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Abstract Wederive the quasi-static governing equations for themacroscale behaviour of a linear elastic porous
composite comprising a matrix interacting with inclusions and/or fibres, and an incompressible Newtonian
fluid flowing in the pores. We assume that the size of the pores (the microscale) is comparable with the
distance between adjacent subphases and is much smaller than the size of the whole domain (the macroscale).
We then decouple spatial scales embracing the asymptotic (periodic) homogenization technique to derive the
new macroscale model by upscaling the fluid–structure interaction problem between the elastic constituents
and the fluid phase. The resulting system of partial differential equations is of poroelastic type and encodes
the properties of the microstructure in the coefficients of the model, which are to be computed by solving
appropriate cell problems which reflect the complexity of the given microstructure. The model reduces to the
limit case of simple composites when there are no pores, and standard Biot’s poroelasticity whenever only
the matrix–fluid interaction is considered. We further prove rigorous properties of the coefficients, namely (a)
major and minor symmetries of the effective elasticity tensor, (b) positive definiteness of the resulting Biot’s
modulus, and (c) analytical identities which allow us to define an effective Biot’s coefficient. This model is
applicable when the interactions between multiple solid phases occur at the porescale, as in the case of various
systems such as biological aggregates, constructs, bone, tendons, as well as rocks and soil.

Keywords Asymptotic homogenization · Biot’s poroelasticity · Elastic composites · Multiscale modelling

1 Introduction

The Theory of Poroelasticity [5–8] is a widely known modelling framework which is usually embraced to
model the effective mechanical behaviour of a fluid-filled porous elastic structure. There exists a large variety
of physical systems where porescale interactions between a deformable solid and a fluid phase take place,
thus motivating a poroelastic modelling approach. Key examples include hard hierarchical tissues, such as the
bone [18,51], the interstitial matrix in healthy and tumorous biological tissues (see, e.g. [9,23]), the human
eye [12,28], artificial constructs and biomaterials [13,29], as well as rocks and soil [30,50].

Physical systems of this kind are typically multiscale in nature. In fact, they are characterized by a porous
structure where the interactions between the solid and fluid phases occur on a scale (the porescale) which is
much smaller than the average size of the whole system (the macroscale).

The equations governing a poroelastic medium can be derived by upscaling the coupled fluid–structure
porescale balance equation by means of suitable homogenization techniques. The latter include effective
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medium theory, mixture theory, volume averaging and asymptotic homogenization, as thoroughly discussed,
for example, in the review [4].

The two former techniques represent micromechanical approximations which can provide an estimate of
themacroscale coefficients for specific geometries of the pores (such as ellipsoidal, penny-shaped or spherical),
or for diluted pores (see, e.g. [15]), as well as closed form analytic formulas relating drained and undrained
poroelastic coefficients, as those reported for example in [4,33,50]. Volume averaging approaches are suit-
able for deriving the functional form of the macroscale equations and are based on relationships between
the porescale and macroscale energy of the system, see also [27]. However, the macroscale coefficients are
usually not related to the underlying microstructure, and physical arguments and/or experimental data are to
be supplemented in order to determine them. Examples of problems concerning specific inclusions (such as
rigid discs) embedded in an elastic and poroelastic matrix and their analytic solutions by means of suitable
Green’s functions are also found in [1,2,20,21,24,35,48].

The asymptotic homogenization technique [3,25,34,40] exploits the sharp length scale separation which
exists in the system to decouple spatial variations that occur on different scales. The relevant fields (e.g. veloc-
ities, displacements, and pressures) are expressed in terms of power series of the ratio between representative
microscopic and macroscopic length scales. The resulting governing equations describe the behaviour of the
system in terms of the leading (zeroth)-order fields in a homogenizedmacroscale domainwhere themicrostruc-
ture is smoothed out. This technique is in general characterized by a higher algebraic complexity compared
to average fields approaches; however, it provides a precise prescription for computing the coefficients of
the model. These are based on the solution of microstructural differential problems where the constitutive
behaviour and geometrical arrangement of the individual phases is clearly specified.

In [11,32], the authors applied the asymptotic homogenization technique to the fluid–structure interaction
problem between a linear elastic matrix and a Newtonian fluid flowing through the pores obtaining the Biot’s
equations of poroelasticity. The formulation has been further extended in [22] for inviscid fluid, as well as in
[37] to account for appositional finite growth between the solid and fluid phases.

The standard formulation of the equations of poroelasticity deduced via asymptotic homogenization is
derived accounting for an elastic matrix interacting with a slowly flowing Newtonian fluid.

In this work, we aim to determine the effective behaviour of a material where the microstructure comprises
both an elastic fluid-filled porous matrix, and a number of embedded elastic inclusions/fibres which can
interplay with both the matrix and the fluid phase. Our chief motivation is the study of poroelastic composites,
i.e. complex, multiscale physical systems where multiple adjacent elastic phases interacting with a fluid can be
identified on the porescale. For example, this is the case in the biological tissues interstitial matrix, which can
be considered a composite made of multiple constituents, such as cells and different types of collagen fibres
[31], which are interacting with the fluid flowing in the interstitial space [23] on the porescale [47]. A similar
scenario is encountered when dealing with hard hierarchical materials, such as bone and tendons, where water
is interplaying with both collagen and mineral at the finest hierarchical levels of organization [51], as well as
with the constituents of the osteonal structures [18]. In [46], the authors present an asymptotic homogenization
analysis concerning the upscaling of a fluid–structure interaction problem motivated by experimental research
on fractures. The analysis is conducted by considering two elastic phases and one fluid phase and restricted
to a simplified scenario where one of the solid phase envelops the other, and the fluid is only in contact with
this latter one. The upscaling is then carried out assuming that there is a non-welded interface between the
two solids, and this is reflected by prescribing the solid stress across this interface (which is assumed to be
continuous) as being proportional to the jump in the elastic displacements and velocities.

In the present work, we embrace the asymptotic homogenization technique to upscale the interaction
between a number of linear elastic inclusions and/or fibres embedded in a porous matrix saturated with an
incompressible Newtonian fluid. Both the elastic matrix and the various subphases are in general assumed to
be interacting with the fluid flowing in the pores. We assume that the scale at which the various solid subphases
are clearly resolved is comparable with the porescale and collectively denote it as the microscale, which is
in turn assumed to be much smaller than the macroscale. The upscaling is then carried out by accounting for
continuity of stresses and displacements across the interfaces between solid phases, and continuity of stresses
and velocities across the fluid–solid interfaces. The resulting governing equations, which are presented in the
quasi-static case, are of Biot’s type and read as a generalization of both the standard formulation for linear
elastic composites [39], and standard poroelasticity [11]. These two models are recovered when assuming that
the matrix is not porous and that no elastic phase other than the matrix is present, respectively. The coefficients
of the model encode the properties of the microstructure and are to be computed by solving local differential
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Fig. 1 A 2D sketch representing a cross section of the three-dimensional domain Ω . The fluid phase flowing in the pores is
represented in white, the porous elastic matrix is shown in red, and the subphases, which can be inclusions or fibres, are shown
in blue. The inclusions and/or fibres can potentially be in contact with both the matrix and the fluid flowing in the pores or
alternatively they can be fully embedded in the matrix or fully surrounded by the fluid, as illustrated throughout our schematic of
the domain Ω (colour figure online)

problems which combine the properties of those arising in the context of multiscale composites [38,39] and
poroelasticity [19].

The paper is organized as follows. In Sect. 2, we introduce the fluid–structure interaction problem which
describes the interplay between the elastic matrix, subphases, and fluid percolating in the pores. In Sect. 3, we
perform a multiscale analysis of the system of partial differential equations illustrated in Sect. 2 and derive
the new macroscale model which governs the homogenized mechanical behaviour of poroelastic composites.
In Sect. 4, we discuss the macroscale results and prove rigorous properties of the arising effective elasticity
tensor, Biot’s modulus, and Biot’s coefficient. In Sect. 5, we conclude our work by discussing the limitations
of the model and further perspectives.

2 A multiphase fluid–structure interaction problem

We begin by considering a setΩ ∈ R
3, whereΩ represents the union of a solid porous matrixΩII, a connected

fluid compartment Ωf , and a collection ΩI of N disjoint subphases (which could represent either inclusions
or fibres) Ωα , such that

ΩI =
N⋃

α=1

Ωα, (1)

and Ω̄ = Ω̄I ∪ Ω̄II ∪ Ω̄ f . A sketch of a cross section of the three-dimensional domain Ω is shown in Fig. 1.
The balance equations in the solid domains Ωα and ΩII, by neglecting volume forces and inertia then read,

∀α = 1 . . . N
∇ · Tα = 0 in Ωα, (2)

and
∇ · TII = 0 in ΩII. (3)

The symbols Tα and TII that appear in relationships (2, 3) denote the solid stress tensors corresponding to each
subphase Ωα and the one corresponding to the matrix ΩII, respectively. We then assume that both the matrix
and each subphase are anisotropic linear elastic solids, so that the constitutive equations for Tα and TII are
given by

Tα = Cα∇uα, (4)

TII = CII∇uII, (5)

where uα and uII are the elastic displacements in each subphase and the matrix, respectively.
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The fourth rank tensors Cα and CII are the elasticity tensors in each subphase and the matrix, respectively,
with corresponding components Cα

i jkl and C II
i jkl , for i, j, k, l = 1, 2, 3. We note that each Cα and CII are

equipped with right minor and major symmetries, namely

Cα
i jkl = Cα

i jlk; C II
i jkl = C II

i jlk, (6)

Cα
i jkl = Cα

kli j ; C II
i jkl = C II

kli j , (7)

and therefore also left minor symmetries follow by combining (6, 7). In particular, by applying right minor
symmetries we can equivalently rewrite constitutive equations (4, 5) as

Tα = Cαξ(uα), (8)

TII = CIIξ(uII), (9)

where

ξ( �) = ∇( �) + (∇( �))T

2
(10)

is the symmetric part of the gradient operator.
The balance equation in the fluid compartment reads

∇ · Tf = 0 in Ωf , (11)

where Tf is the fluid stress tensor. We assume that the fluid compartment is an incompressible Newtonian fluid,
so that the constitutive equation for Tf is given by

Tf = −pI + 2μξ(v), (12)

where v denotes the fluid velocity, p the pressure, and μ the viscosity, together with the incompressibility
constraint

∇ · v = 0 in Ωf . (13)

Substituting relationship (12) in (11) and using the the divergence-free condition (13) yields the Stokes’
problem

μ∇2v = ∇ p in Ωf . (14)

In order to close the fluid–structure interaction problem in the whole domain Ω , we also require interface
conditions between the fluid and the solid phases. We first define the interface between the fluid phase and
the α inclusion/fibre as Γα := ∂Ωα ∩ ∂Ωf and the interface between the matrix and the fluid phase as
ΓII := ∂ΩII ∩ ∂Ωf . We then impose continuity of velocities and stresses across each Γα and ΓII, namely

u̇α = v on Γα, (15)

Tfnα = Tαnα on Γα, (16)

u̇II = v on ΓII, (17)

TfnII = TIInII on ΓII, (18)

∀α = 1 . . . N , where u̇α and u̇II are the solid velocities in each subphase Ωα and the matrix ΩII, respectively.
The unit outward (i.e. pointing into the fluid domainΩf ) vectors normal to the interfacesΓα andΓII are denoted
by nα and nII, respectively. Finally, we require continuity of stresses and displacements across the interface
between each elastic subphase and the matrix. We define this boundary as ΓαII := ∂Ωα ∩ ∂ΩII, so that

TαnαII = TIInαII on ΓαII. (19)

uα = uII on ΓαII, (20)

∀α = 1 . . . N , where nαII is the unit vector normal to the interface ΓαII pointing into the fibre/inclusion Ωα .
In the next section, we perform a multiscale analysis by (a) non-dimensionalizing the partial differential

equations (PDEs) described in this section and introducing two well-separated length scales, (b) applying the
asymptotic homogenization technique to the resulting non-dimensional systems of PDEs, and (c) deriving the
effective governing equations for the material as a whole.
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3 Multiscale analysis

We now perform a multiscale analysis of the fluid–structure interaction problem introduced in the previous
section, which is summarized below

∇ · Tα = 0 in Ωα, (21)

∇ · TII = 0 in ΩII, (22)

∇ · Tf = 0 in Ωf , (23)

∇ · v = 0 in Ωf , (24)

u̇α = v on Γα, (25)

u̇II = v on ΓII, (26)

Tfnα = Tαnα on Γα, (27)

TfnII = TIInII on ΓII, (28)

TαnαII = TIInαII on ΓαII, (29)

uα = uII on ΓαII, (30)

where, by means of the constitutive relationships (8), (9), and (12), together with the incompressibility con-
straint (24), the balance equations (21), (22), and (23) can also be rewritten as

∇ · (Cαξ(uα)) = 0 in Ωα (31)

∇ · (CIIξ(uII)) = 0 in ΩII (32)

μ∇2v = ∇ p in Ωf , (33)

∀α = 1 . . . N . Problem (21–30) is then to be closed by prescribing suitable external boundary conditions on
∂Ω . We assume that there exist two typical length scales in the system. In particular, we denote the average
size of the whole domain Ω by L (the macroscale), while d refers to the porescale (the microscale), which
in this work is assumed to be comparable with the distance between adjacent subphases interacting with the
matrix and the fluid domain. In order to emphasize the difference between such scales, it is helpful to perform
a non-dimensional analysis of the system of PDEs (21–30).

3.1 Non-dimensional form of the equations

We carry out the non-dimensional analysis by assuming that the system is characterized by a reference pres-
sure gradient C , and that the characteristic (reference) fluid velocity is given by the typical parabolic profile
proportional to that of a Newtonian fluid slowly flowing in a cylinder of radius d . This is the appropriate
scaling that captures the scale separation between the microscale d and the macroscale L in a porous domain,
as also discussed in [37]. Although different scaling choices for the fluid velocity are formally possible, these
would not account for the appropriate effective behaviour of a fluid flowing through a porous solid matrix. An
example of alternative choices which lead to an effective viscoelastic-type behaviour is illustrated in [11].

Therefore, in our case we have

x = Lx′, Cα = CLC′
α, CII = CLC′

II,

uα = Lu′
α, uII = Lu′

II, v = Cd2

μ
v′, p = CLp′.

(34)

The time is scaled by
L

V
= μL

Cd2
, (35)

where

V = Cd2

μ
(36)

is the reference parabolic fluid profile which is embraced to upscale a fluid–structure interaction problem to a
poroelastic problem, as also explained in [37]. Equation (35) therefore represents the (macro) reference time
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scale for a fluid slowly flowing in the pores and is assumed to be analogous to the time scale for deformation
of the elastic material, for the sake of consistency with continuity of velocities at the interface. We then exploit
(34) and observe that

∇ = 1

L
∇′ (37)

to obtain the non-dimensional form of the system of PDEs (21–30), namely

∇ · Tα = 0 in Ωα, (38)

∇ · TII = 0 in ΩII, (39)

∇ · Tf = 0 in Ωf , (40)

∇ · v = 0 in Ωf , (41)

u̇α = v on Γα, (42)

u̇II = v on ΓII, (43)

Tfnα = Tαnα on Γα, (44)

TfnII = TIInII on ΓII, (45)

TαnαII = TIInαII on ΓαII, (46)

uα = uII on ΓαII, (47)

∀α = 1 . . . N , where we have dropped the primes for the sake of simplicity of notation. The non-
dimensionalized counterparts of constitutive relationships (8), (9), and (12) are given by

Tf = −pI + ε2(∇v + (∇v)T), (48)

Tα = Cαξ(uα), (49)

TII = CIIξ(uII), (50)

so that the balance equations (38–40) rewrite

ε2∇2v = ∇ p in Ωf , (51)

∇ · (Cαξ(uα)) = 0 in Ωα, (52)

∇ · (CIIξ(uII)) = 0 in ΩII, (53)

where

ε = d

L
. (54)

In the next section, we introduce the asymptotic homogenization technique which is used to upscale the non-
dimensional system of PDEs (38–47) by formally assuming that the microscale and the macroscale are well
separated.

3.2 The asymptotic homogenization technique

In this section, we introduce the two-scale asymptotic homogenization technique which is used to derive
a macroscale model for Eqs. (38–47). We first assume that the microscale (where the pores and individual
inclusions/fibres are clearly resolved), denoted by d , is small compared to average size of the domain L , i.e.

ε � 1. (55)

We then introduce a local spatial variable to capture microscale variations of the field via setting

y = x
ε
. (56)

The spatial variables x and y are to be considered formally independent and represent the macroscale and the
microscale, respectively. The gradient operator then transforms as

∇ → ∇x + 1

ε
∇y . (57)
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We further assume that all the fields uII,uα, v, p,Tf,Tα,TII, as well as the elasticity tensors CII and Cα ,
∀α = 1 . . . N , are functions of both x and y. We also assume that the fields uII,uα, v, p,Tf,Tα,TII can be
represented in terms of a series expansion in powers of ε, i.e.

ϕε(x, y, t) =
∞∑

l=0

ϕ(l)(x, y, t)εl , (58)

where ϕ collectively denotes each field involved in the present analysis.

Remark 1 (Microscale periodicity) We are now interested in obtaining a closed system of PDEs in terms of
the leading (zeroth)-order pressure, velocity, and displacement fields. This is done by applying relationships
(57) and (58) to system (38–47) and constitutive equations (48–50), and in turn to relationships (51–53). This
way, by equating coefficients of the same power of ε, we can obtain various sets of differential conditions
which can be combined to obtain a system of PDEs which holds on the macroscale x ∈ ΩH . The domain ΩH
represents the homogenized domainwheremicroscale heterogeneities are smoothed out. The coefficients of the
model are then typically expressed averaging the solution of appropriate microscale local problems. As each
coefficient ϕ(l) that appears in (58) is required to be well-defined for arbitrary small values of ε, it is in principle
necessary to assume that all the fields are locally bounded, i.e. finite with respect to the microscale variable y
when ε → 0, see also [25,40]. This is the least restrictive assumption that is to be embraced to successfully
perform upscaling of a given system of PDEs when dealing with formal asymptotic homogenization. In [11],
the authors derive Biot’s equations of poroelasticity by assuming local boundedness of the fields. However,
this approach is appropriate when the main goal is the functional form of the macroscale model only. This is
since the prescriptions of the coefficients obtained this way are related to microscale problems which are, in
principle, to be solved on the whole microstructure. Therefore, they cannot be used in practice unless further
geometrical restrictions, such as periodicity of the microstructure, are imposed, as indeed suggested in [11].
We therefore assume that every ϕ(l), Cα , and CII are y-periodic. This latter technical assumption allows us
to restrict the analysis of the microstructure to a single periodic cell, which could in any case contain several
different subphases characterized by different geometry, arrangement and elastic properties, as shown in Fig. 2.

Remark 2 (Macroscopic uniformity) The microscale geometry can in principle vary with respect to the
macroscale; however, this potential dependence is often (most of the time implicitly) neglected. Here, we
assume that the medium is macroscopically uniform, i.e. the microscale geometry does not depend on the
macroscale variable x. In particular, this assumptions leads to the straightforward differentiation under the
integral sign ∫

Ω

∇x · ( �) = ∇x ·
∫

Ω

( �) . (59)

WheneverΩ = Ω(x), Eq. (59) is not satisfied, and application of the generalized Reynolds’ transport theorem
may lead to additional macroscale contributions, see, e.g. [25,36,37].

Finally, for the sake of clarity of presentation and without loss of generality with respect to the properties of
the model, we can restrict our analysis by assuming that only one subphase is contained in each periodic cell, as
shown in Fig. 3. Themodel can be easily extended to a number of subphaseswithin the periodic cell if necessary
for a particular application, as done in the context of simple elastic composites in [38]. Therefore, the index α
is no longer needed and we adjust the notation accordingly. We identify the domain Ω with its corresponding
periodic cell, with fibre/inclusion, matrix, and fluid cell portions denoted by ΩI, ΩII, and Ωf , respectively.
The interfaces between the different phases are then denoted by ΓI := ∂ΩI ∩ ∂Ωf , ΓII := ∂ΩII ∩ ∂Ωf , and
ΓIII := ∂ΩI ∩ ∂ΩII, with corresponding unit normal vectors nI, nII, and nIII, where ΓI is the interface between
the fluid and the fibre/inclusion, ΓII is the interface between the fluid and the matrix and ΓIII is the interface
between the matrix and the fibre/inclusion.

3.3 Derivation of the macroscale model

We apply the asymptotic homogenization assumptions (57) and (58) to Eqs. (38–53) to obtain, accounting for
periodicity, the following multiscale system of PDEs

∇y · Tε
I + ε∇x · Tε

I = 0 in ΩI, (60)
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Fig. 2 A 2D sketch representing a single periodic cell in our structure. This is a section of the domain Ω in Fig. 1 that has been
zoomed in around one pore. We have the fluid represented in white, the porous matrix in red and the subphases in blue. The
fibres/inclusions Ωα for α = 1 . . . N , can be in contact with both the matrix and the fluid or be fully embedded in either the
matrix or the fluid. Each of these cases is highlighted in the figure (colour figure online)

Fig. 3 This is a 2D sketch representing the periodic cell that we focus on. In our case, we focus on geometry case 2 from Fig. 2.
We have one subphase shown in blue that is in contact with the porous, solid, elastic matrix shown in red, and the fluid flowing
in the pores is shown in white. We also highlight the interfaces ΓI which is shown in green between the subphase and the fluid,
ΓII shown in black between the matrix and the fluid and ΓIII shown in grey between the subphase and the matrix (colour figure
online)

∇y · Tε
II + ε∇x · Tε

II = 0 in ΩII, (61)

∇y · Tf
ε + ε∇x · Tf

ε = 0 in Ωf , (62)

∇y · vε + ε∇x · vε = 0 in Ωf , (63)

u̇ε
I = vε on ΓI, (64)

u̇ε
II = vε on ΓII, (65)

Tf
εnI = Tε

I nI on ΓI, (66)

Tf
εnII = Tε

IInII on ΓII, (67)

Tε
I nIII = Tε

IInIII on ΓIII, (68)

uε
I = uε

II on ΓIII, (69)

equipped with multiscale constitutive equations for the fluid and solid stress tensors Tf
ε , Tε

I , T
ε
II, given by

Tf
ε = −pεI + ε(∇yvε + (∇yvε)T) + ε2(∇xvε + (∇xvε)T), (70)
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εTε
I = CIξy(uε

I ) + εCIξx (uε
I ), (71)

εTε
II = CIIξy(uε

II) + εCIIξx (uε
II), (72)

while the balance equations in terms of the elastic displacement, fluid velocity, and pressure uε
I , u

ε
I , v

ε , pε

read

∇y · (CIξy(uε
I )) + ε∇y · (CIξx (uε

I ))

+ε∇x · (CIξy(uε
I )) + ε2∇x · (CIξx (uε

I )) = 0 in ΩI, (73)

∇y · (CIIξy(uε
II)) + ε∇y · (CIIξx (uε

II))

+ε∇x · (CIIξy(uε
II)) + ε2∇x · (CIIξx (uε

II)) = 0 in ΩII, (74)

ε3∇2
xv

ε + ε2∇x · (∇yvε) + ε2∇y · (∇xvε) + ε∇2
yv

ε

= ∇y p
ε + ε∇x p

ε in Ωf . (75)

We can now substitute power series of type (58) into the relevant fields in (60–75). Then by equating the
coefficients of εl for l = 0, 1, . . ., we derive the macroscale model for the material in terms of the relevant
leading (zeroth)-order fields. Whenever a component in the asymptotic expansion retains a dependence on the
microscale, we can take the integral average, which we define as

〈ϕ〉i = 1

|Ω|
∫

Ωi

ϕ(x, y, t)dy i = f, I, II, (76)

where ϕ is a field, and also where the integral average can be performed over one representative cell due
to y-periodicity and |Ω| is the volume of the domain and the integration is performed over the microscale.
We note that |Ω| = |Ωf | + |ΩI| + |ΩII|. Due to the assumption of y-periodicity, the integral average can be
performed over one representative cell. Therefore, (76) represents a cell average. For the sake of brevity, we
also introduce the notation

〈ϕI + ϕII〉s = 1

|Ω|
(∫

ΩI

ϕI(x, y, t)dy +
∫

ΩII

ϕII(x, y, t)dy
)

, (77)

for fields ϕ with components ϕI and ϕII defined in the solid cell portions ΩI or ΩII, respectively.
Equating coefficients of ε0 in (60–69) we obtain

∇y · T(0)
I = 0 in ΩI, (78)

∇y · T(0)
II = 0 in ΩII, (79)

∇y · Tf
(0) = 0 in Ωf , (80)

∇y · v(0) = 0 in Ωf , (81)

u̇(0)
I = v(0) on ΓI, (82)

u̇(0)
II = v(0) on ΓII, (83)

Tf
(0)nI = T(0)

I nI on ΓI, (84)

Tf
(0)nII = T(0)

II nII on ΓII, (85)

T(0)
I nIII = T(0)

II nIII on ΓIII, (86)

u(0)
I = u(0)

II on ΓIII, (87)

and the constitutive equations (70–72) for Tf
ε , Tε

I , T
ε
II have coefficients of ε0

Tf
(0) = −p(0)I in Ωf , (88)

CIξy(u
(0)
I ) = 0 in ΩI, (89)

CIIξy(u
(0)
II ) = 0 in ΩII, (90)
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and the balance equations (73–75) have coefficients of ε0

∇y · (CIξy(u
(0)
I )) = 0 in ΩI, (91)

∇y · (CIIξy(u
(0)
II )) = 0 in ΩII, (92)

∇y p
(0) = 0 in Ωf . (93)

Similarly, we now wish to equate the coefficients of ε1 in Eqs. (60–69) which gives

∇y · T(1)
I + ∇x · T(0)

I = 0 in ΩI, (94)

∇y · T(1)
II + ∇x · T(0)

II = 0 in ΩII, (95)

∇y · Tf
(1) + ∇x · Tf

(0) = 0 in Ωf , (96)

∇y · v(1) + ∇x · v(0) = 0 in Ωf , (97)

u̇(1)
I = v(1) on ΓI, (98)

u̇(1)
II = v(1) on ΓII, (99)

Tf
(1)nI = T(1)

I nI on ΓI, (100)

Tf
(1)nII = T(1)

II nII on ΓII, (101)

T(1)
I nIII = T(1)

II nIII on ΓIII, (102)

u(1)
I = u(1)

II on ΓIII, (103)

and the constitutive equations (70–72) for Tf
ε , Tε

I , T
ε
II have coefficients of ε1

Tf
(1) = −p(1)I + (∇yv(0) + (∇yv(0))T) in Ωf , (104)

T(0)
I = CIξy(u

(1)
I ) + CIξx (u

(0)
I ) in ΩI, (105)

T(0)
II = CIIξy(u

(1)
II ) + CIIξx (u

(0)
II ) in ΩII, (106)

and the balance equations (73–75) have coefficients of ε1

∇y · (CIξy(u
(1)
I )) + ∇y · (CIξx (u

(0)
I )) + ∇x · (CIξy(u

(0)
I )) = 0 in ΩI, (107)

∇y · (CIIξy(u
(1)
II )) + ∇y · (CIIξx (u

(0)
II )) + ∇x · (CIIξy(u

(0)
II )) = 0 in ΩII, (108)

∇2
yv

(0) = ∇y p
(1) + ∇x p

(0) in Ωf , (109)

We can now see from (80) and (88) that the leading order pressure p(0) does not depend on the microscale
y. That is

p(0) = p(0)(x, t). (110)

We also have from (89) and (90) that u(0)
I and u(0)

II , which are the leading order solid displacements, are rigid
body motions and therefore, by y-periodicity, do not depend on the microscale y. That is

u(0)
I =u(0)

I (x, t) (111)

u(0)
II =u(0)

II (x, t). (112)

Since we have the boundary condition u(0)
I = u(0)

II on ΓIII given by (87) we can define
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u(0) = u(0)
I = u(0)

II , (113)

which we will use throughout the following sections.

3.4 Fluid flow on the macroscale

We now wish to investigate the leading order of the velocity which we denoted v(0). We can define the relative
fluid–solid displacement, w, by

w(x, y, t) = v(0)(x, y, t) − u̇(0)(x, y, t), (114)

Using Eqs. (88), (82), (83), (96) and (104), exploiting notation (113), we have a Stokes’-type boundary value
problem which is given by

∇2
yw − ∇y p

(1) − ∇x p
(0) = 0 in Ωf , (115)

∇y · w = 0 in Ωf , (116)

w = 0 on ΓI ∪ ΓII. (117)

Now exploiting linearity and using (110), we can propose the following ansatz for the Stokes-type boundary
value problem (115–117),

w = −W∇x p
(0), (118)

p(1) = −P∇x p
(0) + c(x), (119)

where p(1) is defined up to an arbitrary y-constant function. Equation (119) is the solution to problem (115–117)
provided that second rank tensor W and vector P satisfy the following cell problem

⎧
⎪⎨

⎪⎩

∇2
yW

T − ∇yP + I = 0 in Ωf ,

∇y · WT = 0 in Ωf ,

W = 0 on ΓI ∪ ΓII,

(120)

where periodic conditions apply on the boundary ∂Ωf\ΓI ∪ ΓII and a further condition is to be placed on P for
the solution to be unique (for example zero average on the fluid cell portion). Taking the integral average of
(118) over the fluid domain leads to

〈w〉 f = −〈W 〉f∇x p
(0), (121)

meaning that the fluid flow is described by Darcy’s law in the macroscale. As expected, this is the same result
as standard poroelasticity with only one solid phase.

3.5 Poroelasticity on the macroscale

We now require the macroscale equations to close the system for the elastic displacement u(0) and p(0).
Summing up the integral averages of Eqs. (94), (95) and (96) we have

∫

ΩI

∇y · T(1)
I dy +

∫

ΩII

∇y · T(1)
II dy +

∫

Ωf

∇y · Tf
(1)dy

+
∫

ΩI

∇x · T(0)
I dy +

∫

ΩII

∇x · T(0)
II dy +

∫

Ωf

∇x · Tf
(0)dy = 0. (122)

Applying the divergence theorem to the first three integrals and rearranging the last three integrals by means
of macroscopic uniformity (59), we obtain
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∫

∂ΩI\ΓI∪ΓIII

T(1)
I nΩI\ΓI∪ΓIIIdS +

∫

ΓI

T(1)
I nIdS −

∫

ΓIII

T(1)
I nIIIdS

+
∫

∂ΩII\ΓII∪ΓIII

T(1)
II nΩII\ΓII∪ΓIIIdS +

∫

ΓII

T(1)
II nIIdS +

∫

ΓIII

T(1)
II nIIIdS

+
∫

∂Ωf\ΓI∪ΓII

Tf
(1)nΩf\ΓI∪ΓIIdS −

∫

ΓII

Tf
(1)nIIdS −

∫

ΓI

Tf
(1)nIdS

+ ∇x ·
∫

ΩI

T(0)
I dy + ∇x ·

∫

ΩII

T(0)
II dy + ∇x ·

∫

Ωf

Tf
(0)dy = 0, (123)

where nI, nII, nIII, nΩI\ΓI∪ΓIII , nΩII\ΓII∪ΓIII and nΩf\ΓI∪ΓII are the unit normals corresponding to ΓI, ΓII, ΓIII,
∂ΩI\ΓI ∪ ΓIII, ∂ΩII\ΓII ∪ ΓIII and ∂Ωf\ΓI ∪ ΓII. Since the contributions over the external boundaries of ΩI,
ΩII and Ωf cancel out due to y-periodicity (123) becomes

∫

ΓI

T(1)
I nIdS +

∫

ΓII

T(1)
II nIIdS −

∫

ΓI

Tf
(1)nIdS

−
∫

ΓII

Tf
(1)nIIdS −

∫

ΓIII

T(1)
I nIIIdS +

∫

ΓIII

T(1)
II nIIIdS

+ ∇x ·
∫

ΩI

T(0)
I dy + ∇x ·

∫

ΩII

T(0)
II dy + ∇x ·

∫

Ωf

Tf
(0)dy = 0. (124)

The first six integrals in (124) cancel out due to (100), (101), and (102), and the final three terms can be written
as

∇x · 〈T(0)
I + T(0)

II 〉s − φ∇x p
(0) = 0, (125)

where φ := |Ωf |/|Ω| is the porosity of the material.
Exploiting (110) and (113), we can write the following problem for u(1)

I and u(1)
II using (78), (79), (84),

(85), (86), (88), (103), (105) and (106)

∇y · (CIξy(u
(1)
I )) + ∇y · (CIξx (u(0))) = 0 in ΩI (126)

∇y · (CIIξy(u
(1)
II )) + ∇y · (CIIξx (u(0))) = 0 in ΩII (127)

CIξy(u
(1)
I )nIII − CIIξy(u

(1)
II )nIII = (CII − CI)ξx (u(0))nIII on ΓIII (128)

u(1)
I = u(1)

II on ΓIII (129)

(CIξy(u
(1)
I ) + CIξx (u(0)))nI = −p(0)nI on ΓI (130)

(CIIξy(u
(1)
II ) + CIIξx (u(0)))nII = −p(0)nII on ΓII (131)

The solution to the problem given by (126–131), exploiting linearity is given as

u(1)
I = AIξx (u(0)) + aI p

(0) (132)

u(1)
II = AIIξx (u(0)) + aII p

(0) (133)

where AI and AII are third rank tensors and aI and aII are vectors. The auxiliary fields AI, AII, aI and aII solve
the following cell problems.

∇y · (CIξy(AI)) = −∇y · CI in ΩI (134)

∇y · (CIIξy(AII)) = −∇y · CII in ΩII (135)

CIξy(AI)nIII − CIIξy(AII)nIII = (CII − CI)nIII on ΓIII (136)

AI = AII on ΓIII (137)

(CIξy(AI))nI = −CInI on ΓI (138)

(CIIξy(AII))nII = −CIInII on ΓII (139)

and
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∇y · (CIξy(aI)) = 0 in ΩI (140)

∇y · (CIIξy(aII)) = 0 in ΩII (141)

(CIξy(aI))nIII = (CIIξy(aII))nIII on ΓIII (142)

aI = aII on ΓIII (143)

(CIξy(aI))nI + nI = 0 on ΓI (144)

(CIIξy(aII))nII + nII = 0 on ΓII (145)

We can also write the cell problems for AI, AII, aI and aII with corresponding components AI
ikl , A

II
ikl , a

I
i and

aII
i as

∂

∂y j

(
C I
i j pqξ

kl
pq(A

I)

)
+ ∂C I

i jkl

∂y j
= 0 in ΩI (146)

∂

∂y j

(
C II
i j pqξ

kl
pq(A

II)

)
+ ∂C II

i jkl

∂y j
= 0 in ΩII (147)

C I
i j pqξ

kl
pq(A

I)nIII
j − C II

i j pqξ
kl
pq(A

II)nIII
j = (C II − C I)i jkln

III
j on ΓIII (148)

AI
ikl = AII

ikl on ΓIII (149)

C I
i j pqξ

kl
pq(A

I)nI
j + C I

i jkln
I
j = 0 on ΓI (150)

C II
i j pqξ

kl
pq(A

II)nII
j + C II

i jkln
II
j = 0 on ΓII (151)

and

∂

∂y j

(
C I
i j pqξpq(a

I)

)
= 0 in ΩI (152)

∂

∂y j

(
C II
i j pqξpq(a

II)

)
= 0 in ΩII (153)

C I
i j pqξpq(a

I)nIII
j = C II

i j pqξpq(a
II)nIII

j on ΓIII (154)

aI
i = aII

i on ΓIII (155)

C I
i j pqξpq(a

I)nI
j + nI

i = 0 on ΓI (156)

C II
i j pqξpq(a

II)nII
j + nII

i = 0 on ΓII (157)

where we have used the notation

ξ klpq(A
I) = 1

2

(
∂AI

pkl

∂yq
+ ∂AI

qkl

∂yp

)
; ξ klpq(A

II) = 1

2

(
∂AII

pkl

∂yq
+ ∂AII

qkl

∂yp

)
. (158)

We should note that the problems in terms of ai and Ai , where i = I, II, are to be solved on the solid cell
portion Ωs , where Ω̄s := Ω̄I ∪ Ω̄II.

Remark 3 (Compatibility condition for the cell problems) We have the compatibility condition (also known
as the solvability condition) for the cell problems, see, e.g. [16]. We first take the integral average of the sum
of the left hand sides of (134) and (135) and apply the divergence theorem. That is,

∫

ΩI

∇y · (CIξy(AI))dy +
∫

ΩII

∇y · (CIIξy(AII))dy (159)

=
∫

ΓI

(CIξy(AI))nIdS +
∫

ΓIII

(CIξy(AI))nIIIdS +
∫

∂ΩI\ΓI∪ΓIII

(CIξy(AI))nΩI\ΓI∪ΓIIIdS

+
∫

ΓII

(CIIξy(AII))nIIdS −
∫

ΓIII

(CIIξy(AII))nIIIdS +
∫

∂ΩII\ΓII∪ΓIII

(CIIξy(AII))nΩII\ΓII∪ΓIIIdS (160)
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where nI, nII, nIII, nΩI\ΓI∪ΓIII and nΩII\ΓII∪ΓIII are the unit normals corresponding to ΓI, ΓII, ΓIII, ∂ΩI\ΓI ∪ ΓIII

and ∂ΩII\ΓII ∪ ΓIII. Terms on the external boundaries of ΩI and ΩII cancel due to y-periodicity. So (160)
becomes

=
∫

ΓI

(CIξy(AI))nIdS +
∫

ΓII

(CIIξy(AII))nIIdS +
∫

ΓIII

(CII − CI)nIIIdS (161)

Where we have used the interface condition (136) and we can now also use (138) and (139) to write (161) as

=
∫

ΓIII

(CII − CI)nIIIdS −
∫

ΓI

CI · nIdS −
∫

ΓII

CII · nIIdS (162)

On the other hand we are able to rewrite (159) using (134) and (135) as
∫

ΩI

∇y · (CIξy(AI))dy +
∫

ΩII

∇y · (CIIξy(AII))dy (163)

= −
∫

ΩI

∇y · CIdy −
∫

ΩII

∇y · CIIdy (164)

We can then apply the divergence theorem to obtain

= −
∫

ΓI

CI · nIdS −
∫

ΓIII

CI · nIIIdS −
∫

∂ΩI\ΓI∪ΓIII

CI · nΩI\ΓI∪ΓIIIdS

−
∫

ΓII

CII · nIIdS +
∫

ΓIII

CII · nIIIdS −
∫

∂ΩII\ΓII∪ΓIII

CII · nΩII\ΓII∪ΓIIIdS

Where the unit normals are as above. The contributions over the periodic boundaries cancel to give

= −
∫

ΓI

CI · nIdS −
∫

ΓII

CII · nIIdS +
∫

ΓIII

(CII − CI)nIIIdS (165)

we can see that (162) and (165) are equal, and therefore, this proves the compatibility condition which is
necessary for the problem to admit a solution, which can be made unique by imposing an additional condition,
such as zero average of the auxiliary variables on the periodic cell.

We now consider the leading order solid stress tensors. Since from (105) and (106) we have that u(1)
I and

u(1)
II are related to T(0)

I and T(0)
II , respectively, we can exploit (132) and (133) to write

T(0)
I = CIMIξx (u(0)) + CIQI p

(0) + CIξx (u(0)) (166)

and
T(0)

II = CIIMIIξx (u(0)) + CIIQII p
(0) + CIIξx (u(0)) (167)

where we define

MI = ξy(AI), MII = ξy(AII),

QI = ξy(aI), QII = ξy(aII). (168)

Adding (166) and (167) and taking the integral average over the solid domain gives

〈T(0)
I + T(0)

II 〉s = 〈CIMI + CI + CIIMII + CII〉sξx (u(0)) + 〈CIQI + CIIQII〉s p(0) (169)

From (125), we have that
∇x · TEff = 0 (170)

where

TEff = 〈T(0)
I + T(0)

II 〉s − φp(0)I

= 〈CIMI + CI + CIIMII + CII〉sξx (u(0))

+ (〈CIQI + CIIQII〉s − φI)p(0) (171)
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Equations (170) and (171) represent the average force balance equations for our poroelastic compositematerial.
We now return to (97), the incompressibility condition and integrate to obtain

0 =
∫

Ωf

∇y · v(1)dy +
∫

Ωf

∇x · v(0)dy (172)

Applying the divergence theorem twice to the first integral and using (98) and (99) and also rearranging the
second integral, we obtain

0 = −
∫

ΩI

∇y · u̇(1)
I dy −

∫

ΩII

∇y · u̇(1)
II dy + ∇x · 〈v(0)〉f (173)

= −
∫

ΩI

Tr(ξy(u̇
(1)
I ))dy −

∫

ΩII

Tr(ξy(u̇
(1)
II ))dy + ∇x · 〈v(0)〉f (174)

Therefore, we have
〈Tr(ξy(u̇(1)

I ) + ξy(u̇
(1)
II ))〉s = ∇x · 〈v(0)〉f (175)

Using (132) and (133) with (168), we have that

ξy(u̇
(1)
I ) + ξy(u̇

(1)
II ) = (MI + MII)ξx (u̇(0)) + (QI + QII) ṗ

(0) (176)

So using (176) then Eq. (175) becomes

∇x · 〈v(0)〉f = 〈Tr(MI + MII)〉s : ξx (u̇(0)) + 〈Tr(QI + QII)〉s ṗ(0) (177)

Now returning to (114), the expression for relative fluid–solid displacement, and taking the integral average
over the fluid domain, we obtain

〈w〉f = 〈v(0)〉f − φu̇(0), (178)

where φ is the porosity of the material. Then rearranging, we obtain

〈v(0)〉f = 〈w〉f + φu̇(0). (179)

We then use this relation to rewrite (177) as

∇x · (〈w〉f + φu̇(0)) = 〈Tr(MI + MII)〉s : ξx (u̇(0)) + 〈Tr(QI + QII)〉s ṗ(0) (180)

We can expand the left hand side of (180) and then rearrange to obtain the following expression for ṗ(0). We
note that we are able to express φ∇x · u̇(0) as φI : ξx (u̇(0)). Then,

ṗ(0) = 1

〈Tr(QI + QII)〉s
(

∇x · 〈w〉f + (φI − 〈Tr(MI + MII)〉s) : ξx (u̇(0))

)
(181)

We can then define

M̂ := −1

〈Tr(QI + QII)〉s and α̂ := φI − 〈Tr(MI + MII)〉s (182)

and then we can use (182) to write (181) as

ṗ(0) = −M̂(∇x · 〈w〉f + α̂ : ξx (u̇(0))) (183)

Finally dividing through by M̂ , we obtain

ṗ(0)

M̂
= −∇x · 〈w〉f − α̂ : ξx (u̇(0)) (184)

We have now derived all the equations required to be able to state our macroscale model for a poroelastic
composite. Within the next section, we will state our novel macroscale model for poroelastic composites and
will then prove properties of the effective coefficients of this model.
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4 The macroscale result and properties of the effective coefficients

The equations in the macroscale model describe the effective poroelastic behaviour of the material in terms of
the pore pressure, the average fluid velocity, and the elastic displacement. The macroscale model is then given
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈w〉 f = −〈W 〉f∇x p
(0),

∇x · TEff = 0,

TEff = 〈CIMI + CI + CIIMII + CII〉sξx (u(0)) + (〈CIQI + CIIQII〉s − φI)p(0),

ṗ(0)

M̂
= −∇x · 〈w〉f − α̂ : ξx (u̇(0)),

(185)

where we have that p(0) is the macroscale pressure, u(0) is the solid displacement, u̇(0) is the solid velocity,
and w is the leading order fluid velocity. The first equation of the macroscale model represents Darcy’s law
for w, where w is the relative fluid velocity. This is the same equation that we would obtain for standard
poroelasticity. The second of the macroscale system of PDEs is the stress balance equation for the poroelastic
composite material. The constitutive equation is of poroelastic type, with drained elasticity tensor given by

C̃ = 〈CIMI + CI + CIIMII + CII〉s . (186)

The final equation in our macroscale model describes the conservation of mass for a poroelastic material and
relates changes in the fluid pressure to changes in the fluid and solid volumes. We therefore have that the
mechanical behaviour of the poroelastic composite material can be fully described by the effective elasticity
tensor C̃, the hydraulic conductivity tensor 〈W 〉f , the tensor α̂, and the scalar coefficient M̂ .

Our new model has a key difference from the model of classical poroelasticity. That is, our model is able to
account for multiple elastic phases interacting at the porescale, whereas the model for classical poroelasticity is
applicable when thematrix can be approximated as homogeneous at the porescale. The addition to themodel of
the extra interactions between multiple phases is particularly beneficial to physical applications. For example,
in bones water is interplaying with both collagen and mineral at the finest hierarchical levels. It is useful
to be able to account for the mineral and collagen fibres separately in the model, especially for numerical
simulations, as both constituents have very different elastic and mechanical properties. The differences in
elastic and mechanical properties are accounted for by the multiple elasticity tensors CI, CII and by MI, MII,
QI and QII in the coefficients of the model. A similar argument is applicable to biological tissues such as the
interstitial matrix, which is a composite consisting of different types of cells and collagen fibres with fluid
flowing in the interstitial space; we again believe that we would obtain a much more representative description
of the behaviour of the material by accounting for the multiple constituents and their varying properties in
the model. Another key difference between the model in our work and classical poroelasticity is the model
coefficients. Here, we propose novel cell problems from which the model coefficients are calculated. The cell
problems given in our work are different from the cell problems in classical poroelasticity and also the cell
problems for elastic composites. Overall, our new model reads as a comprehensive framework to describe
materials where their constituents cannot be assumed to be homogeneous at the porescale.

Remark 4 (Limit cases for the macroscale model) It is important to note that our macroscale model (185)
reduces to previously obtained results when we consider the following limit cases. In the limit of only one
elastic phase then this macroscale model reduces to the macroscale model for a standard poroelastic material
(See the no growth limit in [37], as well as [11,34]). In this case, our model would retain all four equations
presented in (185); however, the coefficient of p(0) in the third equation, the effective elasticity tensor C̃, the
tensor α̂, and the scalar coefficient M̂ would reduce to only one elastic phase. This is because the contributions
on the interface between the different elastic phases are no longer present in this case. We also note that in
the limit of zero fluid (no pores) then this macroscale model reduces to the macroscale model for a standard
elastic composite (See [39]). In this case, the mechanical behaviour of the system is entirely described by
the equations for the balance in the solid phase, the pressures, and fluid velocity reduces to zero, and the cell
problem does not comprise any contribution related to the fluid phase, i.e. the only relevant cell problem (i.e.
which results in non-trivial solutions) is the one involving the discontinuity in the elastic constants (134–139).
That is, the model would coincide with the standard one described in the literature for elastic composites, see,
e.g. [39].
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Next, we rigorously prove the following properties of the effective coefficients.We prove a) the symmetries
of the effective elasticity tensor, b) an analytical identity that allows us to identify the tensor α̂ with Biot’s
coefficient tensor, and c) the positive definiteness of the M̂ , which can therefore be identified with the Biot’s
modulus for the whole material. These proofs generalize those proposed in [34] for standard poroelastic
materials.

Theorem 1 (Symmetries of C̃) The fourth rank effective elasticity tensor C̃ defined by

C̃ = 〈CIMI + CI + CIIMII + CII〉s, (187)

is major and minor symmetric.

Proof We wish to show that the effective elasticity tensor C̃ is major and minor symmetric. That is,

C̃i jkl = C̃ jikl = C̃i jlk = C̃kli j . (188)

We know that the elasticity tensor C is major and minor symmetric. We have that the first two equalities in
(188) follow by definition. That is, CiMi for i = I, II, is both left and right minor symmetric since we have
the left minor symmetry of C and the right minor symmetry ofM. In order to prove major symmetry, we have
to show that

〈C I
klpqξ

rs
pq(A

I) + C II
klpqξ

rs
pq(A

II)〉s = 〈C I
rspqξ

kl
pq(A

I) + C II
rspqξ

kl
pq(A

II)〉s (189)

To show this, we begin with the cell problems (146) and (147) and multiplying by AI
irs , A

II
irs , respectively, and

then integrating these terms over ΩI and ΩII, respectively. We have
∫

ΩI

∂

∂y j
(C I

i j pqξ
kl
pq(A

I))AI
irsdy +

∫

ΩI

∂

∂y j
(C I

i jkl)A
I
irsdy

+
∫

ΩII

∂

∂y j
(C II

i j pqξ
kl
pq(A

II))AII
irsdy +

∫

ΩII

∂

∂y j
(C II

i jkl)A
II
irsdy = 0. (190)

Then integrating by parts, we obtain
∫

ΩI

∂

∂y j
(C I

i j pqξ
kl
pq(A

I)AI
irs)dy −

∫

ΩI

C I
i j pqξ

kl
pq(A

I)
∂AI

irs

∂y j
dy

+
∫

ΩI

∂

∂y j
(C I

i jkl A
I
irs)dy −

∫

ΩI

C I
i jkl

∂AI
irs

∂y j
dy

+
∫

ΩII

∂

∂y j
(C II

i j pqξ
kl
pq(A

II)AII
irs)dy −

∫

ΩII

C II
i j pqξ

kl
pq(A

II)
∂AII

irs

∂y j
dy

+
∫

ΩII

∂

∂y j
(C II

i jkl A
II
irs)dy −

∫

ΩII

C II
i jkl

∂AII
irs

∂y j
dy = 0. (191)

Applying the divergence theorem, we obtain
∫

ΓI

C I
i j pqξ

kl
pq(A

I)AI
irs · nI

jdS −
∫

ΓIII

C I
i j pqξ

kl
pq(A

I)AI
irs · nIII

j dS

+
∫

∂ΩI\ΓI∪ΓIII

C I
i j pqξ

kl
pq(A

I)AI
irs · nΩI\ΓI∪ΓIII

j dS −
∫

ΩI

C I
i j pqξ

kl
pq(A

I)ξ rsi j (AI)dy

+
∫

ΓI

C I
i jkl A

I
irs · nI

jdS −
∫

ΓIII

C I
i jkl A

I
irs · nIII

j dS

+
∫

∂ΩI\ΓI∪ΓIII

C I
i jkl A

I
irs · nΩI\ΓI∪ΓIII

j dS −
∫

ΩI

C I
i jklξ

rs
i j (AI)dy

+
∫

ΓII

C II
i j pqξ

kl
pq(A

II)AII
irs · nII

jdS +
∫

ΓIII

C II
i j pqξ

kl
pq(A

II)AII
irs · nIII

j dS

+
∫

∂ΩII\ΓII∪ΓIII

C II
i j pqξ

kl
pq(A

II)AII
irs · nΩII\ΓII∪ΓIII

j dS −
∫

ΩII

C II
i j pqξ

kl
pq(A

II)ξ rsi j (AII)dy
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+
∫

ΓII

C II
i jkl A

II
irs · nII

jdS +
∫

ΓIII

C II
i jkl A

II
irs · nIII

j dS

+
∫

∂ΩII\ΓII∪ΓIII

C II
i jkl A

II
irs · nΩII\ΓII∪ΓIII

j dS −
∫

ΩII

C II
i jklξ

rs
i j (AII)dy = 0 (192)

where nI, nII, nIII, nΩI\ΓI∪ΓIII and nΩII\ΓII∪ΓIII are the unit normals corresponding to ΓI, ΓII, ΓIII, ∂ΩI\ΓI ∪ ΓIII

and ∂ΩII\ΓII ∪ ΓIII. The terms on the boundaries ∂ΩI\ΓI ∪ ΓIII and ∂ΩII\ΓII ∪ ΓIII cancel due to periodicity,
and we can rewrite (192) as

∫

ΩI

C I
i j pqξ

kl
pq(A

I)ξ rsi j (AI)dy +
∫

ΩII

C II
i j pqξ

kl
pq(A

II)ξ rsi j (AII)dy

+
[ ∫

ΓIII

C I
i j pqξ

kl
pq(A

I)AI
irs · nIII

j dS −
∫

ΓI

C I
i j pqξ

kl
pq(A

I)AI
irs · nI

jdS

+
∫

ΓIII

C I
i jkl A

I
irs · nIII

j dS −
∫

ΓI

C I
i jkl A

I
irs · nI

jdS

−
∫

ΓII

C II
i j pqξ

kl
pq(A

II)AII
irs · nII

jdS −
∫

ΓIII

C II
i j pqξ

kl
pq(A

II)AII
irs · nIII

j dS

−
∫

ΓII

C II
i jkl A

II
irs · nII

jdS −
∫

ΓIII

C II
i jkl A

II
irs · nIII

j dS

]

+
∫

ΩI

C I
i jklξ

rs
i j (AI)dy +

∫

ΩII

C II
i jklξ

rs
i j (AII)dy = 0. (193)

The terms in the bracket cancel due to the cell problems (148) and (150, 151), and we obtain
∫

ΩI

C I
i j pqξ

kl
pq(A

I)ξ rsi j (AI)dy +
∫

ΩII

C II
i j pqξ

kl
pq(A

II)ξ rsi j (AII)dy

+
∫

ΩI

C I
i jklξ

rs
i j (AI)dy +

∫

ΩII

C II
i jklξ

rs
i j (AII)dy = 0, (194)

Which we can rearrange to obtain
∫

Ωs

ξ rsi j (AI)C I
i j pqξ

kl
pq(A

I) + ξ rsi j (AII)C II
i j pqξ

kl
pq(A

II)dy

= −
(∫

Ωs

ξ rsi j (AI)C I
i jkl + ξ rsi j (AII)C II

i jkldy
)

= −
(∫

Ωs

C I
kli jξ

rs
i j (AI) + C II

kli jξ
rs
i j (AII)dy

)
(195)

Rewriting the second equality in (195) interchanging r and s and k and l and using the symmetryCi jpq = Cpqi j
we obtain

∫

Ωs

ξ kli j (A
I)C I

pqi jξ
rs
pq(A

I) + ξ kli j (A
II)C II

pqi jξ
rs
pq(A

II)dy

= −
(∫

Ωs

C I
rsi jξ

kl
i j (A

I) + C II
rsi jξ

kl
i j (A

II)dy
)

(196)

Since the left hand sides of (195) and (196) are the same then so to are the right hand sides. Taking i j as pq
in (195) and (196), we have that

〈C I
klpqξ

rs
pq(A

I) + C II
klpqξ

rs
pq(A

II)〉s = 〈C I
rspqξ

kl
pq(A

I) + C II
rspqξ

kl
pq(A

II)〉s (197)

as required. Therefore, C̃ posessess major and minor symmetries. 
�
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The following two theorems relate to the resulting Biot’s coefficient and Biot’s modulus of the macroscale
model. The coefficients of the macroscale model can be defined as

α̂ := φI − 〈Tr(MI + MII)〉s, (198)

γ := 〈CIQI + CIIQII〉s − φI, (199)

β := Tr〈QI + QII〉s, (200)

where α̂ is from (182) and β is the denominator of the Biot’s modulus M̂ also in (182).We obtain γ from (171),
where γ is the coefficient of the leading order pressure in the effective stress,TEff .We are able to give a physical
interpretation of these coefficients following the descriptions given in [41]. The coefficient β (denominator
of M̂) can be thought of as a variation in the fluid volume in response to a variation in pore pressure. M̂ is a
poroelastic coefficient that depends on the porescale geometry and porosity and on the properties of the elastic
matrix [11]. We can describe α̂ as the ratio of change in interstitial fluid volume to changes in solid volume.We
can now state the following theorem that will provide an analytical identity allowing us to define an effective
Biot’s coefficient.

Theorem 2 (Biot’s coefficient)We have the following analytical identity

γi j = −α̂i j (201)

which allows us to define an effective poroelastic Biot’s coefficient tensor.

Proof In index notation, we can write γ and α̂ as

γi j = 〈C I
i jklξkl(a

I) + C II
i jklξkl(a

II)〉s − φδi j (202)

α̂i j = φδi j − 〈ξ kli j (AI) + ξ kli j (A
II)〉sδkl (203)

We use (146) and (147) from the cell problems and multiply by aI
i , a

II
i , respectively. We then integrate these

expressions over ΩI and ΩII, respectively, to obtain
∫

ΩI

∂

∂y j
(C I

i j pqξ
kl
pq(A

I))aI
idy +

∫

ΩI

∂

∂y j
(C I

i jkl)a
I
idy

+
∫

ΩII

∂

∂y j
(C II

i j pqξ
kl
pq(A

II))aII
i dy +

∫

ΩII

∂

∂y j
(C II

i jkl)a
II
i dy = 0. (204)

Then integrating by parts, we obtain
∫

ΩI

∂

∂y j
(C I

i j pqξ
kl
pq(A

I)aI
i )dy −

∫

ΩI

C I
i j pqξ

kl
pq(A

I)
∂aI

i

∂y j
dy +

∫

ΩI

∂

∂y j
(C I

i jkla
I
i )dy

−
∫

ΩI

C I
i jkl

∂aI
i

∂y j
dy +

∫

ΩII

∂

∂y j
(C II

i j pqξ
kl
pq(A

II)aII
i )dy −

∫

ΩII

C II
i j pqξ

kl
pq(A

II)
∂aII

i

∂y j
dy

+
∫

ΩII

∂

∂y j
(C II

i jkla
II
i )dy −

∫

ΩII

C II
i jkl

∂aII
i

∂y j
dy = 0. (205)

Applying the divergence theorem, and using symmetry properties (6–7), we have
∫

ΓI

C I
i j pqξ

kl
pq(A

I)aI
i · nI

jdS −
∫

ΓIII

C I
i j pqξ

kl
pq(A

I)aI
i · nIII

j dS

+
∫

∂ΩI\ΓI∪ΓIII

C I
i j pqξ

kl
pq(A

I)aI
i · nΩI\ΓI∪ΓIII

j dS −
∫

ΩI

C I
i j pqξ

kl
pq(A

I)ξi j (a
I)dy

+
∫

ΓI

C I
i jkla

I
i · nI

jdS −
∫

ΓIII

C I
i jkla

I
i · nIII

j dS +
∫

∂ΩI\ΓI∪ΓIII

C I
i jkla

I
i · nΩI\ΓI∪ΓIII

j dS

−
∫

ΩI

C I
i jklξi j (a

I)dy +
∫

ΓII

C II
i j pqξ

kl
pq(A

II)aII
i · nII

jdS +
∫

ΓIII

C II
i j pqξ

kl
pq(A

II)aII
i · nIII

j dS
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+
∫

∂ΩII\ΓII∪ΓIII

C II
i j pqξ

kl
pq(A

II)aII
i · nΩII\ΓII∪ΓIII

j dS −
∫

ΩII

C II
i j pqξ

kl
pq(A

II)ξi j (a
II)dy

+
∫

ΓII

C II
i jkla

II
i · nII

jdS +
∫

ΓIII

C II
i jkla

II
i · nIII

j dS +
∫

∂ΩII\ΓII∪ΓIII

C II
i jkla

II
i · nΩII\ΓII∪ΓIII

j dS

−
∫

ΩII

C II
i jklξi j (a

II)dy = 0 (206)

where nI, nII, nIII, nΩI\ΓI∪ΓIII and nΩII\ΓII∪ΓIII are the unit normals corresponding to ΓI, ΓII, ΓIII, ∂ΩI\ΓI ∪ ΓIII

and ∂ΩII\ΓII ∪ ΓIII, and cancelling terms on the periodic boundaries due to y-periodicity and accounting for
the interface conditions (148) and (150, 151) we obtain

∫

ΩI

ξi j (a
I)C I

i j pqξ
kl
pq(A

I)dy +
∫

ΩI

C I
kli jξi j (a

I)dy +
∫

ΩII

ξi j (a
II)C II

i j pqξ
kl
pq(A

II)dy

+
∫

ΩII

C II
kli jξi j (a

II)dy = 0. (207)

Hence we have

〈ξi j (aI)C I
i j pqξ

kl
pq(A

I) + ξi j (a
II)C II

i j pqξ
kl
pq(A

II)〉s = −〈C I
kli jξi j (a

I) + C II
kli jξi j (a

II)〉s . (208)

We now wish to multiply (140) and (141) from the cell problems by AI
ikl , A

II
ikl , respectively, and then integrate

over ΩI and ΩII, respectively. Integrating by parts we obtain

∫

ΩI

∂

∂y j
(C I

i j pqξpq(a
I)AI

ikl)dy −
∫

ΩI

C I
i j pqξpq(a

I)
∂AI

ikl

∂y j
dy

+
∫

ΩII

∂

∂y j
(C II

i j pqξpq(a
II)AII

ikl)dy −
∫

ΩII

C II
i j pqξpq(a

II)
∂AII

ikl

∂y j
dy = 0 (209)

Applying the divergence theorem and using (144) and (145) we obtain

−
∫

ΓI

AI
ikln

I
idS −

∫

ΩI

1

2

(
∂AI

ikl

∂y j
+ ∂AI

jkl

∂yi

)
C I
i j pqξpq(a

I)dy

−
∫

ΓII

AII
ikln

II
i dS −

∫

ΩII

1

2

(
∂AII

ikl

∂y j
+ ∂AII

jkl

∂yi

)
C II
i j pqξpq(a

II)dy = 0 (210)

where terms on the boundaries have cancelled due to periodicity. Then reversing the divergence theorem, we
have

−
∫

ΩI

∂AI
ikl

∂yi
dy −

∫

ΩII

∂AII
ikl

∂yi
dy −

∫

ΩI

ξ kli j (A
I)C I

i j pqξpq(a
I)dy

−
∫

ΩII

ξ kli j (A
II)C II

i j pqξpq(a
II)dy = 0 (211)

Hence,

−
〈
∂AI

ikl

∂yi
+ ∂AII

ikl

∂yi

〉

s
= 〈ξi j (aI)C I

i j pqξ
kl
pq(A

I) + ξi j (a
II)C II

i j pqξ
kl
pq(A

II)〉s (212)

Using (208) and (212), we have that Tr〈(MI + MII)〉s = 〈CIQI + CIIQII〉s . Therefore using this in the
definitions of α̂i j and γi j , we have that γi j = −α̂i j as required. 
�
We should note here that the coefficients α̂ and γ are defined by different cell problems for AI, AII and for aI,
aII, respectively. By having an analytical identity as in Theorem 2, we can reduce computations as the numerics
then do not have to be carried out for the cell problems involving aI, aII.
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Now that we have proved this analytical identity, we can use it to restate the macroscale model for a
poroelastic composite material. We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈w〉 f = −〈W 〉f∇x p
(0),

∇x · TEff = 0,

TEff = C̃ξx (u(0)) − α̂ p(0),

ṗ(0)

M̂
= −∇x · 〈w〉f − α̂ : ξx (u̇(0)),

(213)

We will now state our final theorem relating to the Biot’s modulus of our system.

Theorem 3 (Biot’s modulus)We have that the Biot’s modulus defined by

M̂ := −1

〈Tr(QI + QII)〉s
is positive definite. That is

M̂ > 0 (214)

Proof In order to prove this, we only need to prove that the denominator of M̂ which we defined as β is less
than zero. We can begin by recalling β from (200) and then in index notation

β = Tr〈QI + QII〉s =
〈
∂aI

i

∂yi
+ ∂aII

i

∂yi

〉

s
(215)

We can then multiply Eqs. (140) and (141) from the cell problems by aI
i , a

II
i and integrate over ΩI, ΩII,

respectively. That is,

∫

ΩI

aI
i

∂

∂y j
(C I

i jklξkl(a
I))dy +

∫

ΩII

aII
i

∂

∂y j
(C II

i jklξkl(a
II))dy = 0 (216)

Integrating by parts, we obtain

∫

ΩI

∂

∂y j
(C I

i jklξkl(a
I)aI

i )dy −
∫

ΩI

C I
i jklξkl(a

I)
∂aI

i

∂y j
dy

+
∫

ΩII

∂

∂y j
(C II

i jklξkl(a
II)aII

i )dy −
∫

ΩII

C II
i jklξkl(a

II)
∂aII

i

∂y j
dy = 0 (217)

Then applying the divergence theorem we obtain

∫

ΓI

C I
i jklξkl(a

I)aI
i · nI

jdS −
∫

ΓIII

C I
i jklξkl(a

I)aI
i · nIII

j dS

+
∫

∂ΩI\ΓI∪ΓIII

C I
i jklξkl(a

I)aI
i · nΩI\ΓI∪ΓIII

j dS −
∫

ΩI

C I
i jklξkl(a

I)ξi j (a
I)dy

+
∫

ΓII

C II
i jklξkl(a

II)aII
i · nII

jdS +
∫

ΓIII

C II
i jklξkl(a

II)aII
i · nIII

j dS

+
∫

∂ΩII\ΓII∪ΓIII

C II
i jklξkl(a

II)aII
i · nΩII\ΓII∪ΓIII

j dS −
∫

ΩII

C II
i jklξkl(a

II)ξi j (a
II)dy = 0 (218)

where nI, nII, nIII, nΩI\ΓI∪ΓIII and nΩII\ΓII∪ΓIII are the unit normals corresponding to ΓI, ΓII, ΓIII, ∂ΩI\ΓI ∪ ΓIII

and ∂ΩII\ΓII ∪ΓIII. The terms on the periodic boundaries cancel due to periodicity, and then using Eqs. (142),
(144), and (145) from the cell problems we obtain
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−
∫

ΓI

aI
i n

I
idS −

∫

ΩI

ξi j (a
I)C I

i jklξkl(a
I)dy

−
∫

ΓII

aII
i n

II
i dS −

∫

ΩII

ξi j (a
II)C II

i jklξkl(a
II)dy = 0. (219)

Accounting for y-periodicity and relationship (143), the sum of the first and third integrals above is equal to
the sum of the corresponding integrals (with corresponding normals) on the boundaries ∂ΩI and ∂ΩII, so that
we can apply the divergence theorem in reverse to obtain

−
∫

Ωs

(
∂aI

i

∂yi
+ ∂aII

i

∂yi

)
dy −

∫

ΩI

ξi j (a
I)C I

i jklξkl(a
I)dy

−
∫

ΩII

ξi j (a
II)C II

i jklξkl(a
II)dy = 0. (220)

We can write this as

−
∫

Ωs

(
∂aI

i

∂yi
+ ∂aII

i

∂yi

)
dy =

∫

ΩI

ξi j (a
I)C I

i jklξkl(a
I)dy

+
∫

ΩII

ξi j (a
II)C II

i jklξkl(a
II)dy. (221)

Since the two terms on the right hand side are positive, we therefore have that
∫

Ωs

(
∂aI

i

∂yi
+ ∂aII

i

∂yi

)
dy < 0 (222)

and so using the integral average notation we have

β =
〈
∂aI

i

∂yi
+ ∂aII

i

∂yi

〉

s
< 0 (223)

Since β < 0 we therefore have that M̂ > 0. That is, the Biot’s modulus is positive definite. 
�

5 Concluding remarks

We have presented a novel system of PDEs which describes the effective behaviour of poroelastic composites.
In Sect. 2, we have begun by considering the quasi-static multiphase fluid–structure interaction problem which
describes the mechanics of a number of linear elastic inclusions/fibres embedded in a porous, linear elastic
matrix, filled by a slowly flowing incompressible Newtonian fluid. In Sect. 3, we have then enforced the
length scale separation between the microscale and the macroscale to upscale the non-dimensionalized system
of PDEs via asymptotic homogenization. In particular, we have assumed that both the pores and the elastic
subphases (i.e. inclusions or fibres) are clearly resolved on the microscale, while the macroscale represents
the average size of the macroscale domain. In Sect. 4, we show that the new model is both formally and
substantially of poroelastic type, by proving minor and major symmetries of the effective elasticity tensor,
positive definiteness of the macroscale Biot’s modulus, and existence of a global macroscale Biot’s coefficient
tensor. The newmodel encodes the properties of themicrostructure in its coefficients, i.e. the effective hydraulic
conductivity tensor, elasticity tensor, Biot’smodulus, andBiot’s tensor of coefficients,which are to be computed
by solving appropriate periodic cell problems. The latter comprise both stress jump conditions on the solid–
solid interface (as in the cell problems for elastic composites), and inhomogeneous Neumann-type conditions
on the fluid–solid interface (this is typical of the cell problems arising in poroelasticity).

The results are derived by assuming periodicity of the microstructure and are presented by assuming that
only one elastic subphase is contained in the representative periodic cell for the sake of simplicity. The new
model is a natural generalization of the standard formulations for poroelastic media and composite materials
derived via asymptotic homogenization, which are both recovered as particular cases.

Our model is relevant to the description of physical scenarios where the interactions between multiple
elastic constituents take place at the porescale. The standard formulation of poroelasticity is appropriate when
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the interactions between the individual constituents of the solid phase and the fluid can be ignored, i.e. when
the solid phase can be geometrically approximated as a homogeneous matrix at the porescale.

Our model also has some limitations and is open to a number of improvements that could enhance its range
of applicability. The present formulation provides the effective governing equations in a quasi-static, linearized
setting, and accounting for incompressibility of the fluid phase.

Generalization of our model to linearized inertia and compressibility of fluid is in principle straightfor-
ward, as it could be carried out as in [11], thus resulting in the corresponding changes on the macroscale.
Leading order linearized inertia would appear in the effective balance equations for the poroelastic stress.
Furthermore, the definition of the effective Biot’s modulus would comprise the fluid bulk modulus, while the
former depends only on the properties of the microstructure when the fluid phase is incompressible, see also
[37]. However, the functional form of the elastic cell problems would not be affected by such changes, while
the fluid cell problem is actually not affected by considering multiple elastic phases, and is simply the same
as in standard poroelasticity in both cases. A relevant system where such an extension could provide a more
accurate poroelastic modelling framework is the lung, where the investigation of the acoustic properties can
be used in the context of noninvasive diagnosis for pulmonary diseases, see, e.g. [49].

Mathematical modelling of nonlinear constitutive behaviour of the individual constituents is challeng-
ing in the context of asymptotic homogenization. However, there have been recent theoretical developments
concerning both multiphase elastoplastic composites [42], and hyperelastic growing porous media, see [17].
Combining these approaches to extend our formulation would provide a comprehensive multiscale modelling
framework for nonlinear poroelastic composites. The latter could then be used to formulate realistic predictions
when large strains are relevant, as in the case of soft tissues such as arteries, see, e.g. [10,26].

The results that we have illustrated here can also serve as a basis towards a more realistic modelling
of hierarchical materials characterized by multiple separated scales (see, e.g. [43,44] in the context of elastic
composites). In this case, as the coefficients are to be computed at the porescale, our results could be exploited as
a starting point to model the interaction between a poroelastic matrix and another fluid or elastic compartment,
as done in the recent works [14,41,45,52] for vascularized and fibre/inclusion reinforced poroelastic materials,
respectively.

The next natural step is to obtain solutions of themodel on the basis of a givenmicrostructure, ideally param-
eterized by real-world images, for example related to biological tissues or artificial constructs, as described
in the Introduction. For instance, three-dimensional numerical simulations of the asymptotic homogeniza-
tion cell problems for elastic composites and poroelastic materials have been recently performed in [19,38],
respectively. As such, strategies developed therein could be adapted to compute the poroelastic coefficients
presented here, which are obtained by solving cell problems which generalize those solved in [19,38]. This
way, predictions of the model could be validated against experimental data and/or used to optimize the design
of poroelastic artificial constructs.
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