

D1 =
−2αP0r0

√
s(1− 2ν)(1− ν)

I0(r0

√
s
c )(2

√
sr0(1− ν)µ− α2M(1− 2ν)r0

√
s)− 2α2M(1− 2ν)2

√
cI1(r0

√
s
c )

. (39)

Then, using Eqs. (39) and (38), we obtain

B1 =
−2αP0r0

√
s(1− 2ν)(1− ν)(2µ(1− ν)− α2M(1− 2ν))I0(r0

√
s
c )

4µα(1−ν)(I0(r0

√
s
c )(2

√
sr0(1−ν)µ− α2M(1− 2ν)r0

√
s)−2α2M(1−2ν)2

√
cI1(r0

√
s
c ))

=
2µ(1− ν)− α2M(1− 2ν)

4µα(1− ν)
I0

(
r0

√
S

c

)
D1. (40)
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Furthermore, using B1 in the Laplace transformed σrr (see Eq. (34)) and p (see Eq. (36)),
respectively, we obtain

σrr = −2ηM

r

√
c

s
D1I1

(
r

√
s

c

)
+

2µ(1− ν)− α2M(1− 2ν)
2α(1− ν)(1− 2ν)

D1I0
(
r0

√
s

c

)
, (41)

and

p = M
(
1− αηM

µ

)
D1I0

(
r

√
s

c

)
− 2µM(1− ν)− α2M2(1− 2ν)

2µ(1− ν)
D1I0

(
r0

√
s

c

)
. (42)

We can now consider the two remaining stresses and the elastic displacement. The Laplace
transformed σθθ can be written as

σθθ = −2ηM

r

√
c

s
D1I1

(
r

√
s

c

)
− 2ηMD1I0

(
r

√
s

c

)
+

2µ

1− 2ν
B1(s), (43)

where again we note that for the solution to be bounded at r = 0, we have dropped the term
associated with B2(t). Then, finally, the transformed σzz is given by

σzz = −2ηMD1I0
(
r

√
s

c

)
+

4µν

1− 2ν
B1(s), (44)

and the transformed elastic displacement ur is

ur =
ηM

µ

√
c

s
D1I1

(
r

√
s

c

)
+ B1(s)r, (45)

where again we note that for the solution to be bounded at r = 0, we have omitted the term
associated with B2(t). Now, as before, using the expression for B1 and Eqs. (43), (44), and
(45), one obtains that

σθθ = −2ηM

r

√
c

s
D1I1

(
r

√
s

c

)
+

2µ(1− ν)− α2M(1− 2ν)
2α(1− 2ν)(1− ν)

D1I0
(
r0

√
s

c

)

− 2ηMD1I0
(
r

√
s

c

)
, (46)

σzz = −2ηMD1I0
(
r

√
s

c

)
+

ν(2µ(1− ν)− α2M(1− 2ν))
α(1− 2ν)(1− ν)

I0
(
r0

√
s

c

)
D1, (47)

ur =
ηM

µ

√
c

s
D1I1

(
r

√
s

c

)
+

2µ(1− ν)− α2M(1− 2ν)
4µα(1− ν)

D1I0
(
r0

√
s

c

)
r. (48)

In summary, the solution in the Laplace transformed domain is given by p (see Eq. (42)),
σrr (see Eq. (41), σθθ (see Eq. (46)), σzz (see Eq. (47)), and ur (see Eq. (48)). The next (and
last) step is to convert this solution back to the time domain.

2.2 Solutions in the time domain

To obtain the solution in the time domain, we carry out the inverse Laplace transform.
The inverse Laplace transform of a general function f(s) can be expressed as the ratio of two
analytic functions as f(s) = h(s)/g(s). If g(s) contains zeros at S∗n = 1, 2 · · · ,∞, then, the
Laplace inversion becomes

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
f(s)estds =

1
2πi

∮

C

h(s)
g(s)

estds =
∞∑

n=1

h(S∗n)
g′(S∗n)

eS∗nt. (49)
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2.2.1 Pressure
Using Eq. (42) and D1, given by Eq. (39), the pressure can be written as

p =
(
− αP0

√
sr0(1− 2ν)

(
2µ(1− ν)

(
I0

(
r

√
s

c

)
−M I0

(
r0

√
s

c

))

− α2M(1− 2ν)
(
I0

(
r

√
s

c

)
−M I0

(
r0

√
s

c

))))/(
µI0

(
r0

√
s

c

)
(2
√

sr0(1− ν)µ

− α2M(1− 2ν)r0

√
s)− 2µα2M(1− 2ν)2

√
cI1

(
r0

√
s

c

))
. (50)

Using the non-dimensionalized variables S∗ = r2
0s
c and R∗ = r

r0
, we can write the pressure

expression as the ratio of two analytic functions,

h(S∗)
g(S∗)

= (−αP0

√
S∗(1− 2ν)(2µ(1− ν)(I0(R∗

√
S∗)−M I0(

√
S∗))

− α2M(1− 2ν)(I0(R∗
√

S∗)−M I0(
√

S∗))))/(µI0(
√

S∗)(2
√

S∗(1− ν)µ

− α2M(1− 2ν)
√

S∗)− 2µα2M(1− 2ν)2I1(
√

S∗)). (51)

In the time domain, we have

p =
∞∑

n=1

h(S∗n)
g′(S∗n)

eSnt∗ , (52)

where the n zeros are found from g(S∗) = 0, i.e.,

µI0(
√

S∗)(2
√

S∗(1− ν)µ− α2M(1− 2ν)
√

S∗)− 2µα2M(1− 2ν)2I1(
√

S∗) = 0, (53)

which can be solved numerically to find each S∗n for n = 1, 2, · · · ,∞. Due to Eq. (52), one also
needs to find

g′(S∗) = (2(1− ν)µ2 − µα2M(1− 2ν))
( I0(

√
S∗)

2
√

S∗
+

I1(
√

S∗)
2

)

− 2µα2M(1− 2ν)2
( I0(

√
S∗)

2
√

S∗
− I1(

√
S∗)

2S∗

)

=((2(1− ν)µ2 − µα2M(1− 2ν))(I0(
√

S∗)
√

S∗ + S∗I1(
√

S∗))

− 2µα2M(1− 2ν)2(I0(
√

S∗)
√

S∗ − I1(
√

S∗)))/(2S∗). (54)

Therefore, using Eqs. (52) and (54), one gets

p =
∞∑

n=1

(−2αP0S
∗
n

3/2(1− 2ν)(2µ(1− ν)(I0(R∗
√

S∗n)−M I0(
√

S∗n))

− α2M(1− 2ν)(I0(R∗
√

S∗n)−M I0(
√

S∗n)))eS∗nt∗)

/((2(1− ν)µ2 − µα2M(1− 2ν))(I0(
√

S∗n)
√

S∗n + S∗nI1(
√

S∗n))

− 2µα2M(1− 2ν)2(I0(
√

S∗n)
√

S∗n − I1(
√

S∗n))), (55)

where t∗ = ct
r2
0

is the non-dimensional time. We can then make the change of variables S∗n = −xn,
and under these circumstances, the Bessel functions involved become J0(R∗

√
xn), J0(

√
xn), and

J1(
√

xn).
One finally can write the pressure in an isotropic porous cylinder in the time domain as
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p =
∞∑

n=1

(2αP0x
3/2
n (1− 2ν)(2µ(1− ν)(J0(R∗

√
xn)−MJ0(

√
xn))

− α2M(1− 2ν)(J0(R∗
√

xn)−MJ0(
√

xn)))e−xnt∗)/(µC(xn)), (56)

where

C(xn) = (2(1− ν)µ− α2M(1− 2ν))(J0(
√

xn)
√

xn − xnJ1(
√

xn))

− 2α2M(1− 2ν)2(J0(
√

xn)
√

xn − J1(
√

xn)), (57)

in which xn are real and positive.
2.2.2 Stress σrr

We carry out the same procedure for σrr. Beginning with Eq. (41) and substituting D1 (see
Eq. (39)), we have

σrr =
P0r0(α2M(1−2ν)(2(1−2ν)I1(r

√
s
c )
√

c−rI0(r0

√
s
c )
√

s) + 2µr(1− ν)I0(r0

√
s
c )
√

s)
r(I0(r0

√
s
c )(2

√
sr0(1− ν)µ− α2M(1− 2ν)r0

√
s)− 2α2M(1− 2ν)2

√
cI1(r0

√
s
c ))

. (58)

Then, using the non-dimensionalized variables S∗ = r2
0s
c and R∗ = r

r0
, we can write this as the

ratio of two analytic functions

h(S∗)
g(S∗)

= (P0(α2M(1− 2ν)(2(1− 2ν)I1(R∗
√

S∗)−
√

S∗R∗I0(
√

S∗)))

+ 2µ
√

S∗R∗(1− ν)(I0(
√

S∗)))/(R∗(I0(
√

S∗)(2
√

S∗(1− ν)µ

− α2M(1− 2ν)
√

S∗)− 2α2M(1− 2ν)2I1(
√

S∗))). (59)

Then, in the time domain, we have

σrr =
∞∑

n=1

h(S∗n)
g′(S∗n)

eS∗nt∗ , (60)

where n zeros are found from g(S∗) = 0, which can be solved numerically to find all the S∗n.
This will give the same zeros in Eq. (53). Due to Eq. (60), we also need to find g′(S∗), which is
given by R∗

µ × Eq. (54). Therefore, in the time domain, using (60), we have

σrr =
∞∑

n=1

(2S∗nP0(α2M(1− 2ν)(2(1− 2ν)I1(R∗
√

S∗n)−
√

S∗nR∗I0(
√

S∗n))

+ 2µ
√

S∗nR∗(1− ν)(I0(
√

S∗n)))eS∗nt∗)/(R∗(2(1− ν)µ− α2M(1− 2ν))(I0(
√

S∗n)
√

S∗n
+ S∗nI1(

√
S∗n))− 2R∗α2M(1− 2ν)2(I0(

√
S∗n)

√
S∗n − I1(

√
S∗n))), (61)

where t∗ = ct
r2
0

is the non-dimensional time. We can then make the change of variables S∗n = −xn

so that the Bessel functions involved become J0(R∗
√

xn), J0(
√

xn), and J1(
√

xn).
We therefore find that the solution for σrr in the time domain is

σrr =
∞∑

n=1

(−2xnP0(α2M(1− 2ν)(2(1− 2ν)J1(R∗
√

xn)−√xnR∗J0(
√

xn))

+ 2µ
√

xnR∗(1− ν)(J0(
√

xn)))e−xnt∗)/(R∗C(xn)). (62)

2.2.3 Stress σθθ

We consider the stress σθθ. We begin with Eq. (46) and substitute D1 given by Eq. (39) to
obtain
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σθθ =
(
P0r0

(
α2M(1− 2ν)

(
2(1− 2ν)

(
I1

(
r

√
s

c

)√
c− rI0

(
r

√
s

c

)√
s
)
− rI0

(
r0

√
s

c

)√
s
)

+ 2µr(1− ν)I0
(
r0

√
s

c

)√
s
))/(

r
(
I0

(
r0

√
s

c

)
(2
√

sr0(1− ν)µ− α2M(1− 2ν)r0

√
s)

− 2α2M(1− 2ν)2
√

cI1
(
r0

√
s

c

)))
. (63)

Then, using the non-dimensionalized variables S∗ = r2
0s
c and R∗ = r

r0
, we can write the ratio

of two analytic functions as

h(S∗)
g(S∗)

= (P0(α2M(1− 2ν)(2(1− 2ν)(I1(R∗
√

S∗)−
√

S∗R∗I0(R∗
√

S∗))−
√

S∗R∗I0(
√

S∗)))

+ 2µ
√

S∗R∗(1− ν)(I0(
√

S∗)))/(R∗(I0(
√

S∗)(2
√

S∗(1− ν)µ

− α2M(1− 2ν)
√

S∗)− 2α2M(1− 2ν)2I1(
√

S∗))). (64)

It follows that in the time domain we have

σθθ =
∞∑

n=1

h(S∗n)
g′(S∗n)

eS∗nt∗ . (65)

Since g(S∗) here is R∗
µ × Eq. (53), the zeros are the same as those found numerically from

Eq. (53), and the derivatives are the same as those found for σrr. Therefore, in the time domain,
we have

σθθ =
∞∑

n=1

(2S∗nP0(α2M(1− 2ν)(2(1− 2ν)(I1(R∗
√

S∗n)−
√

S∗nR∗I0(R∗
√

S∗n))

−
√

S∗nR∗I0(
√

S∗n)) + 2µ
√

S∗nR∗(1− ν)(I0(
√

S∗n)))eS∗nt∗)

/(R∗(2(1− ν)µ− α2M(1− 2ν))(I0(
√

S∗n)
√

S∗n + S∗nI1(
√

S∗n))

− 2R∗α2M(1− 2ν)2(I0(
√

S∗n)
√

S∗n − I1(
√

S∗n))), (66)

where t∗ = ct
r2
0

is the non-dimensional time. We can then make the change of variables S∗n = −xn

so that the Bessel functions involved become J0(R∗
√

xn), J0(
√

xn), and J1(
√

xn).
As before, one can finally write the stress σθθ in the time domain as

σθθ =
∞∑

n=1

(
(−2xnP0(α2M(1− 2ν)(2(1− 2ν)(J1(R∗

√
xn)

−√xnR∗J0(R∗
√

xn))−√xnR∗J0(
√

xn)))/(R∗C(xn))

+
2µ
√

xnR∗(1− ν)(J0(
√

xn))e−xnt∗

R∗C(xn)

)
. (67)

2.2.4 Stress σzz

We now consider the stress σzz. We begin with Eq. (47) and substitute D1 given by Eq. (39)
to obtain

σzz =
2P0r0

√
s(α2M(1− 2ν)((1− 2ν)I0(r

√
s
c ) + νI0(r0

√
s
c ))− 2νµ(1− ν)I0(r0

√
s
c ))

(I0(r0

√
s
c )(2

√
sr0(1− ν)µ− α2M(1− 2ν)r0

√
s)− 2α2M(1− 2ν)2

√
cI1(r0

√
s
c ))

. (68)

Then, using the non-dimensionalized variables S∗ = r2
0s
c and R∗ = r

r0
, we can write as the ratio

of two analytic functions,

h(S∗)
g(S∗)

=
2P0

√
S∗(α2M(1−2ν)((1−2ν)I0(R∗

√
S∗)+νI0(

√
S∗))−2νµ(1−ν)(I0(

√
S∗)))

(I0(
√

S∗)(2
√

S∗(1− ν)µ− α2M(1− 2ν)
√

S∗)− 2α2M(1− 2ν)2I1(
√

S∗))
. (69)



On an isotropic porous solid cylinder: the analytical solution and sensitivity analysis 1509

Then, in the time domain, we have that where n zeros are found from g(S∗) = 0, which can
be solved numerically to find all the S∗n. This will give the same zeros as in Eq. (53). Due to
Eq. (60) we also need to find g′(S∗), which is given by 1

µ× Eq. (54). Therefore, in the time
domain, we have

σzz =
∞∑

n=1

(2
√

S∗nP0(α2M(1− 2ν)((1− 2ν)I0(R∗
√

S∗n) + νI0(
√

S∗n))

− 2νµ(1− ν)(I0(
√

S∗n)))eS∗nt∗)/((2(1− ν)µ− α2M(1− 2ν))(I0(
√

S∗n)
√

S∗n
+ S∗nI1(

√
S∗n))− 2α2M(1− 2ν)2(I0(

√
S∗n)

√
S∗n − I1(

√
S∗n))), (70)

where t∗ = ct
r2
0

is the non-dimensional time. We can then make the change of variables S∗n = −xn

so that the Bessel functions involved become J0(R∗
√

xn), J0(
√

xn), and J1(
√

xn).
We therefore have

σzz =
∞∑

n=1

(2
√

xnP0(α2M(1− 2ν)((1− 2ν)J0(R∗
√

xn) + νJ0(
√

xn))

− 2νµ(1− ν)(J0(
√

xn)))e−xnt∗)/(C(xn)), (71)

where σzz is the stress in the time domain.
2.2.5 Displacement ur

Finally, we can consider the displacement ur. We begin with ur (see Eq. (48)) and substitute
D1 (see Eq. (39)) to obtain

ur =
(
− P0r0(1− 2ν)

(
α2M(1− 2ν)

(
2
√

cI1(r
√

s

c
)− r

√
sI0

(
r0

√
s

c

))

+ 2µ(1− ν)
√

srI0
(
r0

√
s

c

)))/(
2µ

(
I0

(
r0

√
s

c

)
(2
√

sr0(1− ν)µ

− α2M(1− 2ν)r0

√
s)− 2α2M(1− 2ν)2

√
cI1

(
r0

√
s

c

)))
. (72)

Then, using the non-dimensionalized variables S∗ = r2
0s
c and R∗ = r

r0
, we can write as the ratio

of two analytic functions,

h(S∗)
g(S∗)

= (−P0r0(1− 2ν)(α2M(1− 2ν)(2I1(R∗
√

S∗)−R∗
√

S∗I0(
√

S∗))

+ 2µ(1− ν)R∗
√

S∗I0(
√

S∗)))/(2µ(I0(
√

S∗)(2
√

S∗(1− ν)µ

− α2M(1− 2ν)
√

S∗)− 2α2M(1− 2ν)2I1(
√

S∗))). (73)

Then, in the time domain, we have

ur =
∞∑

n=1

h(S∗n)
g′(S∗n)

eS∗nt∗ , (74)

where n zeros are found from g(S∗) = 0, which can be solved numerically to find all the S∗n.
This will give the same zeros as in Eq. (53). Due to Eq. (60), we also need to find g′(S∗), which
is given by 2× Eq. (54). In the time domain, one has

ur =
∞∑

n=1

(−P0r0(1− 2ν)(α2M(1− 2ν)(2I1(R∗
√

S∗n)−R∗
√

S∗nI0(
√

S∗n))

+ 2µ(1− ν)R∗
√

S∗I0(
√

S∗n))eS∗nt∗)/((2(1− ν)µ2 − µα2M(1− 2ν))(I0(
√

S∗n)
√

S∗n
+ S∗nI1(

√
S∗n))− 2µα2M(1− 2ν)2(I0(

√
S∗n)

√
S∗n − I1(

√
S∗n))), (75)
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where t∗ = ct
r2
0

is the non-dimensional time. We can then make the change of variables S∗n = −xn

so that the Bessel functions involved become J0(R∗
√

xn), J0(
√

xn), and J1(
√

xn).
We therefore have

ur =
∞∑

n=1

(−P0r0(1− 2ν)(α2M(1− 2ν)(2J1(R∗
√

xn)−R∗
√

xnJ0(
√

xn))

+ 2µ(1− ν)R∗
√

xnJ0(
√

xn))e−xnt∗)/(µC(xn)), (76)

where ur is the displacement in an isotropic porous elastic cylinder in the time domain.
In summary, the full analytical solution for the pressure, stresses and elastic displacement

of an isotropic porous cylinder is given by p (see Eq. (56)), σrr (see Eq. (62)), σθθ (see Eq. (67)),
σzz (see Eq. (71)), and ur (see Eq. (76)).
2.3 Simplification of the pressure for the sensitivity analysis

In this work, we focus on the sensitivity analysis of the parameters involved in the expression
for the pressure (56). As the expression of pressure is a sum evaluated for each xn, for n =
1, 2, · · · ,∞, which are zeros of the expression (53), we have a very lengthy expression. Therefore,
before carrying out the sensitivity analysis, we need to simplify the pressure sum. We do this
by considering only the first 5 terms of the expanded sum (see Eq. (56)). To expand the sum,
we need to calculate the first 5 zeros of expression (53), where we assume that the parameters
are not varying.

The parameters that we require are the standard poroelastic parameters. The parameter µ
is the shear modulus, and hence it has the unit of pressure, M is Biot’s modulus, and therefore
also has the unit of pressure. The Poisson ratio ν is non-dimensional, and so is Biot’s coefficient
α. These are standard poroelastic coefficients as discussed in Refs. [17], [21], [50], and [53]. In
porous media, the Poisson ratio ν is confined to a range (0, 1), where this range means that
the material goes from fully compressible to incompressible. Biot’s modulus M approaching
infinity, together with Biot’s coefficient α approaching 1, represents a situation that would
be achieved for the intrinsic incompressibility of the matrix. Therefore, we choose µ = 1 and
M = 50 000, which can be taken to represent that M is therefore approaching infinity. We want
to consider a porous material that has an intrinsically incompressible solid matrix. Therefore,
we have chosen µ = 1, ν = 0, α = 1, and M = 50 000 to calculate xn.

We then find the first 5 xn, which are

xn = (8.700 2, 34.119, 78.726, 142.95, 226.88). (77)

In Fig. 2, we plot the solution to p (see Eq. (56)) using the first five xn that have been
obtained. Since we have a smooth profile, we can conclude that the first five xn values are
sufficient to determine the behavior of the pressure. We are now able to carry out the sensitivity
analysis on the parameters of Eq. (56) evaluated at the first five xn. The expanded expression
with which we carry out the sensitivity analysis is given in Appendix A.
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Fig. 2 Pressure profile for the porous cylinder using the first five xn (color online)
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3 On the sensitivity analysis

Sensitivity analysis examines the effect of input parameters on output variables in a model.
Researchers need to determine the contribution of uncertainty for each involved input parameter
on the output of the model. If the input parameters follow relevant probability distributions,
statistical methods can be used to understand the parameters that contribute to the variability
of the model output.

Sensitivity analysis can be either deterministic or probabilistic. In a deterministic sensitivity
analysis approach, we have a predefined fixed value for each of the parameters, while in the
probabilistic sensitivity analysis methods, we consider a range of accepted values for each input
parameter. Since in this work we are dealing with porous media, the input parameters have a
range of possible values; therefore, the probabilistic approach is a more appropriate choice.

In what follows, we consider the Sobol method due to the nature of the problem. In Sub-
section 3.1, we recap the Sobol method. In Subsection 3.2, the three probability distributions,
namely, the uniform, exponential, and Weibull, applied to the problem at hand are reviewed.
Subsection 3.3 considers the assessments of the Sobol method using both the bias measure and
the standard deviation.
3.1 Sobol method

The Sobol method is defined as a numerical method[20], and it is a variance-based sensitivity
analysis that is categorized as a statistical approach in sensitivity analysis methods. This
method figures out the impact of contributed variations of the input parameters on the output
variables of the model[22]. Through variance-based computation, the amount of uncertainty of
the output variable of the model is determined with attention to the contribution of individual
input parameters and their interactions[38].

Assume, in a general notation, the random vector X = (X1, X2, · · · , Xt) (Xi are the input
variables), and y = f(X) (i.e., y is the output). Furthermore, suppose that f(·) is a function[22]

that is defined on the interval [0, 1]t as

f(X) = f0 +
t∑

i=1

fi(Xi) +
t∑

i<j

fij(Xi, Xj) + · · ·+ f12···t(X), (78)

where
∫ 1

0

fi1···is
(Xi1 , Xi2 , · · · , Xis

)dxil
= 0, 1 6 l 6 s, {i1, i2, · · · , is} ⊆ {1, 2, · · · , t}. (79)

In accordance to functional analysis of variance, the variance of a function is given as[39]

Var(y) =
t∑

i=1

Di(y) +
t∑

i<j

Dij(y) + · · ·+ D12···t(y), (80)

where Di(y) = Var(E(y |Xi)) are the first-order indices, and E is the mathematical expectation
for (y|Xi, Xj); likewise, Dij(y) = Var(E(y|Xi, Xj))−Di(y)−Dj(y) are the second-order indices,
etc. The first-order indices and second-order interaction indices are gained as[40]

Syi =
Di(y)
Var(y)

, Sij =
Dij(y)
Var(y)

, (81)

respectively. There are 2t−1 indices computed using this method. For instance, if one considers
seven input variables, i.e., t = 7, there are 2t − 1 = 127 indices including individual and
interaction effects in the model. The following total indices are proposed by Archer et al.[41]:

STi = Syi +
∑

i<j

Sij +
∑

j 6=i,l 6=i,j<l

Sijl + · · · =
∑

l∈#i

Sl, (82)



1512 H. ASGHARI, L. MILLER, R. PENTA, and J. MERODIO

where #i refers to all the subsets of {1, 2, · · · , t} that include the index i. The determination
of the sampling design and an estimator is a necessary step to obtain variance-based sensitivity
indices. In the case of the sampling design, Monte Carlo sampling-based methods for the first-
order and interaction indices have been proposed by Sobol[42]. This approach has been further
developed for both the first-order and total-order indices by Saltelli[40]. In addition, to calculate
the error estimation for the indices, the combination of the Monte-Carlo method with the use of
asymptotic formulas[43], bootstrap methods[41], and random repetition[44] has been used. Other
estimators to obtain the first-order and total-order Sobol indices have been proposed, and we
refer to the literature for details. Here, two estimators are used: the “Saltelli estimator”[45]

for the first-order effect, and the “Janson estimator”[46] for the total sensitivity indices, which
are proposed by Saltelli et al.[45] and Puy et al.[47], respectively, since they can handle even
non-monotonic and non-linear models.

For the first-order indices, the Saltelli estimator is

Si =

1
t

t∑
j=1

f(B)j(f(A(i)
B )j − f(A)j)

Var(y)
, (83)

which is composed of combinations of the matrices A, B, A
(i)
B , or B

(i)
A (for the full description

of these matrices, we refer to Ref. [47]). For the total indices, the Janson estimator is

Ti =

1
2t

t∑
j=1

(f(A)j − f(A(i)
B )j)2

Var(y)
. (84)

These estimators are obtained through a sampling-based approach in the model. Ti − Si mea-
sures the joint effect of an input variable with attention to the interpretation of Sobol indices.
In particular, it captures the uncertainty of a model due to the joint effects of the input Xi

with other input parameters. It follows that if Ti = 0, then Xi does not have any total effect
in the output of the model, and it is therefore not an influential input[46].

We gain the second-order interactions defined in Eq. (81) using Liu and Owen’s formula[48]

that expresses the higher-order interaction between two input parameters on the model output.
The estimations of the second-order interactions are

Ŝi,j =
1
4n

n∑
t=1

(f(Xt
i , X

t
j , X

t
−i,j)− f(Xt

i ,W
t
j , Xt

−i,j)

− f(W t
i , Xt

j , X
t
−i,j) + f(W t

i ,W t
j , Xt

−i,j))
2, (85)

where the two independent copies defined on the interval [0, 1]m from Xi and Xj are Wi and Wj ,
respectively, t is the number of repetitions in model output, and n is the sample size of input
parameters. In addition, X−i,j shows the interaction effect of two input parameters without
the direct effect for Xi,j parameters, i.e., Eq. (85) is the estimation of the expected values of
the joint effects of two input parameters on the output of the model. We represent the results
of the joint effects of input parameters on model output using a scatter plot matrix. Scatter
plots for some (we take three) input parameters on the pressure relation have been obtained
in Section 4. In the scatter plots, the values of input parameters have been taken based on
physical meaning.

Here, three different probability distributions, namely, uniform, exponential, and Weibull,
are used to obtain the Sobol indices of the input parameters through “Saltelli-Jansen” estimators
(see Eqs. (83) and (84)). Instead of having just random data or deterministic fixed data, we
run statistical simulations in the “R” programming language as input values.
3.2 The applied probability distributions in the sensitivity analysis

The probability distribution function includes all possible values for a random variable (pa-
rameter)[49]. The inputs of our isotropic porous solid cylinder are distributed throughout a
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specific range that affects the output variable (herein, pressure), i.e., results are susceptible to
different input parameter distributions. Three probability distributions are considered for the
input parameters: the uniform, exponential, and Weibull distributions. The domain for each
input parameter is taken to be aligned with physical data for each distribution.
3.2.1 Uniform distribution

A continuous uniform distribution gives events that have the same chance to occur. It
is described by two scalar features associated with a variable X: a minimum value a and a
maximum value b. The probability density function of the uniform distribution is[20]

f(X) =





1
b− a

for a < X < b,

0 for X < a or X > b.
(86)

Equation (86) is represented as a rectangular distribution function. The uniform distribution
of a variable X is denoted as X∼ U(a, b).
3.2.2 Exponential distribution

Another continuous probability distribution is the exponential distribution, which often
concerns the values of a parameter until some specific event happens. It is a process in which
events occur independently for a variable and continuously at a fixed mean rate. The lack
of memory is the key property of the exponential distribution[49], i.e., the past behavior of
a parameter does not affect its future behavior. The application of this distribution is in
economics, medicine, and many aspects of engineering fields. A random variable, X, follows
the exponential distribution if the probability density function is

f(X) =

{
θe−θX for X > 0,

0 for X 6 0.
(87)

The exponential distribution of a variable X is denoted as X∼ exp(θ).
3.2.3 Weibull distribution

The Weibull distribution is mostly applied in the modeling of lifetime data in a process. In
statistics and probability theory, the Weibull distribution is defined as a continuous probability
distribution. The various applications of this distribution are mostly used in cases of time
between events and also for considered failure times. For instance, the time a user spends
surfing the web or the maximum one-day rainfall follows the Weibull distribution. The Weibull
distribution is

f(X) = βα(βX)α−1e−(βX)α

for X > 0. (88)

The Weibull distribution is applied in different types of engineering fields, such as radar systems,
to simulate the dispersion of the received signal and to model stochastic processes related to the
time of manufacturing. In this work, we consider the scale parameter of the Weibull distribution
to be equal to one (β = 1), the same that is given by default in the “R” program. The Weibull
distribution of a variable X is denoted as X∼ W (α, β) or simply as X∼ W (α, 1).
3.3 Statistical measurements for assessment of the results

To evaluate the robustness and quality of the results, the bias measure and standard devia-
tion measure are applied. The bias measure is shown as[20]

bias(T ) = E[T ]−O, (89)

where O is a variable in a model, T is an estimation of O, and E[T ] is the mathematical
expectation of T . E[T ] is the sum of all possible values for a random variable X, which is given
by

E[T ] =
∫ ∞

−∞
Xf(X) dX. (90)
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Another assessment measure is the standard deviation, denoted by σ, which is

σ =

√√√√ 1
N − 1

N∑

i=1

(Xi −X)2, (91)

where X is a random variable in the model, x̄ is the mean of X, and N is the sample size of
the data.

In what follows, we apply the Sobol method to the pressure (output variable) described
within the context of the problem in Section 2.

4 Applications of the Sobol method

The Sobol method investigates how much the contribution of each input parameter can
affect the uncertainty of the output variable in the model. The amount of contribution can
be directly related to each input parameter (the first-order) or can come from the higher-order
interactions between input parameters on the model output. In the Sobol method, two main
indices are considered: the direct uncertainty impact of each input parameter, or the first-order
index given by Eq. (81), and the total Sobol index given by Eq. (82), which computes the sum
of all direct and indirect contributions of uncertainty for each input parameter in the model.
The road map for applying the Sobol method to the problem at hand is divided into five steps.

(i) First, one needs to specify the input parameters in the model and assign the corresponding
ranges for each input parameter.

(ii) Then, one runs the statistical simulation in the “R” program for each input parameter
(sample size is N = 20 000) in the pressure relation (output).

(iii) After that, one obtains the sensitivity indices: by Saltelli-Janson estimators for the
first-order indices using Eq. (83) and for total indices using Eq. (84).

(iv) With the results, one can sort out the sensitivity of the input parameters based on the
highest value of the total indices.

(v) At last, assessment measures for the Sobol indices need to be obtained using the bias
measure and standard deviation.

An auxiliary feature, namely the dummy parameter, is computed by the “R” program in
the Sobol method for both the first-order and total Sobol indices. The dummy parameter gives
us an insight to discriminate between influential and non-influential factors in the model. If
the first (or total) Sobol index of an input parameter is less than the value of the first (or
total) Sobol index given by the dummy parameter, then the input parameter is not influential
for that output of the model. In addition, for each Sobol index, the confidence interval is
considered based on 95% of the value of the index. The confidence interval is defined as
C(I) = X ± Z s√

N
, where Z is the confidence level value, X is the sample mean, N is the

sample size, and s is the sample standard deviation. Table 1 illustrates the range of each input
parameter. The ranges are selected based upon typical physical ranges that could be related
to porous media. Furthermore, Table 1 gives the possible ranges for the input parameters that
follow the probability distributions based on their corresponding behavior in the model.

Table 1 The ranges of the input parameters considered in Section 2 under various probability dis-
tributions for an isotropic porous solid cylinder

Parameter U(a, b), exp(θ), W(α, 1) Parameter U(a, b), exp(θ), W(α, 1)

α U(0, 0.9) M exp(1)

P0 U(70, 100) t∗ W(0.1, 1)

ν U(0, 0.5) R∗ U(3, 25)

µ U(0.1, 50)

Here, we have assigned the uniform distribution to parameters that have a specified (small)
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range of accepted values, where the outcome of any of these values is equally likely, i.e., the
parameters α, µ, ν, R∗, and P0. In addition, for the time parameter t∗, we adopt the Weibull
distribution, as this is classically chosen to describe time to failure or time between events
in a model. Finally, the exponential distribution is assigned to the parameter M , due to the
large range of values and the physical behavior of Biot’s modulus in porous media, where M is
monotonically increasing to infinity.

The results of Sobol indices, the first-order and total Sobol indices, are shown in Table 2.
Based on the results, time t∗ is the most sensitive input parameter to the output of the model
(pressure) for both the first-order indices Si and total indices Ti. Biot’s modulus M is the
second most sensitive input parameter to the pressure. On the other hand, the initial pressure
P0 is the least influential factor on the pressure output.

Table 2 The first-order index (Si) and total Sobol index (Ti) for the involved input parameters on
the pressure p based on the range of inputs shown in Table 1

Parameter
U(a, b), exp(θ), W(α, 1)

Si Ti

α 0.046 047 89 0.276 587 78
P0 0.011 664 61 0.056 609 42
ν 0.018 448 65 0.358 260 83
µ 0.084 121 09 0.176 129 23
M 0.177 103 03 0.370 199 92
t∗ 0.230 709 73 0.621 690 59
R∗ 0.060 189 95 0.167 438 31

Figure 3 shows the bar plots of Sobol indices in the model (those values are given in Table 2).
The first-order index for the dummy parameter is indicated with a dashed horizontal red line,
while the total index associated with the dummy parameter is indicated with a dashed horizontal
blue line. Based on the results of the dummy parameter, all the input parameters, except P0

which is associated with indices lower than the ones of the dummy parameter, are influential
factors for the pressure model. Based on the total Sobol indices, sorting out from the highest
sensitive parameters to the lowest ones yields Tt∗ > TM > Tν > Tα > Tµ > TR∗ > TP0 .
The analytical solution in Subsection 2.2 is time-dependent as opposed to a time independent
one. The sensitivity analysis captures this feature and gives the parameter time as the most
influential one followed by the other inputs. For each Sobol index, the confidence interval is
computed. This interval is illustrated in Fig. 3 as the values between the two parallel horizontal
lines at the top of each index.

The assessment of Sobol indices is given using both bias measure and standard deviation
measure. Results are shown in Tables 3 and 4. All values of both bias and standard deviation
for both Si and Ti are very small. It follows that Sobol indices for the internal pressure model
are reliable.

For completeness, we consider now interaction effects among input parameters. For that
purpose, we take three parameters since the results are shown as a scatter plot matrix. Figure 3
shows that the first-order effect of the parameter t∗ is much higher than the first-order effect
of the other parameters. For that reason, we do not consider the interaction effect between t∗

and other input parameters in the model. The analysis has already captured the importance
of t∗ both by itself and interacting with the other parameters. On the other hand, we want to
establish now the importance of the interaction among other parameters. Figure 4 shows the
joint interaction effects among three sensitive input parameters (α, ν, and M) on the pressure
relation in a multi-scatter plot. The variable y indicates the pressure relation in the model (the
output variable).

In Fig. 4, the patterns of the sensitivity of the model due to the joint effect between two
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Fig. 3 The Sobol indices for each input parameter in the pressure response of an isotropic porous
cylinder subject to radial stress boundary conditions using “Saltelli-Jansen” estimators based
on the range of inputs given in Table 1. The horizontal (blue and red) lines give the Sobol
indices of the dummy parameter. If a (first-order or total) Sobol index for an input parameter
is below the corresponding line (first or total) of the dummy parameter, then that input is
not an influential factor on the output of the model. This only happens for P0 (color online)

Table 3 Bias measures for the Sobol indices of the input parameters given in Table 1 associated with
pressure p

Bias measures U(a, b), exp(θ), W(α, 1)

Parameter Si Ti

α 0.006 674 375 −2.798 784× 10−4

P0 0.005 042 454 1.653 378× 10−5

ν 0.005 800 765 −2.131 522× 10−3

µ 0.007 166 889 −8.217 040× 10−4

M 0.009 140 604 −2.582 379× 10−3

t∗ 0.006 296 964 −1.231 508× 10−3

R∗ 0.004 150 855 −2.310 302× 10−3

Table 4 Standard deviation measures for the Sobol indices of the input parameters given in Table 1
associated with pressure p

Standard deviation U(a, b), exp(θ), W(α, 1)

Parameter Si Ti

α 0.045 582 75 0.017 750 244 0
P0 0.032 894 34 0.000 650 544 6
ν 0.062 486 47 0.029 551 724 4
µ 0.046 911 82 0.007 903 925 4
M 0.050 535 69 0.019 783 678 5
t∗ 0.047 531 48 0.026 353 293 5
R∗ 0.036 036 12 0.009 259 260 3

input parameters are as follows, keeping in mind that green dots are related to high interaction
effect. There are significant green dots between α and the two other inputs on the internal
pressure due to the yellow-green colors (greater interaction) concentrated on the left side of the
plots. These joint effects between α and M as well as α and ν are clear in their corresponding
plots for values of α < 0.5. This implies that under these conditions one must concentrate on
total Sobol indices values for these parameters to understand their importance in the model (the
first-order index is much lower than the total Sobol index for these three parameters). It follows
that for other values of α, the important interaction effects are given by other parameters.

The interactions of Poisson’s ratio ν and Biot’s modulus M give a mix of all colors with no
pattern emerging. This means that these parameters have little interaction with each other. We
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Fig. 4 Interaction impact of Sobol indices for three influential parameters in the pressure relation p.
The variable y is the model output representing the pressure (color online)

should note that the absence of interaction effect between Poisson’s ratio and Biot’s modulus
can be attributed to the fact that we are carrying out an undrained analysis. In the case
of a drained analysis, such as the one carried out in Ref. [50], it has been shown that Biot’s
modulus is monotonically increasing with regard to Poisson’s ratio, and therefore, under these
circumstances, one would indeed see the joint effects between those parameters.

5 Conclusions

In this work, we find an analytical solution to the equations that describe the mechanical
behavior of a porous material. We investigate a solid cylinder with a microstructure comprising
a porous elastic matrix, which is assumed to be isotropic. Materials with this microstructure
have many real-world applications, including the modeling of biological tissues such as bones.

We then investigate the pressure via a sensitivity analysis to determine the influence of
several parameters on that particular output. The analysis captures that the time t∗, Biot’s
modulus M , and Poisson’s ratio ν, have the highest influence on the pressure, whereas the
initial value of pressure P0 plays very little role.

The current study is subject to some limitations and extensions that can increase the applica-
bility of results. The models of poroelasticity from which we begin are the macroscale governing
equations, as proposed by Biot, which were developed experimentally. However, it is possible
to obtain the governing equations of poroelastic materials via homogenization techniques[51–53].
This would mean that a variety of different structural features such as pore geometry and ar-
rangement, or even additional elastic or porous phases[54–55], could be encoded in the effective
elasticity tensor, which contributes to the stresses from which the analytic solution is obtained.
The current solution has been developed assuming that the effective elasticity tensor modeling
the cylinder is isotropic. It would also be possible to extend the analytic solution to more
complicated symmetries such as cubic, tetragonal, or orthogonal symmetries, all of which could
arise from using the asymptotic homogenization technique to obtain the governing equations.
These different geometries could increase the applicability of such results, as they will be more
realistic of biological scenarios.

The sensitivity analysis is carried out on the set of input parameters shown in Table 1,
which are chosen based on a sampling design with a random approach and are not specific
to any material. In future, it would be possible to choose a specific biological scenario such
as bones. The bones have been modeled using a poroelastic approach[5,31–32]. The pores of
bones are filled with bone marrow, blood, or interstitial fluid and cells[32–33], and therefore
would be a very good fit for the model proposed here. Soleimani et al.[35] stated that recent
studies have provided evidence that the pressure and velocity of the interstitial fluid flowing in
the pores of the bones play a significant role in the bone remodeling process[36–37]. Ghiasi et
al.[36] also stated that the interstitial fluid velocity and the shear stress within the bones, which
the interstitial velocity creates, may influence the cells responsible for bone healing. For this
reason, the next steps in our analysis would be to carry out the same sensitivity analysis but
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with input parameter ranges based upon bones to investigate the stresses.
It would also be possible to inform the parameter ranges via micromechanical simulations. If

the model for of the poroelastic material was obtained via asymptotic homogenization, then we
would have that the coefficients/parameters of the governing equations can be determined via
solving porescale differential problems[50,56–57]. By solving these porescale differential problems,
we could provide a range for each of the parameters to be used within the sensitivity analysis.
This method would also allow the parameters to be tuned on the porescale geometry and
mechanical properties.

Future sensitivity analyses can be implemented on some different scenarios corresponding
to instability modes such as necking, bending, beading, helical buckling, bulging, and prismatic
bifurcation[58–63]. Moreover, the material in biological soft tissue analysis is subjected to various
biochemical and physical processes, and hence, the specifications of the constituents of the
tissue may change, for example, due to remodeling mechanisms and growth[64–67]. Therefore,
the study on the impact of these changes on the response of the structure is also another possible
application of sensitivity analysis.
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RODRÍGUEZ-RAMOS, R. Porosity and diffusion in biological tissues: recent advances and fur-
ther perspectives. Constitutive Modelling of Solid Continua, Springer, Berlin, 311–356 (2020)



On an isotropic porous solid cylinder: the analytical solution and sensitivity analysis 1521

[54] MILLER, L. and PENTA, R. Effective balance equations for poroelastic composites. Continuum
Mechanics and Thermodynamics, 32(6), 1533–1557 (2020)

[55] MILLER, L. and PENTA, R. Double poroelasticity derived from the microstructure. Acta Me-
chanica, 232, 3801–3823 (2021)

[56] MILLER, L. and PENTA, R. Investigating the effects of microstructural changes induced by
myocardial infarction on the elastic parameters of the heart. Biomechanics and Modelling in
Mechanobiology, 22(3), 1019–1033 (2023)

[57] MILLER, L. and PENTA, R. Micromechanical analysis of the effective stiffness of poroelastic
composites. European Journal of Mechanics/A Solids, 98, 104875 (2023)

[58] RODRIGUEZ, J. and MERODIO, J. A new derivation of the bifurcation conditions of inflated
cylindrical membranes of elastic material under axial loading: application to aneurysm formation.
Mechanics Research Communications, 38, 203–210 (2010)

[59] TOPOL, H., AL-CHLAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bulging ini-
tiation and propagation in fiber-reinforced swellable mooney-rivlin membranes. Journal of Engi-
neering Mathematics, 128, 1–15 (2021)

[60] TOPOL, H., AL-CHLAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bifurcation of
fiber-reinforced cylindrical membranes under extension, inflation, and swelling. Applied Compu-
tational Mechanics, 9, 113–128 (2023)

[61] SEDDIGHI, Y. and HAN, H. C. Buckling of arteries with noncircular cross sections: theory and
finite element simulations. Frontiers of Physics, 12, 712636 (2021)

[62] FU, Y. B., LIU, J. L., and FRANCISCO, G. S. Localized bulging in an inflated cylindrical tube
of arbitrary thickness — the effect of bending stiffness. Journal of the Mechanics and Physics of
Solids, 90, 45–60 (2016)

[63] JHA, N. K., MORADALIZADEH, S., REINOSO, J., TOPOL, H., and MERODIO, J. On the
helical buckling of anisotropic tubes with application to arteries. Mechanics Research Communi-
cations, 128, 104067 (2023)

[64] AMBROSI, D., BEN-AMAR, M., CYRON, C. J., DESIMONE, A., GORIELY, A., HUMPHREY,
J. D., and KUHL, E. Growth and remodeling of living tissues: perspectives, challenges, and
opportunities. Journal of the Royal Society Interface, 16, 20190233 (2019)

[65] TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. On collagen fiber morphoelasticity and
homeostatic remodeling tone. Journal of the Mechanical Behavior of Biomedical Materials, 113,
104154 (2021)

[66] TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. Fibrillar collagen: a review of the me-
chanical modeling of strain-mediated enzymatic turnover. Applied Mechanics Reviews, 73, 050802
(2021)

[67] SAINI, K., CHO, S., DOOLING, L. J., and DISCHER, D. E. Tension in fibrils suppresses their
enzymatic degradation-a molecular mechanism for ‘use it or lose it’. Matrix Biology, 85-86, 34–46
(2020)

Appendix A

Here, we fully expand the pressure equation (56) for the first 5 calculated xn given in Eq. (77). This
leaves the pressure as an expression that is now in terms of µ, ν, α, M , P0, R∗, and t∗, i.e.,

p =(2αP0(8.700 2)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√8.700 2)−MJ0(

√
8.700 2))

− α2M(1− 2ν)(J0(R
∗√8.700 2)−MJ0(

√
8.700 2)))e−8.700 2t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(J0(
√

8.700 2)
√

8.700 2− 8.700 2J1(
√

8.700 2))

− 2α2Mµ(1− 2ν)2(J0(
√

8.700 2)
√

8.700 2− J1(
√

8.700 2)))

+ (2αP0(34.119)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√34.119)−MJ0(

√
34.119))

− α2M(1− 2ν)(J0(R
∗√34.119)−MJ0(

√
34.119)))e−34.119t∗)
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/((2(1− ν)µ2 − α2Mµ(1− 2ν))(J0(
√

34.119)
√

34.119− 34.119J1(
√

34.119))

− 2α2Mµ(1− 2ν)2(J0(
√

34.119)
√

34.119− J1(
√

34.119)))

+ (2αP0(78.726)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√78.726)−MJ0(

√
78.726))

− α2M(1− 2ν)(J0(R
∗√78.726)−MJ0(

√
78.726)))e−78.726t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(J0(
√

78.726)
√

78.726− 78.726J1(
√

78.726))

− 2α2Mµ(1− 2ν)2(J0(
√

78.726)
√

78.726− J1(
√

78.726)))

+ (2αP0(142.95)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√142.95)−MJ0(

√
142.95))

− α2M(1− 2ν)(J0(R
∗√142.95)−MJ0(

√
142.95)))e−142.95t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(J0(
√

142.95)
√

142.95− 142.95J1(
√

142.95))

− 2α2Mµ(1− 2ν)2(J0(
√

142.95)
√

142.95− J1(
√

142.95)))

+ (2αP0(226.88)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√226.88)−MJ0(

√
226.88))

− α2M(1− 2ν)(J0(R
∗√226.88)−MJ0(

√
226.88)))e−226.88t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(J0(
√

226.88)
√

226.88− 226.88J1(
√

226.88))

− 2α2Mµ(1− 2ν)2(J0(
√

226.88)
√

226.88− J1(
√

226.88))).

We note that the Bessel functions J0 and J1 can easily be evaluated in MATLAB to produce a
number, so many more of these terms can be simplified. Therefore, we rewrite as

p =(2αP0(8.700 2)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√8.700 2) + 0.242 5M)

− α2M(1− 2ν)(J0(R
∗√8.700 2) + 0.242 5M))e−8.700 2t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(−0.242 5
√

8.700 2− 8.700 2(0.357 6))

− 2α2Mµ(1− 2ν)2(−0.242 5
√

8.700 2− 0.357 6))

+ (2αP0(34.119)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√34.119)− 0.104 4M)

− α2M(1− 2ν)(J0(R
∗√34.119)− 0.104 4M))e−34.119t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(0.104 4
√

34.119 + 34.119(0.304 8))

− 2α2Mµ(1− 2ν)2(0.104 4
√

34.119 + 0.304 8))

+ (2αP0(78.726)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√78.726) + 0.058 3M)

− α2M(1− 2ν)(J0(R
∗√78.726) + 0.058 3M)e−78.726t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(−0.058 3
√

78.726− 78.726(0.258 4))

− 2α2Mµ(1− 2ν)2(−0.058 3
√

78.726− 0.258 4)))

+ (2αP0(142.95)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√142.95)− 0.037 8M)

− α2M(1− 2ν)(J0(R
∗√142.95)− 0.037 8M)e−142.95t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(0.037 8
√

142.95 + 142.95(0.226 1))

− 2α2Mµ(1− 2ν)2(0.037 8
√

142.95 + 0.226 1))

+ (2αP0(226.88)(3/2)(1− 2ν)(2µ(1− ν)(J0(R
∗√226.88) + 0.026 9M)

− α2M(1− 2ν)(J0(R
∗√226.88) + 0.026 9M)e−226.88t∗)

/((2(1− ν)µ2 − α2Mµ(1− 2ν))(−0.026 9
√

226.88− 226.88(0.202 9))

− 2α2Mµ(1− 2ν)2(−0.026 9
√

226.88− 0.202 9)). (A1)

This is the fully expanded expression on which the sensitivity analysis in Sections 3 and 4 is performed.


