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A B S T R A C T

This work carries out the derivation of the governing equations for a composite material that has the following
microstructure. Our microstructure possesses an elastic matrix that has an incompressible Newtonian fluid
flowing in the pores and then the latter is additionally reinforced by an elastic network that is fully surrounded
by the fluid. We exploit the length scale separation that exists in the system between the microscale and the
overall size of the material to apply the asymptotic homogenization technique. The resulting model comprises
additional terms and equations to account for the discontinuity between the elastic phases, and reduces to
more standard poroelastic formulations only when the two elastic phases are in contact. The coefficients of
the novel model are to be computed by solving appropriate periodic cell differential problems. The coefficients
encode the details of the geometry and stiffness of the microstructure. The model is applicable to a variety of
scenarios, such as artificial constructs and biomaterials.
1. Introduction

Materials which possess a porous elastic matrix with a permeating
fluid flow can be modelled using the Theory of Poroelasticity. This
theory was developed by Biot (1955, 1956a,b, 1962) and is used to
determine the effective behaviour of these types of materials. The
theory can be applied if the interactions between the elastic matrix
and the fluid take place at a scale where both of the phases are
distinct. There are many real-world examples of where this modelling
framework has been applied. The approach has been taken for hard
hierarchical tissues, such as bones and tendons (Cowin, 1999; Weiner
and Wagner, 1998). It can also be useful in soft tissues such as in the
interstitial matrix in healthy and tumorous biological tissues (Bottaro
and Ansaldi, 2012), the heart muscle (myocardium) (May-Newman and
McCulloch, 1998; Cookson et al., 2012) and artery walls (see e.g Bukac
et al., 2015; Jayaraman, 1983; Klanchar and Tarbell, 1987; Zakerzadeh
and Zunino, 2014). There are also examples outwith human or animal
biology and these include artificial constructs and biomaterials (Cha-
lasani et al., 2007; Karageorgiou and Kaplan, 2005; Flessner, 2001)
and in geomechanics and hydrology (Xu et al., 2022; Carrillo and
Bourg, 2019). The original theory was considered for soil and rock
mechanics (Kümpel, 1991; Wang, 2017).

Porous media are generally characterized by a variety of features
found over multiple scales. The pores in the material are small and are
visible on a fine scale which we can describe as the porescale. It is at
this scale that the interactions between the various solid phases and the
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fluid take place. The porescale is much smaller than the scale at which
we describe the whole material (which we will denote the macroscale).
At the macroscale we no longer can see the pores or the interactions of
the different phases taking place.

In order to fully understand the effective macroscale properties of
the material we wish to relate them to the attributes and interactions
taking place on the porescale, without creating a huge computational
cost. To do this we can create a coupled fluid–structure interaction
problem describing the material on the porescale and this can be used
in an upscaling process which will lead to the macroscale governing
equations. There exists a variety of approaches to the upscaling which
are classified as homogenization techniques. These homogenization tech-
niques include mixture theory, effective medium theory, volume av-
eraging and asymptotic homogenization. For a complete review and
discussion of these techniques see Hori and Nemat-Nasser (1999) and
Davit et al. (2013). Each of these techniques has a variety of advantages
and benefits depending on the features of the material that are to be
modelled and the desired output from the final model.

The asymptotic homogenization technique, developed in Auriault
et al. (2010), Holmes (2012), Mei and Vernescu (2010), Bakhvalov
and Grigory (1989) and Bakhvalov and Panasenko (2012) has been
applied to derive Biot’s equations of poroelasticity in Burridge and
Keller (1981), Lévy (1979), Wang (2017), Penta et al. (2020). The
theory has been further developed in many ways, such as to include
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growth of poroelastic materials (Penta et al., 2014), the addition of
vascularized poroelastic materials (Penta and Merodio, 2017), poroe-
lastic composites (Miller and Penta, 2020) and double poroelastic
materials (Miller and Penta, 2021a). Another development has been in
considering poroelastic materials undergoing large deformations such
as active poroelastic materials (Collis et al., 2017) and nonlinear poroe-
lastic composites (Miller and Penta, 2021b). The poroelastic models
derived via asymptotic homogenization have been numerically investi-
gated such as in Dehghani et al. (2018) where the role of porosity and
microscale solid matrix compressibility on the mechanical behaviour
of poroelastic materials is considered. The macroscale behaviour was
also investigated in Dehghani et al. (2020). More recently the role of
the microstructure of a poroelastic material on the resulting elastic
parameters has been investigated in Miller and Penta (2023b) and then
further specialized to investigate the structural changes involved in
myocardial infarction (Miller and Penta, 2023a). The technique has
been used to address double porosity in fluid-saturated elastic media
in Rohan et al. (2015). This model considers the interactions occurring
between a poroelastic phase and an interconnected fluid phase and
provides an application of the framework to compact bone in Rohan
et al. (2012). This model is also applicable to tissue perfusion and has
been used to carry out investigations in Rohan and Cimrman (2010)
and Rohan et al. (2021).

In this work, we will apply the asymptotic homogenization tech-
nique to the fluid-structure interaction (FSI) problem that describes the
interplay between a porous elastic matrix that has an incompressible
Newtonian fluid flowing in the pores with elastic network reinforcing
the material that is also fully surrounded by the fluid. This means that
the elastic matrix and the fibre network are both interacting with the
fluid flow. For example, this type of structure can be found in the
myocardium or brain. When the vasculature supplying the heart or
brain becomes diseased via, for example, a build up of atherosclerosis,
blood clot or aneurysm, this geometry can be used. The blood vessels
embedded within the myocardium are represented as the intercon-
nected fluid-filled pore phase. The additional elastic phase can be a
medical device, such as a stent or device to remove clots (Tsivgoulis
et al., 2016), that treats disease or damage in the vessel (Kolodgie et al.,
2007). It is also applicable in the context of bone remodelling where the
process is regulated by mechanosensitive bone cells called osteocytes.
These osteocytes are immersed in the interstitial fluid and can be found
in the microscale pores (Perrin et al., 2019; Sánchez et al., 2021).

We consider the material at the scale where the various solid phases
and the pores are clearly visible and denote this scale as the microscale.
This scale is much smaller than the entire material which we denote as
the macroscale. By using the asymptotic homogenization technique to
upscale we account for the continuity of stresses and velocities across
the fluid–solid interfaces. That is, between the matrix and the fluid,
and the fibres and the fluid. We note that there is no continuity of the
stresses or displacements between the matrix and the fibres since there
is no contact points between them. It is important to note that the two
solid phases are fully decoupled from each other, and therefore we are
considering two elastic materials separated by a fluid. We can consider
this a poroelastic problem for each solid and fluid when ignoring the
other solid constituent. We note that this is not the coupling of two
poroelastic materials but of three distinct phases: matrix, fluid, fibres.
The derived novel, quasi-static macroscale model cannot be deduced
as a special case of Miller and Penta (2020) for poroelastic composites
as it is no longer a Biot-type model due to the additional equation
required to close the system. The novel model contains additional terms
to account for the discontinuity between the different elastic phases
and the influence on the fluid that is constrained between them. We
are able to recover (Miller and Penta, 2020) by assuming that in fact
the matrix and the fibres are in contact and that we have the continuity
of the elastic displacements. The coefficients of the model encode the
2

properties of the microstructure and are to be computed by solving the
microscale differential problems that arise as a result of applying the
asymptotic homogenization technique.

A similar approach has been taken in Santos et al. (2006) where
fractures of porous media are investigated using the asymptotic homog-
enization technique. The structure in their work involves two different
elastic phases and a fluid phase but is restricted to a simplified geom-
etry where one of the solid phases envelops the other. This means that
there is only one solid phase (the internal one) in contact with the fluid.
The upscaling is carried out assuming a non-wielded interface between
the two solid phases. This differs dramatically from our geometry as we
have a complete discontinuity between the elastic phases which leads
to both elastic phases having contact with the fluid.

The paper is organized as follows. We begin by introducing the FSI
problem in Section 2. This problem describes the interactions between
the elastic matrix, the elastic fibre network, and the fluid that is flowing
in the space between the matrix and the network. In Section 3, we
perform a multiscale analysis of the FSI problem detailed in Section 2.
The given problem is a system partial differential equations (PDEs).
In Section 3, we derive the new macroscale model which governs the
homogenized mechanical behaviour of poroelastic composites. In Sec-
tion 4, we discuss the macroscale results and recover previously known
works as limit cases. We also provide some potential applications for
the model in Section 5. In Section 6, we provide the conclusions to our
work and provide further perspectives.

2. The fluid–structure interaction problem (FSI)

In order to write our fluid–structure interaction problem we first
define some sets. We define a set 𝛺 ∈ R3, and we let 𝛺 be the union
of a solid porous matrix 𝛺II, an interconnected fluid flow 𝛺f , and 𝛺I

which is a connected fibre network. We can write that �̄� = �̄�I∪�̄�II∪�̄�f .
or a 2D schematic diagram of the structure we are considering here
ee Fig. 1.

We begin our FSI problem with the balance equations for each of the
olid domains 𝛺I and 𝛺II. We do not consider volume forces or inertia
o the balance equations are,

⋅ 𝝈I = 0 in 𝛺I, (1)

nd

⋅ 𝝈II = 0 in 𝛺II. (2)

In Eqs. (1)–(2) we have 𝝈I and 𝝈II and these denote the solid stress
ensors for the fibre network 𝛺I and the matrix 𝛺II, respectively. We
ake the assumption that the matrix and fibre network are anisotropic,

inear elastic solids. This means that they have the constitutive laws

𝝈I = CI∇𝐮I, (3)

II = CII∇𝐮II, (4)

here we have that 𝐮I and 𝐮II are the elastic displacement in the fibre
nd the matrix, respectively.

Within the constitutive laws (3)–(4) the fourth rank tensors CI and
II appear. These are the elasticity tensors for the elastic fibre and the
atrix. These tensors have the corresponding components 𝐶 I

𝑖𝑗𝑘𝑙 and
II
𝑖𝑗𝑘𝑙, for 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3. Each of the elasticity tensors CI and CII possess
ight minor and major symmetries, these are
I
𝑖𝑗𝑘𝑙 = 𝐶 I

𝑖𝑗𝑙𝑘; 𝐶 II
𝑖𝑗𝑘𝑙 = 𝐶 II

𝑖𝑗𝑙𝑘, (5)

I
𝑖𝑗𝑘𝑙 = 𝐶 I

𝑘𝑙𝑖𝑗 ; 𝐶 II
𝑖𝑗𝑘𝑙 = 𝐶 II

𝑘𝑙𝑖𝑗 , (6)

e have that the left minor symmetries also exist, we see this by com-
ining (5)–(6). By using the left minor symmetries in the constitutive
qs. (3)–(4) we car rewrite them as follows

𝝈I = CI𝜉(𝐮I), (7)
𝝈II = CII𝜉(𝐮II), (8)
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Fig. 1. A 2D sketch representing a cross-section of the three-dimensional domain 𝛺.
The fluid phase is represented in blue, the porous matrix in green, and the fibres
in orange. In this diagram the inclusions have three different placements, that is
embedded in the matrix, embedded in the fluid or in contact with both. In this work
we consider that the fibres that are fully surrounded by the fluid. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

where we define

𝜉(∙) =
∇(∙) + (∇(∙))𝑇

2
(9)

which is the symmetric part of the gradient operator.
We also require a balance equation for the fluid domain. This is

given as

∇ ⋅ 𝝈f = 0 in 𝛺f , (10)

and we have that 𝝈f is the fluid stress tensor. We are making the
assumption that our fluid is incompressible and Newtonian, and so
therefore has the constitutive equation

𝝈f = −𝑝𝖨 + 𝜇𝜉(𝐯) (11)

where we have 𝐯 as the fluid velocity, 𝑝 is the pressure and 𝜇 the
viscosity of the fluid. Since the fluid is incompressible we require the
incompressibility constraint

∇ ⋅ 𝐯 = 0 in 𝛺f . (12)

By using the constitutive law (11) in the balance Eq. (10) with the
incompressibility constraint (12) we obtain the Stokes’ problem

𝜇∇2𝐯 = ∇𝑝 in 𝛺f . (13)

To close the FSI problem we require some interface conditions
between the fluid and solid phases. The interface between the fluid
phase and the fibre is defined as 𝛤I ∶= 𝜕𝛺I ∩ 𝜕𝛺f and the interface
between the matrix and the fluid is defined as 𝛤II ∶= 𝜕𝛺II ∩ 𝜕𝛺f . Across
each of these interfaces we impose the continuity of velocities and
stresses, that is

�̇�I = 𝐯 on 𝛤I, (14)

𝝈f𝐧I = 𝝈I𝐧I on 𝛤I, (15)

�̇�II = 𝐯 on 𝛤II, (16)

𝝈f𝐧II = 𝝈II𝐧II on 𝛤II. (17)

We have that �̇�I and �̇�II are the solid velocities for each fibre 𝛺I and
the matrix 𝛺II, respectively. The unit normal vectors to each of the
interfaces 𝛤I and 𝛤II are given as 𝐧I and 𝐧II, respectively.

In the next section we perform a multiscale analysis of the FSI prob-
lem we have introduced. We begin by non-dimensionalizing the partial
differential equations (PDEs) described in this section. We will then
explain the two well-separated length scales that exist in our system
which allows us to apply the asymptotic homogenization technique to
the non-dimensional FSI problem. Then we will derive effective balance
equations that describe the material.
3

3. Multiple scales analysis of the FSI problem

We begin by summarizing the fluid–structure interaction problem
that we introduced in the previous section and then we will perform a
multiple scales analysis. The problem is given by

∇ ⋅ 𝝈I = 0 in 𝛺I, (18)

∇ ⋅ 𝝈II = 0 in 𝛺II, (19)

∇ ⋅ 𝝈f = 0 in 𝛺f , (20)

∇ ⋅ 𝐯 = 0 in 𝛺f , (21)

�̇�I = 𝐯 on 𝛤I, (22)

�̇�II = 𝐯 on 𝛤II, (23)

𝝈f𝐧I = 𝝈I𝐧I on 𝛤I, (24)

𝝈f𝐧II = 𝝈II𝐧II on 𝛤II. (25)

Using the constitutive laws for the fibre network, matrix and the
fluid (7), (8), and (11), and applying the incompressibility constraint
(21), allows the balance Eqs. (18), (19), and (20) to be rewritten as

∇ ⋅ (CI𝜉(𝐮I)) = 0 in 𝛺I (26)

∇ ⋅ (CII𝜉(𝐮II)) = 0 in 𝛺II (27)

𝜇∇2𝐯 = ∇𝑝 in 𝛺f . (28)

In order to close the problem (18)–(28) we must prescribe external
boundary conditions on the boundary 𝜕𝛺. These conditions could be,
for example, of Dirichlet–Neumann type, as noted in Ramírez-Torres
et al. (2018). The conditions on the external boundary typically do not
play a role in the derivation of results carried out by formal asymptotic
homogenization, although they are important in the context of rigorous
two-scale convergence, see, e.g., Cioranescu and Donato (1999).

Our material can be characterized by two different length scales. We
describe the average size of the whole material/domain 𝛺 by length 𝐿
and call this the the macroscale. We then have a second length scale
where the matrix, fluid and fibres are clearly visible. We denote our
second length by 𝑑 and call this scale the the microscale. In order to
emphasize the difference between the two scales, we will carry out a
non-dimensional analysis of the FSI problem (18)–(28).

3.1. Non-dimensionalization of the FSI problem

We carry out the non-dimensionalization by assuming that our
system has a reference pressure gradient 𝐶. We also use the standard
parabolic profile for the fluid flowing in the pores. This choice is the
classic one that ensures that a Newtonian fluid flowing in cylindrical
pores is governed by the porous media flow equations. If we make a
different choice for the velocity scaling then we would not obtain the
correct effective behaviour of a fluid flowing through a porous matrix.

We therefore have the following

𝐱 = 𝐿𝐱′, CI = 𝐶𝐿C′
I , CII = 𝐶𝐿C′

II,

𝐮I = 𝐿𝐮′I , 𝐮II = 𝐿𝐮′II, 𝐯 = 𝐶𝑑2

𝜇
𝐯′, 𝑝 = 𝐶𝐿𝑝′.

(29)

The gradient operator is also scaled as

∇ = 1
𝐿
∇′ (30)

We can use (29) and (30) in (18)–(25), and we obtain the non-
dimensional system

∇ ⋅ 𝝈I = 0 in 𝛺I (31)

∇ ⋅ 𝝈II = 0 in 𝛺II (32)

∇ ⋅ 𝝈f = 0 in 𝛺f (33)

∇ ⋅ 𝐯 = 0 in 𝛺 (34)
f
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�̇�I = 𝐯 on 𝛤I (35)

�̇�II = 𝐯 on 𝛤II (36)

𝝈f𝐧I = 𝝈I𝐧I on 𝛤I (37)

𝝈f𝐧II = 𝝈II𝐧II on 𝛤II. (38)

Note that we drop the primes to simplify the notation. We must also
non-dimensionalize the constitutive laws (7), (8), and (11), which
become

𝝈f = −𝑝𝖨 + 𝜖2𝜉(𝐯) (39)

𝝈I = CI𝜉(𝐮I) (40)

𝝈II = CII𝜉(𝐮II). (41)

Using the non-dimensionalized constitutive laws we can rewrite the
balance Eqs. (31)–(33) as

𝜖2∇2𝐯 = ∇𝑝 in 𝛺f (42)

∇ ⋅ (CI𝜉(𝐮I)) = 0 in 𝛺I (43)

∇ ⋅ (CII𝜉(𝐮II)) = 0 in 𝛺II, (44)

where we can define

𝜖 = 𝑑
𝐿
. (45)

Now that we have the non-dimensional system of PDEs (31)–(44)
we are ready to introduce the asymptotic homogenization technique
which we use to upscale the system by assuming that the microscale
and the macroscale are both well separated.

3.2. The two-scale asymptotic homogenization technique

Here we will introduce the asymptotic homogenization technique
and apply it to (31)–(44) to derive the macroscale model. We must
make the assumption that the microscale (the length associated with
where we can clearly identify the fluid, inclusions/fibres and matrix),
denoted by 𝑑, is much smaller that the average size of the material,
denoted 𝐿. That is,

𝜖 = 𝑑
𝐿

≪ 1. (46)

We want to capture the microscale variations of each of the fields so
we introduce the spatial variable

𝐲 = 𝐱
𝜖
. (47)

We consider the spatial variables 𝐱 and 𝐲 formally independent where
𝐱 represents the macroscale and 𝐲 the microscale. We also transform
the gradient operator, by means of the chain rule, as

∇ → ∇𝐱 +
1
𝜖
∇𝐲 . (48)

We make the assumption that all fields in (31)–(44) are functions of
both 𝐱 and 𝐲 and that they can all be written as a power series in 𝜖,
i.e.

𝜑𝜖(𝐱, 𝐲, 𝑡) =
∞
∑

𝑙=0
𝜑(𝑙)(𝐱, 𝐲, 𝑡)𝜖𝑙 , (49)

where 𝜑 is an individual field appearing in (31)–(44).

Remark 1 (Porescale Periodicity). We make the assumption that every
field 𝜑(𝑙) in our present analysis is 𝐲-periodic. By assuming this the
analysis of the microstructure can take place on a single periodic cell. It
allows the microscale differential problems arising from the asymptotic
homogenization technique to be solved on a finite subset of the domain.
This assumption need not be made as it is possible to proceed by
assuming local boundedness of fields only. Some examples of this are
found in Burridge and Keller (1981) and Penta and Gerisch (2017).
4

Fig. 2. This is a sketch of a 2D cross-section of the periodic cell that we focus on. We
have the fibre network shown in orange that is fully embedded in the fluid shown in
blue, and the matrix is shown in green. We highlight the interfaces 𝛤I and 𝛤II between
the phases. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Remark 2 (Macroscopic Uniformity). We know that the microscale ge-
ometry can change with respect to individual points on the macroscale.
This has been considered in Penta et al. (2014), Burridge and Keller
(1981), Holmes (2012), Penta and Gerisch (2015) and Dalwadi et al.
(2015). To make the derivation of the model simpler this dependence
on the macroscale is generally neglected. That is we assume that at
every macroscale point the microscale will be the same, or equivalently
the microscale geometry does not depend on 𝐱. This property is called
macroscopic uniformity. We use this property in this work. This means
that we have the following result for differentiation under the integral
sign

∫𝛺
∇𝐱 ⋅ (∙)d𝐲 = ∇𝐱 ⋅ ∫𝛺

(∙)d𝐲, (50)

where (∙) is a tensor or a vector quantity.

Remark 3 (Periodic Cell). We make the identification between the
domain 𝛺 and the corresponding periodic cell, where the subphase,
matrix, and fluid cell portions are denoted by 𝛺I, 𝛺II, and 𝛺f , respec-
tively. We also have the interfaces between the different phases are
then denoted by 𝛤I ∶= 𝜕𝛺I ∩ 𝜕𝛺f , 𝛤II ∶= 𝜕𝛺II ∩ 𝜕𝛺f with corresponding
unit normal vectors 𝐧I and 𝐧II. This cell is shown in Fig. 3. We note
that |𝛺| = |𝛺f | + |𝛺I| + |𝛺II| is the domain volume which since we are
assuming a unit cell is equal to 1. Now that we have this periodic cell
(cube) Fig. 3, we have periodic boundary conditions applied on all the
faces, where each face contains a portion of all the phases as shown in
Fig. 2.

3.3. Application of the asymptotic homogenization technique

We now apply the assumptions (48) and (49) of the asymptotic
homogenization technique to Eqs. (31)–(44). By also accounting for
periodicity we obtain the following multiscale system of PDEs

∇𝐲 ⋅ 𝝈𝜖
I + 𝜖∇𝐱 ⋅ 𝝈𝜖

I = 0 in 𝛺I (51)

∇𝐲 ⋅ 𝝈𝜖
II + 𝜖∇𝐱 ⋅ 𝝈𝜖

II = 0 in 𝛺II (52)

∇𝐲 ⋅ 𝝈𝜖
f + 𝜖∇𝐱 ⋅ 𝝈𝜖

f = 0 in 𝛺𝑓 (53)

∇𝐲 ⋅ 𝐯𝜖 + 𝜖∇𝐱 ⋅ 𝐯𝜖 = 0 in 𝛺𝑓 (54)

�̇�𝜖I = 𝐯𝜖 on 𝛤I (55)

�̇�𝜖II = 𝐯𝜖 on 𝛤II (56)

𝝈𝜖
f𝐧I = 𝝈𝜖

I 𝐧I on 𝛤I (57)

𝝈𝜖
f𝐧II = 𝝈𝜖

II𝐧II on 𝛤II (58)

The multiscale expansion of the constitutive equations for 𝝈𝜖
f , 𝝈

𝜖
I , 𝝈𝜖

II,
are

𝝈𝜖 = −𝑝𝜖𝖨 + 𝜖𝜉 (𝐯𝜖) + 𝜖2𝜉 (𝐯𝜖) (59)
f 𝐲 𝐱
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Fig. 3. This is a sketch of the 3D periodic cell that we focus on. We have the
interconnected 3 cylinders creating the fibre network that is fully embedded in the
fluid as shown by the holes in the fluid section and then we have the matrix.

𝜖𝝈𝜖
I = CI𝜉𝐲(𝐮𝜖I ) + 𝜖CI𝜉𝐱(𝐮𝜖I ) (60)

𝜖𝝈𝜖
II = CII𝜉𝐲(𝐮𝜖II) + 𝜖CII𝜉𝐱(𝐮𝜖II), (61)

and the balance equations become

∇𝐲 ⋅ (CI𝜉𝐲(𝐮𝜖I )) + 𝜖∇𝐲 ⋅ (CI𝜉𝐱(𝐮𝜖I )) +
𝜖∇𝐱 ⋅ (CI𝜉𝐲(𝐮𝜖I )) + 𝜖2∇𝐱 ⋅ (CI𝜉𝐱(𝐮𝜖I )) = 0 in 𝛺I

(62)

∇𝐲 ⋅ (CII𝜉𝐲(𝐮𝜖II)) + 𝜖∇𝐲 ⋅ (CII𝜉𝐱(𝐮𝜖II)) +
𝜖∇𝐱 ⋅ (CII𝜉𝐲(𝐮𝜖II)) + 𝜖2∇𝐱 ⋅ (CII𝜉𝐱(𝐮𝜖II)) = 0 in 𝛺II

(63)

𝜖3∇2
𝐱𝐯

𝜖 + 𝜖2∇𝐱 ⋅ (∇𝐲𝐯𝜖) + 𝜖2∇𝐲 ⋅ (∇𝐱𝐯𝜖) + 𝜖∇2
𝐲𝐯

𝜖

= ∇𝐲𝑝
𝜖 + 𝜖∇𝐱𝑝

𝜖 in 𝛺𝑓
(64)

We use the assumption that all fields can be written as power series
of the type (49) in (51)–(64). We will equate the coefficients of 𝜖𝑙 for
𝑙 = 0, 1,… to derive the macroscale model, which will therefore be in
terms of the relevant leading (zero-th) order fields. If a component in
the asymptotic expansion retains dependence on the microscale, we can
apply the integral average, given by

⟨𝜑⟩𝑖 =
1
|𝛺|

∫𝛺𝑖

𝜑(𝐱, 𝐲, 𝑡)𝑑𝐲 𝑖 = 𝑓, I, II (65)

We note that |𝛺| = |𝛺f | + |𝛺I| + |𝛺II| is the domain volume. Since
we have 𝐲-periodicity, the integral average can be performed over one
representative cell and so (65) is a cell average.

Equating coefficients of 𝜖0 in (51)–(58) we obtain

∇𝐲 ⋅ 𝝈
(0)
I = 0 in 𝛺I (66)

∇𝐲 ⋅ 𝝈
(0)
II = 0 in 𝛺II (67)

∇𝐲 ⋅ 𝝈
(0)
f = 0 in 𝛺f (68)

∇𝐲 ⋅ 𝐯(0) = 0 in 𝛺f (69)

�̇�(0) = 𝐯(0) on 𝛤 (70)
5

I I
�̇�(0)II = 𝐯(0) on 𝛤II (71)

𝝈(0)
f 𝐧I = 𝝈(0)

I 𝐧I on 𝛤I (72)

𝝈(0)
f 𝐧II = 𝝈(0)

II 𝐧II on 𝛤II (73)

The coefficient of 𝜖0 in the constitutive Eqs. (59)–(61) for 𝝈𝜖
f , 𝝈

𝜖
I , 𝝈𝜖

II
are

𝝈(0)
f = −𝑝(0)𝖨 in 𝛺f (74)

CI𝜉𝐲(𝐮
(0)
I ) = 0 in 𝛺I (75)

CII𝜉𝐲(𝐮
(0)
II ) = 0 in 𝛺II (76)

while the balance Eqs. (62)–(64) have coefficients of 𝜖0 given by

∇𝐲 ⋅ (CI𝜉𝐲(𝐮
(0)
I )) = 0 in 𝛺I (77)

∇𝐲 ⋅ (CII𝜉𝐲(𝐮
(0)
II )) = 0 in 𝛺II (78)

∇𝐲𝑝
(0) = 0 in 𝛺f (79)

We will now equate the coefficients of 𝜖1 in Eqs. (51)–(58) which
gives

∇𝐲 ⋅ 𝝈
(1)
I + ∇𝐱 ⋅ 𝝈

(0)
I = 0 in 𝛺I (80)

∇𝐲 ⋅ 𝝈
(1)
II + ∇𝐱 ⋅ 𝝈

(0)
II = 0 in 𝛺II (81)

∇𝐲 ⋅ 𝝈
(1)
f + ∇𝐱 ⋅ 𝝈

(0)
f = 0 in 𝛺f (82)

∇𝐲 ⋅ 𝐯(1) + ∇𝐱 ⋅ 𝐯(0) = 0 in 𝛺f (83)

�̇�(1)I = 𝐯(1) on 𝛤I (84)

�̇�(1)II = 𝐯(1) on 𝛤II (85)

𝝈(1)
f 𝐧I = 𝝈(1)

I 𝐧I on 𝛤I (86)

𝝈(1)
f 𝐧II = 𝝈(1)

II 𝐧II on 𝛤II (87)

The constitutive equations given by (59)–(61) have coefficients of 𝜖1

𝝈(1)
f = −𝑝(1)𝖨 + 𝜉𝐲(𝐯(0)) in 𝛺f (88)

𝝈(0)
I = CI𝜉𝐲(𝐮

(1)
I ) + CI𝜉𝐱(𝐮

(0)
I ) in 𝛺I (89)

𝝈(0)
II = CII𝜉𝐲(𝐮

(1)
II ) + CII𝜉𝐱(𝐮

(0)
II ) in 𝛺II (90)

and therefore the balance Eqs. (62)–(64) have coefficients of 𝜖1

∇𝐲 ⋅ (CI𝜉𝐲(𝐮
(1)
I )) + ∇𝐲 ⋅ (CI𝜉𝐱(𝐮

(0)
I ))

+ ∇𝐱 ⋅ (CI𝜉𝐲(𝐮
(0)
I )) = 0 in 𝛺I, (91)

∇𝐲 ⋅ (CII𝜉𝐲(𝐮
(1)
II )) + ∇𝐲 ⋅ (CII𝜉𝐱(𝐮

(0)
II ))

+ ∇𝐱 ⋅ (CII𝜉𝐲(𝐮
(0)
II )) = 0 in 𝛺II, (92)

∇2
𝐲𝐯

(0) = ∇𝐲𝑝
(1) + ∇𝐱𝑝

(0) in 𝛺f . (93)

From (68) and (74) we can see that that 𝑝(0) is independent of the
microscale variable 𝐲. That is

𝑝(0) = 𝑝(0)(𝐱, 𝑡). (94)

From (75) and (76) we can see that 𝐮(0)I and 𝐮(0)II are rigid body motions
and therefore this means that by 𝐲-periodicity, they do not depend on
the microscale variable 𝐲. That is

𝐮(0)I = 𝐮(0)I (𝐱, 𝑡) (95)

𝐮(0)II = 𝐮(0)II (𝐱, 𝑡). (96)

are the macroscale solid displacements of both the inclusion and the
matrix respectively. We will use these throughout the following sec-
tions.

3.4. The macroscale fluid flow

We now wish to investigate the leading order of the velocity which
we denoted 𝐯(0).
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Traditionally in works of this kind, at this point we would introduce
a single relative fluid–solid velocity, see Burridge and Keller (1981),
Penta et al. (2014), Miller and Penta (2020), Penta et al. (2020), Miller
and Penta (2021b, 2023a) and Miller and Penta (2023b). This however
relies on the continuity of the leading order solid velocities �̇�(0)I and �̇�(0)II .
This does not apply in this work since we have a complete decoupling
of the two solid phases. This would mean that we would either have
to introduce two relative fluid–solid velocities or indeed progress using
the absolute velocity 𝐯(0).

Using Eqs. (70), (71), (74), (82) and (88), we have a Stokes’-type
boundary value problem which is given by

∇2
𝐲𝐯

(0) − ∇𝐲𝑝
(1) − ∇𝐱𝑝

(0) = 0 in 𝛺f (97)

∇𝐲 ⋅ 𝐯(0) = 0 in 𝛺f (98)

𝐯(0) = �̇�(0)I on 𝛤I (99)

𝐯(0) = �̇�(0)II on 𝛤II (100)

By exploiting linearity and using (94) we suggest the following ansatz
for the problem (97)–(100),

𝐯(0) = −𝖶∇𝐱𝑝
(0) + 𝖦�̇�(0)I + 𝖫�̇�(0)II , (101)

𝑝(1) = −𝐏 ⋅ ∇𝐱𝑝
(0) +𝐇 ⋅ �̇�(0)I + 𝐒 ⋅ �̇�(0)II + 𝑐(𝐱), (102)

Eqs. (101) and (102) are the solution to the problem (97)–(100) pro-
vided that second rank tensors 𝖶, 𝖦, 𝖫 and vectors 𝐏, 𝐇 and 𝐒 satisfy
the following cell problems

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇2
𝐲𝖶

T − ∇𝐲𝐏 + 𝖨 = 0 in 𝛺f

∇𝐲 ⋅𝖶
T = 0 in 𝛺f

𝖶T = 0 on 𝛤I

𝖶T = 0 on 𝛤II,

(103)

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇2
𝐲𝖦

T = ∇𝐲𝐇 in 𝛺f

∇𝐲 ⋅ 𝖦
T = 0 in 𝛺f

𝖦T = 𝖨 on 𝛤I

𝖦T = 0 on 𝛤II,

(104)

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇2
𝐲𝖫

T = ∇𝐲𝐒 in 𝛺f

∇𝐲 ⋅ 𝖫
T = 0 in 𝛺f

𝖫T = 0 on 𝛤I

𝖫T = 𝖨 on 𝛤II,

(105)

here periodic conditions apply on the boundary 𝜕𝛺f∖𝛤I ∪ 𝛤II and a
urther condition is to be placed on 𝐏, 𝐇 and 𝐒 for the solution to be
nique (for example zero average on the fluid cell portion).

emark 4 (Fluid Cell Problems). The novel fluid cell problems (103)–
105) incorporate how the fluid flows through gap between the matrix
nd the fibre network. These include the fact that the fluid flow is
nteracting with both of the elastic phases and has a continuity between
he fluid velocity and the solid velocity of both phases on the interfaces
etween the phases yet accounts for the fact that there is no continuity
etween the two elastic phases.

Taking the integral average of (101) over the fluid domain leads to

𝐯(0)⟩f = −⟨𝖶⟩f∇𝐱𝑝
(0) + ⟨𝖦⟩f �̇�

(0)
I + ⟨𝖫⟩f �̇�

(0)
II , (106)
6

which governs the fluid on the macroscale.
3.5. Macroscale poroelasticity

In order to close the system for the elastic displacement 𝐮(0)I , 𝐮(0)II and
𝑝(0) we require macroscale governing equations. We take the integral
averages of Eq. (80) to obtain

∫𝛺I

∇𝐲 ⋅ 𝝈
(1)
I d𝐲 + ∫𝛺I

∇𝐱 ⋅ 𝝈
(0)
I d𝐲 = 0. (107)

e then apply Gauss’ divergence theorem to the first integral and apply
acroscopic uniformity to the second. This means we obtain

∫𝜕𝛺I⧵𝛤I
𝝈(1)

I 𝐧𝛺I⧵𝛤I dS + ∫𝛤I
𝝈(1)

I 𝐧I dS

+ ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0, (108)

where we have that 𝐧I and 𝐧𝛺I⧵𝛤I are the unit normals corresponding
to 𝛤I and 𝜕𝛺I ⧵ 𝛤I. The contributions over the external boundaries of
the phase 𝛺I will cancel due to 𝐲-periodicity. Therefore (108) becomes

∫𝛤I
𝝈(1)

I 𝐧I dS + ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0. (109)

By using the interface condition (86) we can write

∫𝛤I
𝝈(1)

f 𝐧I dS + ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0. (110)

We are then able to use the expression (88) for 𝝈(1)
f and substitute in

the first integral to obtain

∫𝛤I

(

−𝑝(1)𝖨 + 𝜉𝐲(𝐯(0))
)

𝐧I dS + ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0. (111)

We can then use the expression (101) and (102) for 𝐯(0) and 𝑝(1) to
rewrite (111) as

∫𝛤I

(

𝐏 ⋅ ∇𝐱𝑝
(0) −𝐇 ⋅ �̇�(0)I − 𝐒 ⋅ �̇�(0)II + 𝑐(𝐱)

)

𝐧I dS

+∫𝛤I

(

−𝜉𝐲(𝖶)∇𝐱𝑝
(0) + 𝜉𝐲(𝖦)�̇�

(0)
I + 𝜉𝐲(𝖫)�̇�

(0)
II

)

𝐧I dS

+ ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0. (112)

ince the terms ∇𝐱𝑝(0), �̇�
(0)
I and �̇�(0)II do not depend on the microscale

ariable 𝐲 we can remove these terms from the integral. That is

∫𝛤I
𝐧I ⊗ 𝐏dS − ∫𝛤I

𝜉𝐲(𝖶)𝐧I dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤I
𝜉𝐲(𝖦)𝐧I dS − ∫𝛤I

𝐧I ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤I
𝜉𝐲(𝖫)𝐧I dS − ∫𝛤I

𝐧I ⊗ 𝐒dS
)

�̇�(0)II

+ 𝑐(𝐱)∫𝛤I
𝐧I dS + ∇𝐱 ⋅ ∫𝛺I

𝝈(0)
I d𝐲 = 0. (113)

here due to wishing to factorize the term ∇𝐱𝑝(0) out of the first term in
112), 𝐏∇𝐱𝑝(0)𝐧I we make use of the tensor/outer product between the
wo vectors 𝐧I and 𝐏, which we write as 𝐧I⊗𝐏 and in components 𝑛I𝑖𝑃𝑗 .
he same principle is applied to the second and third terms in (112)
o factor out �̇�(0)I and �̇�(0)II respectively. By reversing the divergence
heorem on the second from last integral it disappears and the final
alance equation for the material including surface integrals can be
ritten as

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I +

(

∫𝛤I
𝐧I ⊗ 𝐏dS − ∫𝛤I

𝜉𝐲(𝖶)𝐧I dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤I
𝜉𝐲(𝖦)𝐧I dS − ∫𝛤I

𝐧I ⊗𝐇dS
)

�̇�(0)I

+
(

𝜉𝐲(𝖫)𝐧I dS − 𝐧I ⊗ 𝐒dS
)

�̇�(0)II = 0. (114)
∫𝛤I ∫𝛤I
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We can also perform similar calculations for the stress-balance of the
matrix portion of the cell. We take the integral average (81) to obtain

∫𝛺II

∇𝐲 ⋅ 𝝈
(1)
II d𝐲 + ∫𝛺II

∇𝐱 ⋅ 𝝈
(0)
II d𝐲 = 0. (115)

e then apply Gauss’ divergence theorem to the first integral and apply
acroscopic uniformity to the second. This means we obtain

∫𝜕𝛺II⧵𝛤II
𝝈(1)

II 𝐧𝛺II⧵𝛤II dS + ∫𝛤II
𝝈(1)

II 𝐧II dS

+ ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0, (116)

here we have that 𝐧II and 𝐧𝛺II⧵𝛤II are the unit normals corresponding
o 𝛤II and 𝜕𝛺II ⧵ 𝛤II. The contributions over the external boundaries of
he phase 𝛺II will cancel due to 𝐲-periodicity. Therefore (116) becomes

∫𝛤II
𝝈(1)

II 𝐧II dS + ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0. (117)

y using the interface condition (87) we can write

∫𝛤II
𝝈(1)

f 𝐧II dS + ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0. (118)

e are then able to use the expression (88) for 𝝈(1)
f and substitute in

he first integral to obtain

∫𝛤II
(−𝑝(1)𝖨 + 𝜉𝐲(𝐯(0)))𝐧II dS + ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0. (119)

e can then use the expression (101) and (102) for 𝐯(0) and 𝑝(1) to
ewrite (119) as

∫𝛤II

(

𝐏 ⋅ ∇𝐱𝑝
(0) −𝐇 ⋅ �̇�(0)I − 𝐒 ⋅ �̇�(0)II + 𝑐(𝐱)

)

𝐧II dS

+∫𝛤II

(

−𝜉𝐲(𝖶)∇𝐱𝑝
(0) + 𝜉𝐲(𝖦)�̇�

(0)
I + 𝜉𝐲(𝖫)�̇�

(0)
II

)

𝐧II dS

+ ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0. (120)

Since the terms ∇𝐱𝑝(0), �̇�
(0)
I and �̇�(0)II do not depend on the microscale

variable 𝐲 we can remove these terms from the integral. That is
(

∫𝛤II
𝐧II ⊗ 𝐏dS − ∫𝛤II

𝜉𝐲(𝖶)𝐧II dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤II
𝜉𝐲(𝖦)𝐧II dS − ∫𝛤II

𝐧II ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤II
𝜉𝐲(𝖫)𝐧II dS − ∫𝛤II

𝐧II ⊗ 𝐒dS
)

�̇�(0)II

+ 𝑐(𝐱)∫𝛤II
𝐧II dS + ∇𝐱 ⋅ ∫𝛺II

𝝈(0)
II d𝐲 = 0. (121)

Where due to wishing to factorize the term ∇𝐱𝑝(0) out of the first
term in (120), 𝐏∇𝐱𝑝(0)𝐧II, we make use of the tensor/outer product
between the two vectors 𝐧II and 𝐏, which we write as 𝐧II ⊗ 𝐏 and in
components 𝑛II𝑖 𝑃𝑗 . The same principle is applied to the second and third
terms in (120) to factor out �̇�(0)I and �̇�(0)II respectively. Then finally by
reversing the divergence theorem on the second from last integral it
disappears and the final balance equation for the material including
surface integrals can be written as

∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II

+
(

∫𝛤II
𝐧II ⊗ 𝐏dS − ∫𝛤II

𝜉𝐲(𝖶)𝐧II dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤II
𝜉𝐲(𝖦)𝐧II dS − ∫𝛤II

𝐧II ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤
𝜉𝐲(𝖫)𝐧II dS − ∫𝛤

𝐧II ⊗ 𝐒dS
)

�̇�(0)II = 0. (122)
7

II II
We therefore have two balance Eqs. (114) and (122), one for each
solid domain respectively.

By using Eqs. (66), (67), (72)–(74), (89) and (90) and exploiting
(94) we can write the following problems for 𝐮(0)I and 𝐮(0)II

∇𝐲 ⋅ (CI𝜉𝐲(𝐮
(1)
I )) + ∇𝐲 ⋅ (CI𝜉𝐱(𝐮

(0)
I )) = 0 in 𝛺I (123)

(CI𝜉𝐲(𝐮
(1)
I ) + CI𝜉𝐱(𝐮

(0)
I ))𝐧I = −𝑝(0)𝐧I on 𝛤I (124)

and

∇𝐲 ⋅ (CII𝜉𝐲(𝐮
(1)
II )) + ∇𝐲 ⋅ (CII𝜉𝐱(𝐮

(0)
II )) = 0 in 𝛺II (125)

CII𝜉𝐲(𝐮
(1)
II ) + CII𝜉𝐱(𝐮

(0)
II ))𝐧II = −𝑝(0)𝐧II on 𝛤II (126)

he solutions to the problems given by (123)–(124) and (125)–(126),
xploiting linearity are
(1)
I = 𝐴I𝜉𝐱(𝐮

(0)
I ) + 𝐚I𝑝(0) (127)

(1)
II = 𝐴II𝜉𝐱(𝐮

(0)
II ) + 𝐚II𝑝(0) (128)

espectively, where we have that 𝐴I and 𝐴II are third rank tensors and
I and 𝐚II are vectors. The following cell problems are to be satisfied by
I, 𝐴II, 𝐚I and 𝐚II. The cell problems are

𝐲 ⋅ (CI𝜉𝐲(𝐴I)) + ∇𝐲 ⋅ CI = 0 in 𝛺I (129)

(CI𝜉𝐲(𝐴I))𝐧I + CI𝐧I = 0 on 𝛤I (130)

nd

𝐲 ⋅ (CII𝜉𝐲(𝐴II)) + ∇𝐲 ⋅ CII = 0 in 𝛺II (131)

(CII𝜉𝐲(𝐴II))𝐧II + CII𝐧II = 0 on 𝛤II (132)

nd

∇𝐲 ⋅ (CI𝜉𝐲(𝐚I)) = 0 in 𝛺I (133)

CI𝜉𝐲(𝐚I))𝐧I + 𝐧I = 0 on 𝛤I (134)

nd

∇𝐲 ⋅ (CII𝜉𝐲(𝐚II)) = 0 in 𝛺II (135)

CII𝜉𝐲(𝐚II))𝐧II + 𝐧II = 0 on 𝛤II (136)

hese cell problems are to be supplemented by periodic conditions on
he boundaries 𝜕𝛺II ⧵ 𝛤II and 𝜕𝛺I ⧵ 𝛤I, and for the uniqueness of the
olutions, further conditions on the auxiliary variables 𝐴I, 𝐴II, 𝐚I and
II is required i.e.

𝐴I⟩I = 0, ⟨𝐴II⟩II = 0,

𝐚I⟩I = 0, ⟨𝐚II⟩II = 0. (137)

emark 5 (Elastic Cell Problems). We have presented four cell problems
129)–(130), (131)–(132), (133)–(134) and (135)–(136) that can be
olved to find the coefficients of the final model. We should note that
he cell problems for the two elastic phases are completely decoupled
nd can be seen to be two sets (129)–(130) and (133)–(134) for the
ibre network and (131)–(132) and (135)–(136) for the matrix which
re the typical cell problems associated with poroelasticity.

We now want an expression for the leading order solid stress
ensors. From (89) and (90) we have that 𝐮(1)I and 𝐮(1)II are related to
he leading order stresses 𝝈(0)

I and 𝝈(0)
II respectively. This means we can

rite
(0)
I = CIMI𝜉𝐱(𝐮

(0)
I ) + CI𝑄I𝑝

(0) + CI𝜉𝐱(𝐮
(0)
I ) (138)

nd
(0)
II = CIIMII𝜉𝐱(𝐮

(0)
II ) + CII𝑄II𝑝

(0) + CII𝜉𝐱(𝐮
(0)
II ) (139)

here we have used that

I = 𝜉𝐲(𝐴I) = 𝜉𝑘𝑙𝑝𝑞(𝐴
I) = 1

( 𝜕𝐴I
𝑝𝑘𝑙 +

𝜕𝐴I
𝑞𝑘𝑙

)

, (140)

2 𝜕𝑦𝑞 𝜕𝑦𝑝
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MII = 𝜉𝐲(𝐴II) = 𝜉𝑘𝑙𝑝𝑞(𝐴
II) = 1

2

( 𝜕𝐴II
𝑝𝑘𝑙

𝜕𝑦𝑞
+

𝜕𝐴II
𝑞𝑘𝑙

𝜕𝑦𝑝

)

, (141)

I = 𝜉𝐲(𝐚I) = 𝜉𝑖𝑗 (𝐚I) =
1
2

( 𝜕𝐚I𝑖
𝜕𝑦𝑗

+
𝜕𝐚I𝑗
𝜕𝑦𝑖

)

, (142)

II = 𝜉𝐲(𝐚II) = 𝜉𝑖𝑗 (𝐚II) =
1
2

( 𝜕𝐚II𝑖
𝜕𝑦𝑗

+
𝜕𝐚II𝑗
𝜕𝑦𝑖

)

(143)

We can now take our expressions for the leading order solid stresses,
138) and (139), and taking the integral average over the individual
olid domains gives

𝝈(0)
I ⟩I = ⟨CIMI + CI⟩I𝜉𝐱(𝐮

(0)
I ) + ⟨CI𝑄I⟩I𝑝

(0) (144)

𝝈(0)
II ⟩II = ⟨CIIMII + CII⟩II𝜉𝐱(𝐮

(0)
II ) + ⟨CII𝑄II⟩II𝑝

(0) (145)

hese can be used in (114) and (122) to give the average force balance
quations for our poroelastic composite material.

We wish to obtain a conservation of mass equation for our material.
o do this we return to Eq. (83), the incompressibility constraint, and
e integrate to obtain

= ∫𝛺f

∇𝐲 ⋅ 𝐯(1)d𝐲 + ∫𝛺f

∇𝐱 ⋅ 𝐯(0)d𝐲 (146)

Then we apply Gauss’ divergence theorem twice to the first integral
and use the interface conditions (84) and (85), we also rearrange the
second integral to obtain

0 = −∫𝛺I

∇𝐲 ⋅ �̇�
(1)
I d𝐲 − ∫𝛺II

∇𝐲 ⋅ �̇�
(1)
II d𝐲 + ∇𝐱 ⋅ ⟨𝐯(0)⟩f

= −∫𝛺I

Tr(𝜉𝐲(�̇�
(1)
I ))d𝐲 − ∫𝛺II

Tr(𝜉𝐲(�̇�
(1)
II ))d𝐲

+ ∇𝐱 ⋅ ⟨𝐯(0)⟩f (147)

Therefore we have

⟨Tr(𝜉𝐲(�̇�
(1)
I ))⟩I + ⟨Tr(𝜉𝐲(�̇�

(1)
II ))⟩II = ∇𝐱 ⋅ ⟨𝐯(0)⟩f . (148)

Using Eqs. (127) and (128) with (140) we have that

𝜉𝐲(�̇�
(1)
I ) + 𝜉𝐲(�̇�

(1)
II ) = MI ∶ 𝜉𝐱(�̇�

(0)
I ) +MII ∶ 𝜉𝐱(�̇�

(0)
II )

+ (𝑄I +𝑄II)�̇�(0) (149)

Then using (149), Eq. (148) becomes

∇𝐱 ⋅ ⟨𝐯(0)⟩f = ⟨Tr(MI)⟩I ∶ 𝜉𝐱(�̇�
(0)
I ) + ⟨Tr(MII)⟩II ∶ 𝜉𝐱(�̇�

(0)
II )

+ ⟨Tr(𝑄I +𝑄II)⟩𝑠�̇�(0) (150)

We can then rewrite (150) using (106) as

∇𝐱 ⋅ (−⟨𝖶⟩f∇𝐱𝑝
(0) + ⟨𝖦⟩f �̇�

(0)
I + ⟨𝖫⟩f �̇�

(0)
II )

= ⟨Tr(MI)⟩I ∶ 𝜉𝐱(�̇�
(0)
I ) + ⟨Tr(MII)⟩II ∶ 𝜉𝐱(�̇�

(0)
II )

+ Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)�̇�(0) (151)

By expanding the left hand side of (151) we can then rearrange to
obtain the following expression for �̇�(0). That is

̇ (0) = 1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

(

− ∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0))

+ (∇𝐱 ⋅ ⟨𝖦⟩
T
f ) ⋅ �̇�

(0)
I + (∇𝐱 ⋅ ⟨𝖫⟩

T
f ) ⋅ �̇�

(0)
II

+ (⟨𝖦⟩f − ⟨Tr(MI)⟩I) ∶ 𝜉𝐱(�̇�
(0)
I ) + (⟨𝖫⟩f

− ⟨Tr(MII)⟩II) ∶ 𝜉𝐱(�̇�
(0)
II )

)

(152)

We can then define

𝑀 = −1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

and 𝜶I = ⟨𝖦⟩f − ⟨Tr(MI)⟩I

and 𝜶II = ⟨𝖫⟩f − ⟨Tr(MII)⟩II (153)
8

C

where 𝑀 is the Biot’s modulus for the system and 𝜶I and 𝜶II remind of
the Biot’s tensor of coefficients, but here we have one for each elastic
phase. Using this notation we can rewrite (152) as

�̇�(0) = −𝑀
(

− ∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0)) + (∇𝐱 ⋅ ⟨𝖦⟩

T
f ) ⋅ �̇�

(0)
I

+ (∇𝐱 ⋅ ⟨𝖫⟩
T
f ) ⋅ �̇�

(0)
II + 𝜶I ∶ 𝜉𝐱(�̇�

(0)
I )

+ 𝜶II ∶ 𝜉𝐱(�̇�
(0)
II )

)

. (154)

hen we can finally divide through by 𝑀 to obtain

�̇�(0)

𝑀
= ∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝

(0)) − (∇𝐱 ⋅ ⟨𝖦⟩
T
f ) ⋅ �̇�

(0)
I

− (∇𝐱 ⋅ ⟨𝖫⟩
T
f ) ⋅ �̇�

(0)
II − 𝜶I ∶ 𝜉𝐱(�̇�

(0)
I )

− 𝜶II ∶ 𝜉𝐱(�̇�
(0)
II ). (155)

We have now derived all the equations required to be able to state
ur macroscale model for two non-interacting solid phases percolated
y a viscous fluid.

. The macroscale model

The macroscale model for our material describes the effective poroe-
astic behaviour in terms of the pore pressure, the average fluid velocity
nd the elastic displacement of the individual elastic phases. We now
tate the governing equations which are

𝐯(0)⟩f = −⟨𝖶⟩f∇𝐱𝑝
(0) + ⟨𝖦⟩f �̇�

(0)
I + ⟨𝖫⟩f �̇�

(0)
II , (156)

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I +

(

∫𝛤I
𝐧I ⊗ 𝐏dS − ∫𝛤I

𝜉𝐲(𝖶)𝐧I dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤I
𝜉𝐲(𝖦)𝐧I dS − ∫𝛤I

𝐧I ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤I
𝜉𝐲(𝖫)𝐧I dS − ∫𝛤I

𝐧I ⊗ 𝐒dS
)

�̇�(0)II = 0, (157)

𝝈(0)
I ⟩I = ⟨CIMI + CI⟩I𝜉𝐱(𝐮

(0)
I ) + ⟨CI𝑄I⟩I𝑝

(0), (158)

𝐱 ⋅ ⟨𝝈
(0)
II ⟩II +

(

∫𝛤II
𝐧II ⊗ 𝐏dS − ∫𝛤II

𝜉𝐲(𝖶)𝐧II dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤II
𝜉𝐲(𝖦)𝐧II dS − ∫𝛤II

𝐧II ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤II
𝜉𝐲(𝖫)𝐧II dS − ∫𝛤II

𝐧II ⊗ 𝐒dS
)

�̇�(0)II = 0, (159)

𝝈(0)
II ⟩II = ⟨CIIMII + CII⟩II𝜉𝐱(𝐮

(0)
II ) + ⟨CII𝑄II⟩II𝑝

(0), (160)

̇ (0) = 1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

(

−∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0))

+ (∇𝐱 ⋅ ⟨𝖦⟩
T
f ) ⋅ �̇�

(0)
I + (∇𝐱 ⋅ ⟨𝖫⟩

T
f ) ⋅ �̇�

(0)
II + (⟨𝖦⟩f

− ⟨Tr(MI)⟩I) ∶ 𝜉𝐱(�̇�
(0)
I ) + (⟨𝖫⟩f − ⟨Tr(MII)⟩II) ∶ 𝜉𝐱(�̇�

(0)
II )

)

(161)

here we have that 𝑝(0) is the macroscale pressure, 𝐮(0)I is the solid
isplacement in the fibre network, 𝐮(0)II is the solid displacement in the
atrix, �̇�(0)I is the solid velocity in the fibres and �̇�(0)II is the solid velocity

n the matrix. The novel model comprises the equation governing the
luid flow (156). This equation is a modified Darcy flow that accounts
or the influence of the fibre network and the matrix on the fluid
ontained between them. That is, it depends on the geometry and
lastic properties of the two solid phases. We have that (157) is the
alance equation for our fibre network portion of the material with
eading order stress given by (158). We have that (159) is the balance
quation for our matrix portion of the material with the leading order
tress given by (160). The leading order stresses for each of the phases
re of poroelastic type. Due to the discontinuity in the leading order
lastic displacements we can define two effective elasticity tensors (one
n each elastic phase). These are given by

̃ ̃

I = ⟨CIMI + CI⟩I and CII = ⟨CIIMII + CII⟩II. (162)
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The final equation of the novel macroscale model is the conservation of
mass equation. The second and third terms on the RHS (the divergence
of the second rank tensors 𝖦 and 𝖫) describe the volume changes related
to the deformation and influence of the two elastic phases that are not
in contact and can be viewed as a correction term that maintains the
conservation of mass in the system.

The first Eq. (156) is the modified Darcy’s flow that is written in
terms of the absolute velocity 𝐯(0). This equation takes into consider-
ation the effects of the pressure as well as the influence of the solid
velocities of both the solid phases. The tensors of coefficients 𝖶, 𝖦 and
𝖫 are to be obtained by solving the newly arising fluid cell problems
(103), (104), (105) which then encode the influence that these two
solid structures have on the fluid that flows in the void.

The key novelty of this work resides in considering the influence of
two different discontinuous elastic phases on the fluid that is contained
between them. This is reflected in the newly arising fluid cell problems
(103), (104), (105). Solving these cell problem encodes the details
of the geometry and stiffness of the microstructure in the tensors
which appear in the fluid flow equation and the conservation of mass
equation in the macroscale model. So that is, we are accounting for
the microscale complexity within the novel macroscale model. We also
have the addition of two new balance equations that are required to
close the problem since we do not have the continuity of elastic phases.
These new balance equations consider each phase and contain surface
integrals of terms arising from the fluid cell problems. This means that
we are taking into consideration each elastic phase and the influence
of the fluid on it separately. The novel model here cannot strictly be
considered of standard poroelastic-type in the sense of the definition
provided in Miller and Penta (2020).

Remark 6 (Limit Cases). In the case that the fibres are not fully
embedded in the fluid but is in fact in contact with the matrix we can
recover (Miller and Penta, 2020). To obtain this model we assume that
we have the continuity of the elastic displacements 𝐮(0)I , 𝐮(0)II and the
solid velocities �̇�(0)I , �̇�(0)II . We will begin with considering (156) assuming
the continuity of leading order solid velocities

⟨𝐯(0)⟩f = −⟨𝖶⟩f∇𝐱𝑝
(0) − (⟨𝖦 + 𝖫⟩f )�̇�(0) (163)

We have that ⟨𝖦+𝖫⟩f is the average of the identity over the fluid domain
which we can write as ⟨𝖨⟩f and this is equivalent to 𝜙𝖨. To see that
𝖦+𝖫 is the identity we can consider the summation of the cell problems
(104) and (105). This means we can rewrite (163)

⟨𝐯(0)⟩f = −⟨𝖶⟩f∇𝐱𝑝
(0) − 𝜙�̇�(0) (164)

Then by using the definition of the relative fluid–solid velocity defined
in Miller and Penta (2020) as

⟨𝐰(0)
⟩f = ⟨𝐯(0)⟩f − 𝜙�̇�(0) (165)

we can write (164) as

⟨𝐰(0)
⟩f = −⟨𝖶⟩f∇𝐱𝑝

(0), (166)

which is exactly Darcy’s law as found in Miller and Penta (2020) for
poroelastic composites.

In this work we propose two separate balance laws, one for the fibre
network portion of the material (157) and one for the matrix portion
(159). This is since the two elastic phases are fully decoupled because
of the fluid that is between them. We can however recover the balance
equation of Miller and Penta (2020) by summing up (157) and (159)
and assuming the continuity of the two elastic phases. That is

∇𝐱 ⋅ ⟨𝝈
(0)
I ⟩I +

(

∫𝛤I
𝐧I ⊗ 𝐏dS − ∫𝛤I

𝜉𝐲(𝖶)𝐧I dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤I
𝜉𝐲(𝖦)𝐧I dS − ∫𝛤I

𝐧I ⊗𝐇dS
)

�̇�(0)I

+
(

𝜉𝐲(𝖫)𝐧I dS − 𝐧I ⊗ 𝐒dS
)

�̇�(0)II
9

∫𝛤I ∫𝛤I 𝖳
+ ∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II +

(

∫𝛤II
𝐧II ⊗ 𝐏dS − ∫𝛤II

𝜉𝐲(𝖶)𝐧II dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤II
𝜉𝐲(𝖦)𝐧II dS − ∫𝛤II

𝐧II ⊗𝐇dS
)

�̇�(0)I

+
(

∫𝛤II
𝜉𝐲(𝖫)𝐧II dS − ∫𝛤II

𝐧II ⊗ 𝐒dS
)

�̇�(0)II = 0, (167)

e can combine the terms as follows and assume that �̇�(0)I = �̇�(0)II = �̇�(0)
o obtain

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I +

(

∫𝛤I
𝐧I ⊗ 𝐏dS − ∫𝛤I

𝜉𝐲(𝖶)𝐧I dS

+ ∫𝛤II
𝐧II ⊗ 𝐏dS − ∫𝛤II

𝜉𝐲(𝖶)𝐧II dS
)

∇𝐱𝑝
(0)

+
(

∫𝛤I
𝜉𝐲(𝖦)𝐧I dS − ∫𝛤I

𝐧I ⊗𝐇dS + ∫𝛤I
𝜉𝐲(𝖫)𝐧I dS

− ∫𝛤I
𝐧I ⊗ 𝐒dS + ∫𝛤II

𝜉𝐲(𝖦)𝐧II dS − ∫𝛤II
𝐧II ⊗𝐇dS

+ ∫𝛤II
𝜉𝐲(𝖫)𝐧II dS − ∫𝛤II

𝐧II ⊗ 𝐒dS
)

�̇�(0)

+ ∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II = 0, (168)

ince we now have terms on both 𝛤I and 𝛤II we have the complete
oundary of the fluid domain, so we are able to reverse the divergence
heorem to get all the integrals in the fluid domain. We also use the
efinition of the symmetric part of the gradient operator (9). That is

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I −

(

∫𝛺f

∇𝐲𝐏d𝐲 − ∫𝛺f

∇2
𝐲𝖶

Td𝐲

− ∫𝛤I
∇𝐲(∇𝐲 ⋅𝖶

T)d𝐲
)

∇𝐱𝑝
(0) −

(

∫𝛺f

∇2
𝐲𝖦

Td𝐲

+ ∫𝛺I

∇𝐲(∇𝐲 ⋅ 𝖦
T)d𝐲 − ∫𝛺f

∇𝐲𝐇d𝐲 + ∫𝛺f

∇2
𝐲𝖫

Td𝐲

+ ∫𝛺f

∇𝐲(∇𝐲 ⋅ 𝖫
T)d𝐲 − ∫𝛺f

∇𝐲𝐒d𝐲
)

�̇�(0)

+ ∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II = 0. (169)

hen we can use the cell problems (104) and (105) to cancel all the
ntegrals multiplying the �̇�(0). That is

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I −

(

∫𝛺f

∇𝐲𝐏d𝐲 − ∫𝛺f

∇2
𝐲𝖶

Td𝐲

− ∫𝛤I
∇𝐲(∇𝐲 ⋅𝖶

T)d𝐲
)

∇𝐱𝑝
(0)

+ ∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II = 0. (170)

hen using cell problem (103) we can replace the first two integrals
sing the first equation and the third integral is zero due to the second
quation. That is

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I −

(

∫𝛺f

𝖨d𝐲
)

∇𝐱𝑝
(0)

+ ∇𝐱 ⋅ ⟨𝝈
(0)
II ⟩II = 0. (171)

he integral of the identity over the fluid domain become the fluid
olume fraction 𝜙, so the final balance equation can be written as

𝐱 ⋅ ⟨𝝈
(0)
I ⟩I + ∇𝐱 ⋅ ⟨𝝈

(0)
II ⟩II − 𝜙∇𝐱𝑝

(0) = 0, (172)

r equivalently

𝐱 ⋅ (⟨𝝈
(0)
I ⟩I + ⟨𝝈(0)

II ⟩I − 𝜙𝑝(0)𝖨) = 0. (173)

he terms ⟨𝝈(0)
I ⟩I + ⟨𝝈(0)

II ⟩I − 𝜙𝑝(0)𝖨 are called 𝖳Eff in Miller and Penta
2020) and are the constitutive law. Using (158) and (160) and assum-
ng the continuity we can write, using the notation ⟨𝝈(0)

I ⟩I + ⟨𝝈(0)
II ⟩I −

𝑝(0)𝖨 = 𝖳Eff ,
(0)
Eff = (⟨CIMI + CI⟩I + ⟨CIIMII + CII⟩II) ∶ 𝜉𝐱(𝐮 )
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+ (⟨CI𝑄I⟩I + ⟨CII𝑄II⟩II − 𝜙𝖨)𝑝(0), (174)

which is exactly the constitutive law found in Miller and Penta (2020).
We must also enforce the limit in the conservation of mass Eq. (161).

Assuming the continuity of solid velocities we can rewrite as

�̇�(0) = 1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

(

−∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0))

+ (∇𝐱 ⋅ ⟨𝖦⟩
T
f + ∇𝐱 ⋅ ⟨𝖫⟩

T
f ) ⋅ �̇�

(0) + (⟨𝖦⟩f + ⟨𝖫⟩f

− ⟨Tr(MI)⟩I − ⟨Tr(MII)⟩II) ∶ 𝜉𝐱(�̇�(0))
)

(175)

We can use the fact that ⟨𝖦+𝖫⟩f is the average of the identity over the
fluid domain to rewrite (175) as

�̇�(0) = 1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

(

−∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0))

+ (∇𝐱 ⋅ ⟨𝐼⟩f ) ⋅ �̇�(0) + (⟨𝐼⟩f − ⟨Tr(MI)⟩I

− ⟨Tr(MII)⟩II) ∶ 𝜉𝐱(�̇�(0))
)

(176)

Since the divergence of the identity is zero the second term disappears
and we can finally write as

�̇�(0) = 1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

(

−∇𝐱 ⋅ (⟨𝖶⟩f∇𝐱𝑝
(0)) + (𝜙𝐼

− ⟨Tr(MI)⟩I − ⟨Tr(MII)⟩II) ∶ 𝜉𝐱(�̇�(0))
)

(177)

This is the conservation of mass equation found in Miller and Penta
(2020).

5. Applicability of the model and numerical results

In this section we discuss important examples of real world prob-
lems where our novel model can be applied Section 5.1. We also
provide an overview of the numerical simulations and results we have
obtained for our model Section 5.2.

5.1. Potential applications

We first note that this model cannot be deduced as a special case
of Miller and Penta (2020). This is due to the fact that the discontinuity
of the elastic phases changes the nature of the differential cell problems
and consequently the model coefficients are different. That is, this
model is able to account for the behaviour of two different elastic
phases and the influence they have on the fluid flowing between them.

By considering this geometry we are able to account for some
very interesting applications in biology, medical devices and porous
scaffolds. Within modelling of the perfusion of biological tissues such as
the heart or brain or indeed the modelling of hard hierarchical tissues
such as the bones this model could be useful.

The human heart has four chambers each of which has a muscular
wall with three distinct layers, the endocardium, the myocardium, and
the epicardium. The endocardium and epicardium are the thin inner
and outer layers, whereas the myocardium is the middle contractile
layer. It is supplied by the coronary arteries and is the layer most
affected by a variety of diseases, e.g., myocardial infarction, angina and
the effects of ageing. For this reason the modelling approach can be
focussed on the myocardium (Whitaker, 2014; Weinhaus and Roberts,
2005; Purslow, 2008)

The myocardium has an embedded vasculature i.e., the blood ves-
sels. When the vasculature supplying the heart becomes diseased via for
example a build up of atherosclerosis or a blood clot then we potentially
have a scenario like the geometry we have described here. The blood
vessel embedded within the myocardium can be thought to be the pore
of the matrix with the blood flowing through and the additional elastic
phase can be a medical device used to treat disease or damage in the
10

vessel (Kolodgie et al., 2007; Tsivgoulis et al., 2016). When the device
is inserted it is small enough that it allows the blood to flow around but
it then increases in size in order to capture the clot or disease building
up in the artery. We can describe this scenario using our model since
we can enlarge the embedded elastic inclusion/fibre to represent the
medical device in a closed or open state depending on the point in
treatment. Indeed, in Miller and Penta (2023a) a first approach has
been made to investigate how physiologically observed microstructural
changes induced by myocardial infarction impact the elastic parameters
of the heart.

We should note that the current model uses linear elasticity and
of course biological tissues such as the heart are indeed nonlinear.
However, we could in fact obtain the approximate nonlinear behaviour
by using a piecewise linear approach such as the one in Hu et al.
(2003a,b). This method has the benefit of being able to approximate
the behaviour whilst using simple, computationally cheap simulations.

This model is also applicable to hard hierarchical tissues, such as
the bones. The bones have previously been considered as a poroelas-
tic material in Cowin (1999), Perrin et al. (2019) and Cowin et al.
(2009). The pores of the bones are filled with bone marrow, blood,
or interstitial fluid and cells (Perrin et al., 2019; Cowin and Cardoso,
2015). In the context of bone remodelling, the process is regulated
by mechanosensitive bone cells called osteocytes. These osteocytes are
immersed in the interstitial fluid and can be found in the microscale
pores (Perrin et al., 2019; Sánchez et al., 2021). This means that our
model with the two elastic phases one of which is immersed in the fluid
would be a good fit for examining the behaviour of bones.

Another potential application of this model is to living cells. Animal
cells can be described by a poroelastic model due to their microstruc-
ture. The structure comprises elastic solid components such as the
cytoskeleton, a variety of organelles and macromolecules, all of which
are surrounded by the interstitial fluid (Moeendarbary et al., 2013).
This is therefore another example of various different elastic phases that
are not in contact yet are surrounded by fluid.

5.2. Numerical simulations

Within this subsection we first provide an overview of how the
cell problems that we have derived in this work can be interpreted
and solved numerically. We also indicate the portion of the domain
on which each problem is to be solved. Then in Section 5.2.2 we
investigate the Biot’s Modulus for our model by first proving that it
is positive and then backing up this theorem with numerical results. In
Section 5.2.3 we then investigate the model coefficients that remind us
formally of the Biot’s tensor of coefficients.

5.2.1. Overview of the problems
The simulations for a linear poroelastic composite with continuity

between the two elastic phases have recently been carried out in Miller
and Penta (2023b). These simulations have then been used to inves-
tigate the effects of microstructural changes induced by myocardial
infarction on the stiffness of the heart in Miller and Penta (2023a). By
using a similar procedure to the one outlined in these works and De-
hghani et al. (2018) we could solve the problems presented in this work
using Comsol Multiphysics.

The cell problems (103), (104), (105) are to be solved on the fluid
portion of our domain. Each of the fluid cell problems is a vector
problem. The problem (103) is the typical Stokes problem for an
incompressible fluid. Problems (104) and (104) take into consideration
the fluid contact with either the matrix or the fibre network. By solving
the fluid problems (103), (104), (105) this allows us to obtain the
hydraulic conductivity tensor for our material. In Fig. 4 we show the
fluid domain. It comprises 3 larger interconnected cylinders arranged
orthogonally with 3 smaller interconnected cylinders removed from the
centre.

Our two elastic phases are completely decoupled so we have a
separate poroelastic problem for each of the phases. The cell problems
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Fig. 4. Portion of the domain on which fluid cell problems have to be solved.

(129)–(130) and (133)–(134) are to be solved on the fibre network
portion of the cell shown in Fig. 5 This is the three orthogonally
arranged interconnected cylinders that are removed and leave the void
within the fluid domain shown in Fig. 4. The second set of poroelastic
cell problems (131)–(132) and (135)–(136) are for the matrix and are
to be solved on the matrix portion of the cell shown in Fig. 6. This is the
portion of the domain that remains after the removal of both the fluid
and the elastic fibres. This geometry for the matrix portion alone is the
typical periodic cell on which the elastic problems for standard Biot’s
poroelasticity are to be solved, see Dehghani et al. (2018). In order to
solve problems (129)–(130) and (131)–(132) to find, 𝜉𝐲(𝐴I), 𝜉𝐲(𝐴II) (or
equivalently MI and MII) we are solving six elastic-type cell problems
in which we consider 𝜉𝐲(𝐴I), 𝜉𝐲(𝐴II) as strains. We have the driving
force behind the problems on the interface between the solid matrix
and void or the fibre network and void depending on whether we are
solving (129)–(130) for the fibres or (131)–(132) for the matrix. These
forces account for the difference between the solid and the void where
the fluid has been removed. The normal to the interface encodes the
geometry of the voids. This allows for the computation of the drained
coefficients MI and MII.

We also solve the vector problems (133)–(134) and (135)–(136)
to obtain 𝜉𝐲(𝐚I), 𝜉𝐲(𝐚II) (or equivalently 𝑄I and 𝑄II). We have that
the driving forces for these problems are the normals to the interface
between either the matrix and the void or the fibres and the void
depending on which problem you are solving. The normal encodes the
geometry of the voids and is used to compute the solution.

5.2.2. Properties and numerical results - Biot’s modulus
The first parameter of interest is the Biot’s modulus.

Theorem 1 (Biot’s Modulus). The Biot’s modulus in our system,

𝑀 = −1
Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II)

. (178)

is positive. That is

𝑀 > 0 (179)

Proof. In order to prove this we only need to prove that the denomi-
nator of 𝑀 is less than zero. We can begin by writing the denominator
in index notation

Tr(⟨𝑄I⟩I + ⟨𝑄II⟩II) =
⟨ 𝜕𝑎I𝑖

⟩

+
⟨ 𝜕𝑎II𝑖

⟩

. (180)
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𝜕𝑦𝑖 I 𝜕𝑦𝑖 II
Fig. 5. Portion of the domain on which the elastic problem for the fibre network is
to be solved.

Fig. 6. Portion of the domain on which the elastic problem for the matrix is to be
solved.

We can then multiply Eqs. (133) and (135) from the cell problems by
𝑎I𝑖, 𝑎

II
𝑖 and integrate over 𝛺I, 𝛺II respectively. That is,

∫𝛺I

𝑎I𝑖
𝜕
𝜕𝑦𝑗

(𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I))d𝐲

+ ∫𝛺II

𝑎II𝑖
𝜕
𝜕𝑦𝑗

(𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II))d𝐲 = 0. (181)

Integrating by parts we obtain

∫𝛺I

𝜕
𝜕𝑦𝑗

(𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)𝑎I𝑖)d𝐲 − ∫𝛺I

𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)
𝜕𝑎I𝑖
𝜕𝑦𝑗

d𝐲

+ ∫𝛺II

𝜕
𝜕𝑦𝑗

(𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)𝑎II𝑖 )d𝐲

− ∫𝛺II

𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)
𝜕𝑎II𝑖
𝜕𝑦𝑗

d𝐲 = 0. (182)
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Then applying the divergence theorem we obtain

∫𝛤I
𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)𝑎I𝑖 ⋅ 𝑛
I
𝑗 dS

+ ∫𝜕𝛺I⧵𝛤I
𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)𝑎I𝑖 ⋅ 𝑛
𝛺I⧵𝛤I
𝑗 dS

− ∫𝛺I

𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)𝜉𝑖𝑗 (𝑎I)d𝐲

+ ∫𝛤II
𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)𝑎II𝑖 ⋅ 𝑛
II
𝑗 dS

+ ∫𝜕𝛺II⧵𝛤II
𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)𝑎II𝑖 ⋅ 𝑛
𝛺II⧵𝛤II
𝑗 dS

− ∫𝛺II

𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)𝜉𝑖𝑗 (𝑎II)d𝐲 = 0 (183)

where 𝐧I, 𝐧II, 𝐧𝛺I⧵𝛤I and 𝐧𝛺II⧵𝛤II are the unit normals corresponding to
𝛤I, 𝛤II, 𝜕𝛺I ⧵𝛤I and 𝜕𝛺II ⧵𝛤II. The terms on the boundaries cancel due to
periodicity and then using Eqs. (134) and (136) from the cell problems
we obtain

− ∫𝛤I
𝑎I𝑖𝑛

I
𝑖 dS − ∫𝛺I

𝜉𝑖𝑗 (𝑎I)𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)d𝐲

− ∫𝛤II
𝑎II𝑖 𝑛

II
𝑖 dS − ∫𝛺II

𝜉𝑖𝑗 (𝑎II)𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)d𝐲 = 0. (184)

Accounting for 𝐲-periodicity the first and third integrals above are equal
to the corresponding integrals (with corresponding normals) on the
boundaries 𝜕𝛺I and 𝜕𝛺II, so that we can apply the divergence theorem
in reverse to obtain

− ∫𝛺I

𝜕𝑎I𝑖
𝜕𝑦𝑖

d𝐲 − ∫𝛺II

𝜕𝑎II𝑖
𝜕𝑦𝑖

d𝐲 − ∫𝛺I

𝜉𝑖𝑗 (𝑎I)𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)d𝐲

− ∫𝛺II

𝜉𝑖𝑗 (𝑎II)𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)d𝐲 = 0. (185)

We can write this as

−∫𝛺I

𝜕𝑎I𝑖
𝜕𝑦𝑖

d𝐲 − ∫𝛺II

𝜕𝑎II𝑖
𝜕𝑦𝑖

d𝐲 = ∫𝛺I

𝜉𝑖𝑗 (𝑎I)𝐶 I
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

I)d𝐲

+ ∫𝛺II

𝜉𝑖𝑗 (𝑎II)𝐶 II
𝑖𝑗𝑘𝑙𝜉𝑘𝑙(𝑎

II)d𝐲. (186)

Since the two terms on the right hand side are positive, we therefore
have that

−∫𝛺I

𝜕𝑎I𝑖
𝜕𝑦𝑖

d𝐲 − ∫𝛺II

𝜕𝑎II𝑖
𝜕𝑦𝑖

d𝐲 < 0 (187)

and so using the integral average notation we have
⟨ 𝜕𝑎I𝑖
𝜕𝑦𝑖

⟩

I
+
⟨ 𝜕𝑎II𝑖

𝜕𝑦𝑖

⟩

II
< 0. (188)

Since the denominator is less than zero we therefore have that 𝑀 > 0.
That is, the Biot’s modulus is positive.

We will now carry out the numerical simulations using Comsol
Multiphysics to investigate the Biot’s Modulus and again the results
will show that it is indeed positive. We solve cell problems (133)–
(134) and (135)–(136) to determine 𝑄I and 𝑄II in order to compute
the coefficient. We first consider the Biot’s Modulus with increasing
porosity in the case where the matrix has a fixed volume fraction of
45% and we vary the volume fraction of the inclusion to alter the
fluid volume fraction. We have that the inclusion has Young’s modulus
35 kPa and the matrix has Young’s modulus 80 kPa. These values have
been chosen at random with the matrix stiffer but on the same order of
magnitude to highlight the effect of different properties of the phases.
We have plotted the Biot’s Modulus for porosities 5%–54% for a variety
of Poisson ratios from 0.2–0.49, where we assume that both the matrix
and inclusion have the same Poisson ratio.

In Figs. 7 and 8 we see that the Biot’s modulus increases with
increasing porosity. The quantity Tr(⟨𝑄 ⟩ + ⟨𝑄 ⟩ ) represents the solid
12

I I II II
Fig. 7. Biot’s modulus vs porosity for Poisson ratio 0.2, 0.3 and 0.4.

Fig. 8. Biot’s modulus vs porosity.

volume variation of the elastic phases, and actually approaches zero.
This means that 𝑀 approaches +∞ as the porosity increases (or equiv-
alently as the solid phases volume fractions approach zero). Here we
have the results when both phases have a Poisson ratio of either 0.2,
0.3, 0.4 or 0.49. When both are 0.2 this means that both the phases
are fairly compressible and therefore show a larger variation in volume
resulting in an overall lower Biot’s modulus than when compared with
much more incompressible materials. With each increasing Poisson
ratio we are making the matrix less compressible. Therefore we see
that the Biot’s modulus is increasing with increasing porosity and
point-by-point is higher for each increasing Poisson ratio. In Fig. 8
the simulations are carried out by assuming that the matrix and fibre
network are both almost incompressible. This means that there is very
little variation in the solid volume so the denominator of the Biot’s
modulus expression is extremely small and this therefore results in the
very high Biot’s modulus shown.

We can also compare how the Biot’s modulus relates to the Poisson
ratio of the material for a variety of porosities from ≈ 10%–≈ 54%. This
plot, Fig. 9, again shows the relationship between increasing Poisson
ratio of the solid phases and the increase in the Biot’s modulus. Each



European Journal of Mechanics / A Solids 105 (2024) 105219L. Miller and R. Penta
Fig. 9. Poisson ratio vs Biot’s modulus.

line is a different porosity and the increasing porosity corresponds
to a higher value of the Biot’s modulus. This reinforces the physical
interpretation that the less compressible the solid phases are, the higher
the value of the Biot’s modulus. The Biot’s modulus is higher for the
higher porosities as the fluid in the pores is incompressible so the larger
the pores the greater the influence they have on the solid phases. For
a small porosity then any variation in the solid volume is truly down
to the compressibility or incompressibility of the solid phase itself.

5.2.3. Numerical results - Biot’s tensor of coefficients
The second poroelastic coefficient that we would like to consider in

our analysis is based upon the Biot’s tensor of coefficients. We note
however that due to the microstructure of our considered material
we cannot have a formal Biot’s tensor of coefficients with classical
upper bound 1 as the elastic phases are fully decoupled. We defined
reminiscent Biot’s tensors of coefficients for each of the solid phases in
(153). Since we do not have the continuity of elastic phases we cannot
define one Biot’s tensor of coefficients for the entire system. In order to
obtain relevant and accurate results we can instead consider individual
Biot’s tensors of coefficients by considering (161) and ’switching off’
the strains firstly in the matrix so that we have the Biot’s tensor for
only the fibre network �̂�I and secondly in the fibres so that we have
the Biot’s tensor for only the matrix �̂�II. We can define these tensors as
follows

�̂�I = 𝜙𝖨 − ⟨Tr(MI)⟩I and �̂�II = 𝜙𝖨 − ⟨Tr(MII)⟩II (189)

We should note that due to the chosen geometry of our cell the
individual Biot’s tensors of coefficients (189) is diagonal due to cubic
symmetry of the tensors MI and MII. We can therefore write that

Tr(MI) = 𝑀 I
𝑖𝑗𝑘𝑙𝛿𝑙𝑘 = (𝑀 I

1111 + 2𝑀 I
1122)𝛿𝑖𝑗 (190)

and

Tr(MII) = 𝑀 II
𝑖𝑗𝑘𝑙𝛿𝑙𝑘 = (𝑀 II

1111 + 2𝑀 II
1122)𝛿𝑖𝑗 . (191)

This means we can write

�̂�I = 𝛼I𝖨 and �̂�II = 𝛼II𝖨 (192)

where the scalar coefficients can be written as

𝛼I = 𝜙 − ⟨𝑀 I
1111 + 2𝑀 I

1122⟩I

𝛼II = 𝜙 − ⟨𝑀 II
1111 + 2𝑀 II

1122⟩II. (193)

We consider how the Biot’s tensors for each phase, �̂�I and �̂�II, varies
with increasing porosity for Poisson ratios 0.3, 0.35, 0.4, 0.45 and 0.49.
In the first case we consider just the matrix component which has
3 interconnected cylinders removed and we increase the porosity by
increasing the diameter of the removed cylinders from 0.3 to 0.495. In
Fig. 10 we can see the results of the Biot’s tensor of coefficients �̂�II for
five different Poisson ratios versus increasing porosity. As the porosity
13
Fig. 10. �̂�II vs porosity for different Poisson ratios.

approaches 100% the Biot’s tensor for the matrix exhibits the classical
behaviour of porous media by tending towards one. The Biot’s tensor
is the ratio of fluid to solid volume changes at constant volumetric
pressure. The coefficient is shown in Fig. 10 to approach one, it can
reach identically one for all porosities when the Poisson ratio of the
solid matrix is 0.5. Overall the increase in porosity leads to an increase
in the incompressible fluid volume in the pores and equally a decrease
in the matrix that is still somewhat compressible depending upon the
choice of Poisson ratio. This means that the Biot’s tensor is linked to
both the porosity and the Poisson ratio of the matrix part and both of
these influence the rate at which it approaches one.

We are now considering the opposite setup, by considering three
interconnected cylinders surrounded by the fluid, where the porosity
in this case means the fluid volume in the unit cube surrounding the
solid. The solid interconnected cylinders vary in radius from 0.09 to
0.267 to create the variation in the porosity. This is indeed no longer
the geometrical setup of porous media so we expect to not obtain the
classical behaviour of the Biot’s tensor. In Fig. 11 we are considering
the opposite to above and so we also see a very different behaviour.
Again we are studying the Biot’s tensor which is the ratio of fluid to
solid volume changes at constant volumetric pressure. However, here
we are not considering the typical flow in a porous matrix that gives
rise to a classical Biot’s tensor that increases towards 1. We instead are
considering the flow around 3 orthogonally interconnected cylinders.
We can see that for all Poisson ratios except 0.3 that the Biot’s tensor
decreases towards a lower bound of 1 with increasing porosity. In the
case of Poisson ratio 0.3 we see that the coefficient actually increases
slightly with the increase in porosity yet still tends towards 1. We can
explain this in the following way. When the Poisson ratio is closer to
0.5 then both the solid and the fluid are incompressible and therefore
the Biot’s tensor would be 1. We however begin our analysis from a
solid with Poisson ratio 0.49, so this is not fully incompressible so can
have a very small variation in volume. At low porosity the solid volume
plays a bigger role in influencing the overall value of the ratio hence the
larger value. As the solid decreases in volume fraction (or equivalently
the porosity increases) the Poisson ratio approaches 1 as the influence
of the very small variation in solid volume plays less of a role and the
fluid that is completely incompressible increases in volume. The lower
the Poisson ratio the more compressible the solid material is. So when
we have Poisson ratio 0.3 the variations can be much bigger meaning
that when considering �̂�I at 55% porosity we get a Biot’s tensor already
below 1 and as the volume of the solid decreases (increasing porosity)
the ratio again approaches 1 as the influence of the solid variations
becomes less important and the fluid incompressibility takes over.

5.3. Scheme for solving macroscale model

We aim to provide a clear step-by-step guide to finding our effective
coefficients and solving our global scale model (156)–(161) encoding
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Fig. 11. �̂�I vs porosity for different Poisson ratios.

structural details from across the scales. We also provide, where avail-
able, particular references that would assist the reader with the type of
numerical simulations that would need to be carried out. Since we have
made the assumption of global scale uniformity of the material then we
can propose the following steps to solve the model. The process is as
follows:

1. We begin by fixing the original material properties of the elastic
matrix and the elastic fibres at the microscale. Under the as-
sumption of isotropy we are required to fix parameters for the
matrix and the fibres. These parameters are two independent
elastic constants e.g the Poisson ratio and Young’s modulus (or
alternatively the Lamé constants).

2. The microscale geometry then must be defined and we fix the
geometry of a single periodic cell at this stage.

3. We would then be able to solve the elastic-type cell problems
(129)–(130), (131)–(132), (133)–(134) and (135)–(136) to ob-
tain the auxiliary tensors MI, MII, 𝖰I and QII which appear in the
macroscale model coefficients. The cell problems to be solved
are, in components

𝜕
𝜕𝑦𝑗

(

𝐶 I
𝑖𝑗𝑝𝑞𝜉

𝑘𝑙
𝑝𝑞(𝐴

I)
)

+
𝜕𝐶 I

𝑖𝑗𝑘𝑙

𝜕𝑦𝑗
= 0 in 𝛺I (194)

𝐶 I
𝑖𝑗𝑝𝑞𝜉

𝑘𝑙
𝑝𝑞(𝐴

I)𝑛I𝑗 + 𝐶 I
𝑖𝑗𝑝𝑞𝑛

I
𝑗 = 0 on 𝛤I (195)

and

𝜕
𝜕𝑦𝑗

(

𝐶 II
𝑖𝑗𝑝𝑞𝜉

𝑘𝑙
𝑝𝑞(𝐴

II)
)

+
𝜕𝐶 II

𝑖𝑗𝑘𝑙

𝜕𝑦𝑗
= 0 in 𝛺II (196)

𝐶 II
𝑖𝑗𝑝𝑞𝜉

𝑘𝑙
𝑝𝑞(𝐴

II)𝑛II𝑗 + 𝐶 II
𝑖𝑗𝑝𝑞𝑛

II
𝑗 = 0 on 𝛤II (197)

and
𝜕
𝜕𝑦𝑗

(

𝐶 I
𝑖𝑗𝑝𝑞𝜉𝑝𝑞(𝐚

I)
)

= 0 in 𝛺I (198)

𝐶 I
𝑖𝑗𝑝𝑞𝜉𝑝𝑞(𝐚

I)𝑛I𝑗 + 𝑛I𝑗 = 0 on 𝛤I (199)

and
𝜕
𝜕𝑦𝑗

(

𝐶 II
𝑖𝑗𝑝𝑞𝜉𝑝𝑞(𝐚

II)
)

= 0 in 𝛺II (200)

𝐶 II
𝑖𝑗𝑝𝑞𝜉𝑝𝑞(𝐚

II)𝑛II𝑗 + 𝑛II𝑗 = 0 on 𝛤II (201)

where we have used the notation

𝜉𝑘𝑙𝑝𝑞(𝐴
I) = 1

2

( 𝜕𝐴I
𝑝𝑘𝑙

𝜕𝑦𝑞
+

𝜕𝐴I
𝑞𝑘𝑙

𝜕𝑦𝑝

)

; (202)

𝜉𝑘𝑙𝑝𝑞(𝐴
II) = 1

2

( 𝜕𝐴II
𝑝𝑘𝑙

𝜕𝑦𝑞
+

𝜕𝐴II
𝑞𝑘𝑙

𝜕𝑦𝑝

)

. (203)

𝜉𝑝𝑞(𝐚I) =
1
( 𝜕𝑎I𝑝 +

𝜕𝑎I𝑞
)

; (204)
14

2 𝜕𝑦𝑞 𝜕𝑦𝑝
𝜉𝑝𝑞(𝐚II) =
1
2

( 𝜕𝑎II𝑝
𝜕𝑦𝑞

+
𝜕𝑎II𝑞
𝜕𝑦𝑝

)

. (205)

The solution of the problems (194)–(195) and (196)–(197) can
be obtained by solving six elastic-type cell problems by fixing the
couple of indices 𝑘, 𝑙 = 1, 2, 3. By doing this we can see 𝜁𝑘𝑙𝑝𝑞 (𝐴

I)
and 𝜁𝑘𝑙𝑝𝑞 (𝐴

II) represent a strain and that for each fixed couple
of indices 𝑘, 𝑙 we have a linear elastic problem. The problems
(198)–(199) and (200)–(201) are vector problems with driving
forces being the normals to the interface between either the
matrix and the void or the fibre network and the void depending
on which problem you are solving. The normal encodes the
geometry of the voids and is used to compute the solution.

4. We also require one more condition to ensure uniqueness of so-
lution. We can enforce that the cell averages of the cell problem
solutions are zero i.e

⟨𝐴I⟩I = 0, ⟨𝐴II⟩II = 0

⟨𝐚I⟩I = 0, ⟨𝐚II⟩II = 0 (206)

5. We also must solve the fluid cell problems (103)–(105) to obtain
the tensors 𝑊 , 𝐺 and 𝐿 and the vectors 𝐏, 𝐇 and 𝐒 which appear
in the macroscale coefficients. The cell problems to be solved
are, in components

𝜕2𝖶𝑗𝑖

𝜕𝑦𝑘𝜕𝑦𝑘
−

𝜕𝑃𝑖
𝜕𝑦𝑗

+ 𝛿𝑖𝑗 = 0 in 𝛺f (207)

𝜕𝖶𝑖𝑗

𝜕𝑦𝑖
= 0 in 𝛺f (208)

𝖶𝑖𝑗 = 0 on 𝛤I (209)

𝖶𝑖𝑗 = 0 on 𝛤II, (210)

and
𝜕2𝖦𝑗𝑖

𝜕𝑦𝑘𝜕𝑦𝑘
=

𝜕𝐻𝑖
𝜕𝑦𝑗

in 𝛺f (211)

𝜕𝖦𝑖𝑗

𝜕𝑦𝑖
= 0 in 𝛺f (212)

𝖦𝑖𝑗 = 𝛿𝑖𝑗 on 𝛤I (213)

𝖦𝑖𝑗 = 0 on 𝛤II, (214)

and
𝜕2𝖫𝑗𝑖
𝜕𝑦𝑘𝜕𝑦𝑘

=
𝜕𝑆𝑖
𝜕𝑦𝑗

in 𝛺f (215)

𝜕𝖫𝑖𝑗
𝜕𝑦𝑖

= 0 in 𝛺f (216)

𝖫𝑖𝑗 = 0 on 𝛤I (217)

𝖫𝑖𝑗 = 𝛿𝑖𝑗 on 𝛤II, (218)

6. The auxiliary tensors arising form the cell problems (MI, MII, 𝖰I

and QII, 𝖶, 𝖦 and 𝖫) can then be used to determine the global
scale model coefficients.

7. The geometry at the macroscale then must be prescribed. The
boundary conditions for the homogenized cell boundary must
also be given, and the system is to be supplemented with initial
conditions for the macroscale solid displacement and pressure.

8. Finally, the macroscale model can then be solved.

6. Conclusion

In this work we have derived a novel system of partial differential
equations describing the effective mechanical behaviour of a composite
where there is a discontinuity between the elastic phases which are
interacting with a fluid phase. Our structure comprises an elastic matrix
with a Newtonian fluid that flows in the pores as well as the strength-
ening elastic fibres that are within the pores and fully surrounded by
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the fluid. We remark that the novelty of this work is that the two
solid phases are fully decoupled from each other, and therefore we are
considering two elastic materials separated by a fluid. This means that
we get a poroelastic problem for each solid and fluid when ignoring the
other solid constituent and fluid problems that take into consideration
how both solids influence that fluid. We can apply this type of structure
to many real-world examples, including modelling biological tissues
and medical devices.

We began the derivation of the new model by creating the fluid–
structure interaction (FSI) problem that appropriately describes the
geometry. We close the problem by applying the continuity of stresses
and velocities on the interfaces between matrix and the fluid and the
fibres and the fluid. We note that there is no continuity of stresses
or displacements between the different elastic phases as there is no
point of contact. Then by enforcing the length scale separation between
the porescale (where all individual phases are clearly visible) and
the macroscale (average length of the material) we are able to apply
the asymptotic homogenization technique. We apply the technique
to the non-dimensionalized FSI problem which allows to obtain the
macroscale system of governing equations for our material. We have
recovered previously known models in the literature by considering a
particular limit case of our model. That is, by enforcing contact between
the elastic phases then the model reduces to Miller and Penta (2020).
The novel model coefficients encode the precise microstructural details.
These coefficients are computed by solving the novel differential prob-
lems that arise from using the asymptotic homogenization technique.
We finally provide some applications for the model and discuss how
the model can be solved numerically.

The novel, pseudo double-poroelasticity model obtained in this
work cannot be deduced as a special case of Miller and Penta (2020).
This is due to the fact that the discontinuity of the elastic phases
changes the nature of the differential cell problems and consequently
the model coefficients are different. That is, this model is able to ac-
count for the behaviour of two different elastic phases and the influence
they have on the fluid that is travelling in the void between them. The
model can however be considered as a next natural step in deriving
computationally feasible models with complicated microstructures re-
alistic of real-life problems. The key novelty of this work resides in
considering the influence of two different discontinuous elastic phases
on the fluid that is contained between them. This is reflected in the fluid
cell problems (103), (104), (105). Solving these cell problem encodes
the details of the geometry and stiffness of the microstructure in the
tensors which appear in the fluid flow equation and the conservation
of mass equation in the macroscale model. So that is, we are accounting
for the microscale complexity within the novel macroscale model. We
also have the addition of two new balance equations that are required
to close the problem since we do not have the continuity of elastic
phases. These new balance equations consider each phase and contain
surface integrals of terms arising from the fluid cell problems. This
means that we are taking into consideration each elastic phase and the
influence of the fluid on it separately. The novel model here cannot
be strictly described as poroelastic-type, as defined in Miller and Penta
(2020).

We noted in the introduction that a similar approach has been taken
in Santos et al. (2006) where fractures of porous media are investigated
using the asymptotic homogenization technique. The structure in their
work involves two different elastic phases and a fluid phase, but is
restricted to a simplified geometry where one of the solid phases
envelops the other. This means that there is only one solid phase (the
internal one) in contact with the fluid. The interface between the solid
phase and the fluid has continuity of stresses and velocities. Between
the two solid phases there is non welded contact assuming that the
stresses across that interface are continuous but displacements and/or
velocities are discontinuous. The authors in Santos et al. (2006) make
the assumption that the displacement and/or velocity discontinuities
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are proportional to the stresses across the interface. The proportionality
factors are tensors that are specific stiffness and specific viscosity. This
differs dramatically from our geometry as we have a complete discon-
tinuity between the elastic phases which leads to both elastic phases
having contact with the fluid. The work (Santos et al., 2006) concludes
that the jump in the microscale displacements and/or velocities leads to
jumps arising in the corresponding macroscopic displacements and/or
velocities in the constitutive relations. They also conclude that as only
one of their solid phase has contact with the fluid phase then the
governing equation for the fluid reduces to the classical ones derived
by Biot.

Our current model has some limitations, the macroscale model has
been formulated as quasi-static and in a linearized setting. Generalizing
our novel model to include linearized inertia would be simple. This
addition would lead to the appearance of additional terms in our
macroscale model. The additional terms would be leading order lin-
earized inertia which would appear in the effective balance Eqs. (157)
and (159). The addition of these inertial terms can be useful to appli-
cations of lung modelling where the acoustic properties can be used
to aid the diagnosis of pulmonary diseases (Siklosi et al., 2008; Berger
et al., 2014). The extension of this work to a nonlinear elasticity setting
is very possible from a theoretical point and would build upon the
case of Miller and Penta (2021b). There are however complications
with the numerical simulations in this case as the two length scales
remain coupled leading to an increased computational load. There have
however been progresses made recently to address this problem using
artificial neural networks (Dehghani and Zilian, 2021).

In the literature, there have been some works investigating the nu-
merical simulations of the asymptotic homogenization cell problems for
linear elastic composites and linear poroelasticity (Penta and Gerisch,
2015; Dehghani et al., 2018). The simulations for a linear poroelastic
composite with continuity between the two elastic phases have recently
been carried out in Miller and Penta (2023b). These simulations have
then been used to investigate the effects of microstructural changes
induced by myocardial infarction on the stiffness of the heart in Miller
and Penta (2023a). The current work could be progressed in many ways
however, potentially the most important of these would be to carry out
further numerical simulations and model validation using experimental
data, such as measurement from biological tissues.
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