Check for
Updates

Learning without Limits: Analysing the Usage of Generative Al in
a Summative Assessment

Lee Clift

Department of Computer Science
Swansea University
Swansea, United Kingdom
la.clift@swansea.ac.uk

Abstract

This paper explores how Generative Al (GenAl) can be introduced
within summative assessment components in software engineering
education. We present an example of an assessment which allows
learners to use GenAl in a freeform, constructionist manner, as part
of a large, software development project. This work is inspired by
previously executed Al-focused assessments and surveys, which
explicitly indicate that learners on an Applied Software Engineering
Degree Apprenticeship Programme want to formally learn how
to use GenAl tools when programming and their employers want
to see these skills from graduates. The learning outcome of the
assignment was for learners to explore a typical developmental
pipeline as a solo developer, moving from design to development
to finished product. Learners were marked exclusively on their
end product and understanding of application components, not the
written code itself, resulting in an assessment where the end product
and project were prioritised over foundational code (which was
adequately assessed in other components). The results show that all
learners used GenAlI to some extent during their project, and in all
cases, they found it beneficial for large programming tasks. Learners
were generally able to produce a larger, more comprehensive and
more ambitious project, compared to previous years. It is proposed
that removing the barrier to GenAlI - and demystifying it - can
encourage a constructionist approach to its use, and normalise it
as a potential tool for programming.

CCS Concepts

« Applied computing — Education; - Social and professional

topics — Software engineering education; - Computing method-

ologies — Artificial intelligence.

Keywords

GenAl, software engineering, education, apprenticeship

ACM Reference Format:

Lee Clift and Olga Petrovska. 2025. Learning without Limits: Analysing the
Usage of Generative Al in a Summative Assessment. In Computing Education
Practice (CEP °25), January 07, 2025, Durham, United Kingdom. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3702212.3702214

This work is licensed under a Creative Commons Attribution International
4.0 License.

CEP °25, January 07, 2025, Durham, United Kingdom
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1172-5/25/01
https://doi.org/10.1145/3702212.3702214

Olga Petrovska
Department of Computer Science
Swansea University
Swansea, United Kingdom
olga.petrovska@swansea.ac.uk

1 Introduction

Software Engineering is a consistently evolving field, where emerg-
ing technology is used within the industry to improve and optimise
software development. Unfortunately, many learners enrolled in
Higher Education degrees are not fully exposed to a realistic inter-
pretation of this until they graduate and begin their careers, thus
creating a gap between taught programmes and industry [9, 18].

As new technologies are introduced and integrated into indus-
try and development cycles, it is the responsibility of educators to
ensure that learners are kept up to date and that these technolo-
gies are integrated into their curriculum. By doing this, we ensure
that — come graduation — learners will be prepared for the current
technologies being used in the Software Engineering (SE) industry.

A key example of this new and emerging technology is Genera-
tive Al (GenAl), which is currently being integrated into Software
Development lifecycles. The software engineering industry has
been fast to adopt GenAl due to its ease of use within existing
systems, and its time-saving possibilities [7, 21]. Unlike other tech-
nologies, GenAlI has proven to be more controversial due to the
risks around academic misconduct, collusion and plagiarism [1, 4].

We present a novel assessment, which combines the academic
structure of a typical coursework assignment, with this emerging,
academically controversial technology. This assignment was im-
plemented to test where the inclusion of GenAl would result in
more advanced student projects, as well as additional learning out-
comes regarding the usage of GenAl tools in a simulated software
engineering environment.

2 Background

The release of ChatGPT in 2022 prompted a growing interest in
Al and its role in education [8, 23]. In 2023, there was a noticeable
increase in publications related to GenAlI, both in computing higher
education and SE industry [22]. That year, UNESCO published their
guidance on using GenAl in education and research [24].

After an initial period of uncertainty, educators are gradually
embracing GenAl in their teaching practice; for instance, in chem-
istry [19] to improve critical thinking engagement, or in art and
design [12] to enhance the creative process and prepare students
to the realities of the Al-enabled world.

Computing education is no exception. CS educators integrate ex-
isting Conversational Agents (CAs) and develop customised GenAl
tools to support student learning [2, 16, 20]. A notable example is
the CS50.ai application, which incorporates a tool for explaining
highlighted code, a tool for evaluating one’s coding style, and a
CS50 Duck chatbot, which answers questions related to the CS50
course [16]. CS50.ai was developed with so-called “pedagogical

https://orcid.org/0000-0002-8313-9934
https://orcid.org/0000-0003-1170-8816
https://doi.org/10.1145/3702212.3702214
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3702212.3702214
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702212.3702214&domain=pdf&date_stamp=2025-01-07

CEP ’25, January 07, 2025, Durham, United Kingdom

guardrails” to guide students through the learning process rather
than just give away the answers [16]. Hellas et al. analysed the
use of LLM chatbot in 3 courses: Software Engineering with Large
Language Models, Device-Agnostic Design, and Web Software De-
velopment, observing that its use differed considerably between
the courses [10].

There are also other ways in which GenAlI can be incorporated
into CS and SE education that are not directly related to coding. For
instance, Camara et al. designed a formative assessment that specif-
ically asks students to interact with GenAI when creating a UML
diagram [6]. GenAl can also be used in user story design. Brock-
enbrough and Salinas conducted a study which required students
to design user stories either completely independently or specifi-
cally using ChatGPT [3]. The study has shown that the students
whose designs were assisted by GenAI produced comparatively
higher-quality user stories [3].

While empirical studies suggest that GenAlI can have a positive
impact on learning, particularly for beginners, it is not as straight-
forward when it comes to academic integrity [22]. The issue of
plagiarism is centuries old and numerous papers have been pub-
lished on plagiarism in education. In the era of GenAl, defining
what falls under plagiarism becomes a challenging task. As Hutson
points out in [11], the paradigm is shifting and we are “reshaping
our understanding of creativity, originality, and the collaborative
writing process”. This raises a couple of questions: 1) What consti-
tutes “developing software” in this modern context? and 2) How
can computing education address this new reality?

Mahon et al. attempt to shed some light in this respect; they look
at different levels at which GenAl can be integrated into CS courses
[17]. Our approach of an open-ended assignment, which allows the
use of GenAl for ideation and automation of basic coding tasks,
aligns with Level D as described by [17].

3 Methodology

A novel assessment was developed by the authors for a final year
module, focused on Mobile Application Development, using the
Dart programming language and Flutter API. Two new courseworks
were developed, a short 2-week design task, including wireframes
and a short design presentation, as well as a 7-week development
task, culminating in a viva, following an established assessment pat-
tern [14]. The initial design task was a typical academic assessment
and followed the usual university regulations regarding prohibited
tools and plagiarism/collusion. The second, longer task was more
free-form. Learners were instructed to go about development in
any way they wished, using any of the tools available to them, and
given the long time frame, were encouraged to build ambitious,
fully realised products. Learners had the freedom to design and de-
velop an application about anything, whether academic or personal;
which aided in motivation and application completeness [13]. The
key characteristic of this coursework was that GenAlI was allowed
to be used, unlike the majority of assessments on the program.
Learners were instructed beforehand that they may use it as they
wish, and were given particular rules on how to cite generated code.
At the point of submission, learners were also requested to fill out a
self-reflection form, which asked them if, how, when and why they
used GenAl in their project. Questions on this form asked about

Lee Clift and Olga Petrovska

what GenAI model was used, when, why and how it was used,
and to what extent they found it helpful over a number of metrics.
This data was then used to inform future decisions on GenAI usage
within the module, and the course.

In previous iterations of this module, learners were given course-
work where they would have to critically analyse existing appli-
cations, and then create a new mobile application based on a pre-
existing project specification. These assessments allowed access to
typical open-book resources (such as online forums) and an IDE
(Integrated Development Environment) [5] but prohibited genera-
tive technologies like GenAl, a practice which is well established
within Software Engineering HE since it emerged. The motivation
behind changing this is due to employers expressing how they wish
to have learners with existing experience using GenAlI tools, due
to their belief that it is becoming a time-saving tool within the
software development industry, alongside learners’ own goals to
expose themselves to these tools as well [7]. By allowing learners a
chance to use this tool constructively, this fulfils the stated wishes
of employers and learners, as well as enabling them to indepen-
dently critically analyse how the tools work, and to what extent
they feel they are useful. There were free to use the tool as much -
or as little - as they wished, allowing them to organically decide if,
when and how useful GenAl would be in a development situation.

In addition to the permitted tool allowance change, the time
frame for development was extended. In previous years, students
had been given a standard 2-week assessment deadline in alignment
with the most modules on the programme, resulting in projects
which were small in scale and rushed. Neither the timescale nor
size of the project are typical of an industrial experience; therefore,
these were changed for the new assessment, which was designed to
allow substantially more time for development, namely seven weeks
instead of the traditional two weeks. During this time, students
were encouraged to use an incremental development cycle, slowly
adding features as they were introduced in the course. The purpose
of this was for learners to create substantially larger pieces of
work, which would in turn allow them to learn more about the
development process, especially since programming is typically
best learnt practically and kinetically [15].

4 Results

Out of the 13 learners in the final-year cohort who took part in
this assessment, 12 completed the post-assessment self-reflection
survey. Results show that while 100% of the participants used some
level of GenAl in the assessment, the tool they used, and the reason
they used it varied. Over 50% of learners used ChatGPT, which is
unsurprising, given the service’s popularity [25]. Learners typically
started to use GenAlI at or before the midpoint of the assessment,
91.67% of learners using it by week 7 of the assignment. Further
questioning led to learners showing what the main usage of GenAl
was (Figure 2), with learners primarily using it for small modules
of code, bug fixing and explanation of errors. This is further ex-
plored via textual responses, where 66% of students described how
they used GenAl for generating small bits of code, i.e. widgets and
tests, while 40% also wrote about its use for debugging logical and
syntactical issues.

Learning without Limits: Analysing the Usage of Generative Al in a Summative Assessment

I would like to see more modules allow GenAl usage -

| found the use of GenAl to be a possive learning experience

| found the documentation process for Al code fair and valid _ ‘

Using GenAl in my assignment made it feel more realistic, or accurate to the real world

Using GenAl in my assignment has prepared me better for using itin my job

Using GenAl in my assignment is relivent to my work life _

Using GenAl in my assignment has made me want to explore GenAl in my own projects

0%

m Strongly Disagree Disagree

CEP ’25, January 07, 2025, Durham, United Kingdom

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Neutral mAgree m Strongly Agree

Figure 1: Selected 5-point Likert Scale questions, and the frequency of answers

Generating code Fixing errors

000000 00000
888068 o888
Boilerplate code Syntax errors
0000000 00000000
0888068 88880888
Small amounts of code Logical errors

[]

Large amounts of code

Asking for advice

On now to create an app

On how to create documentation

Figure 2: Learners’ main purposes of using GenAl during development assignment

Learners were also asked to rate certain aspects on a 5-point
Likert scale, with a variety of questions, ranging from how useful
they found using GenAlI on their assessments, to how frustrating
they found citing their generated code. Figure 1 shows that the
majority of learners felt either neutral or positive towards all aspects
of the use of GenAl in their assessment. Over 80% of students felt
that the inclusion of GenAl was a positive learning experience, and
work-wise, made the assignment more realistic, and better-prepared
learners for using GenAl in their work life.

Overall, students enjoyed the inclusion of GenAl tools in their
assignment, mostly due to the potential future usage of GenAl. One
learner stated, "I feel like generative Al is one of the best learning tools
available". This positive sentiment was shared across all learners
who completed the survey, with 100% stating they would use GenAI
again and would like it to be continued to be allowed in future
assessments.

5 Discussion

The results presented demonstrate a positive trend between learn-
ers being given freedom to explore GenAlI tools in a summative
assessment, and student enjoyment and project quality. Results
show that a majority of students found the inclusion of Al a posi-
tive learning experience, wanting to see it included again. Learners

also agreed that the use of GenAlI would be a valuable experience
for their workplace, and they would use it again, both in personal
projects and at work. This reflects our hypothesis that including
GenAl in a summative assessment would allow additional indirect
learning in regard to the usage of GenAL

Additionally, the projects created by learners were of very high
quality, many of which, when ‘viva’ed, were shown to be of pub-
lishable quality. The projects themselves were generally complete,
with much of the progress being attributed to the access to GenAl
and the increase in the programming speed associated with its us-
age. Much of the boilerplate or simple widgets of the apps could
be generated quickly, allowing learners to focus their time on the
more complex parts of the project.

However, the data does show two potential issues: learner per-
ceptions of privacy and citing generated code. When asked about
GenAl and privacy, many learners were not concerned - 83% of
learners stated either they felt it wasn’t an issue or held no strong
feelings towards it. Similarly, when asked about citing generated
code, 75% of learners found citing the generated code as either frus-
trating or neutral. Notably one learner went into detail on this point,
stating "Trying to record line by line what was me and what was
ChatGPT was more effort that coding in the conventional way". This
may indicate that while the inclusion of GenAlI was a net positive,

CEP ’25, January 07, 2025, Durham, United Kingdom

how learners were requested to cite was negative. Therefore, while
some aspects, such as the citing process may need to be reviewed
for future iterations of the assessment, the inclusion of GenAl as a
whole has been successful, and the results are encouraging for a
rollout of future assessments in bigger cohorts.

Another potential limitation of the work is how learners had the
potential to learn - and be assessed - on less core curriculum knowl-
edge, due to the potential inclusion of GenAlI, and the assistance it
can provide. While this limitation wasn’t formally tested, it likely
occurred. To counteract this, other components of the module ex-
plicitly tested and encouraged this knowledge, specifically weekly
practical labs, and an end-term in-class test.

The final limitation of this work is the notably small and con-
stricted sample size. The cohort this assessment was given to con-
sisted of only 13 students, with only 12 completing the follow-up
self-reflective survey. While this is a clear constraint, the results
are still helpful in indicating what can be done with GenAlI in as-
sessment. Replication of this assessment is encouraged in similar
and different computing cohorts, to gather more conclusive results
regarding the free usage of GenAl in assessments.

6 Conclusion

In conclusion, we presented the results of a summative program-
ming assessment which included GenAlI as a permitted tool. The
results showed that learners enjoyed the experience, felt they learnt
more than just the explicit syllabus, and produced projects which
were larger in scale and better in quality than typical assignments.

In future, we plan to continue this work by integrating GenAI
into more summative assessments, as the technology becomes more
ubiquitous in industry, ensuring our assessment techniques stay in
synchronisation with industrial realities. We also plan to investigate
better ways of encouraging learners to document their generated
code, as well as directly educate the social, ethical and security
issues around software engineering and GenAlL

References

[1] Marc Alier, Francisco-José Garcia-Pefialvo, and Jorge D. Camba. 2024. Generative
Artificial Intelligence in Education: From Deceptive to Disruptive. International
Journal of Interactive Multimedia and Artificial Intelligence 8, 5 (03/2024 2024),
5-14. https://doi.org/10.9781/ijimai.2024.02.011
Patrick Bassner, Eduard Frankford, and Stephan Krusche. 2024. Iris: An Al-
Driven Virtual Tutor for Computer Science Education. In Proceedings of the 2024
on Innovation and Technology in Computer Science Education V. 1 (Milan, Italy)
(ITiCSE 2024). ACM, New York, NY, USA, 394-400. https://doi.org/10.1145/
3649217.3653543
[3] Allan Brockenbrough and Dominic Salinas. 2024. Using Generative Al to Create
User Stories in the Software Engineering Classroom. In 2024 36th International
Conference on Software Engineering Education and Training (CSEE&T). 1-5. https:
//doi.org/10.1109/CSEET62301.2024.10662994
Binglin Chen, Colleen M. Lewis, Matthew West, and Craig Zilles. 2024. Plagiarism
in the Age of Generative Al: Cheating Method Change and Learning Loss in an
Intro to CS Course. In Proceedings of the Eleventh ACM Conference on Learning
@ Scale (Atlanta, GA, USA) (L@S "24). ACM, New York, NY, USA, 75-85. https:
//doi.org/10.1145/3657604.3662046
Saraah Cooper, Ben Clinkscale, Briana Williams, and Myles Lewis. 2020. Ex-
ploring the Impact of Exposing CS Majors to Programming Concepts using
IDE Programming vs. non-IDE Programming in the Classroom. In Proceed-
ings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE °20). ACM, New York, NY, USA, 1422. https:
//doi.org/10.1145/3328778.3372701
[6] Javier Camara, Javier Troya, Julio Montes-Torres, and Francisco J. Jaime. 2024.
Generative Al in the Software Modeling Classroom: An Experience Report with
ChatGPT and UML. IEEE Software (2024), 1-10. https://doi.org/10.1109/MS.2024.
3385309

D
=

=

(5

=

Lee Clift and Olga Petrovska

[7] Christof Ebert and Panos Louridas. 2023. Generative Al for Software Practitioners.
IEEE Software 40, 4 (2023), 30-38. https://doi.org/10.1109/MS.2023.3265877

[8] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know if This Will Be
on the Exam: Testing OpenAI's Codex on CS2 Programming Exercises. ACM
International Conference Proceeding Series (1 2023), 97-104. https://doi.org/10.
1145/3576123.3576134

[9] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay Catal, and Michael Felderer.
2020. Closing the Gap Between Software Engineering Education and Industrial
Needs. IEEE Software 37, 2 (2020), 68-77. https://doi.org/10.1109/MS.2018.2830823

[10] Arto Hellas, Juho Leinonen, and Leo Leppénen. 2024. Experiences from Inte-

grating Large Language Model Chatbots into the Classroom. (2024). https:

//doi.org/10.48550/ ARXIV.2406.04817

James Hutson. 2024. Rethinking Plagiarism in the Era of Generative AL Journal of

Intelligent Communication 4, 1 (April 2024). https://doi.org/10.54963/jic.v4i1.220

James Hutson and Bryan Robertson. 2023. Exploring the Educational Potential

of AI Generative Art in 3D Design Fundamentals: A Case Study on Prompt

Engineering and Creative Workflows. Faculty Scholarship 485 (2023). https:

//digitalcommons.lindenwood.edu/faculty-research-papers/485

[13] Amber Kemppainen, Gretchen Hein, and Nathan Manser. 2017. Does an open-

ended design project increase creativity in engineering students?. In 2017 [EEE

Frontiers in Education Conference (FIE). 1-5. https://doi.org/10.1109/FIE.2017.

8190507

John C. Knight and Thomas B. Horton. 2005. Evaluating a software engineering

project course model based on studio presentations. In Proceedings Frontiers in

Education 35th Annual Conference. S2H-21. https://doi.org/10.1109/FIE.2005.

1612249

Hong-Chan Ling, Kai-Lun Hsiao, and Wei-Chun Hsu. 2021. Can Students’ Com-

puter Programming Learning Motivation and Effectiveness Be Enhanced by

Learning Python Language? A Multi-Group Analysis. Frontiers in Psychology 11

(2021), 600814. https://doi.org/10.3389/fpsyg.2020.600814

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and

David J. Malan. 2024. Teaching CS50 with Al: Leveraging Generative Artificial

Intelligence in Computer Science Education. In Proceedings of the 55th ACM

Technical Symposium on Computer Science Education V. 1 (Portland, OR, USA)

(SIGCSE 2024). ACM, New York, NY, USA, 750-756. https://doi.org/10.1145/

3626252.3630938

[17] Joyce Mahon, Brian Mac Namee, and Brett A. Becker. 2024. Guidelines for the

Evolving Role of Generative Al in Introductory Programming Based on Emerging

Practice. In Proceedings of the 2024 on Innovation and Technology in Computer

Science Education V. 1 (Milan, Italy) (ITiCSE 2024). ACM, New York, NY, USA,

10-16. https://doi.org/10.1145/3649217.3653602

Damla Oguz and Kaya Oguz. 2019. Perspectives on the Gap Between the Software

Industry and the Software Engineering Education. IEEE Access 7 (2019), 117527—

117543. https://doi.org/10.1109/ACCESS.2019.2936660

Harry E. Pence, Greta Hightower, Jackson Forlenza, Kaden Leonard, Alexandra

McLellan, Amelie Suero, Bridget Amoah, Mariama Mbow, Sara Borner, Alexander

Castillo, and Laura E. Pence. 2024. Using Generative Al Systems for Critical

Thinking Engagement in an Advanced Chemistry Course: A Case Study. Journal

of Chemical Education 101, 9 (09 2024), 3789-3794. https://doi.org/10.1021/acs.

jchemed.4c00242

Jaakko Rajala, Jenni Hukkanen, Maria Hartikainen, and Pia Niemela. 2023. Call

me Kiran — ChatGPT as a Tutoring Chatbot in a Computer Science Course". In

Proceedings of the 26th International Academic Mindtrek Conference (Tampere,

Finland) (Mindtrek "23). ACM, New York, NY, USA, 83-94. https://doi.org/10.

1145/3616961.3616974

Asha Rajbhoj, Akanksha Somase, Piyush Kulkarni, and Vinay Kulkarni. 2024.

Accelerating Software Development Using Generative Al: ChatGPT Case Study. In

Proceedings of the 17th Innovations in Software Engineering Conference (Bangalore,

India) (ISEC "24). ACM, New York, NY, USA, Article 5, 11 pages. https://doi.org/

10.1145/3641399.3641403

[22] Cigdem Sengul, Rumyana Neykova, and Giuseppe Destefanis. 2024. Software

engineering education in the era of conversational Al: current trends and future

directions. Frontiers in Artificial Intelligence 7 (Aug. 2024). https://doi.org/10.
3389/frai.2024.1436350

Ahmed TIili, Boulus Shehata, Michael Agyemang Adarkwah, Aras Bozkurt,

Daniel T. Hickey, Ronghuai Huang, and Brighter Agyemang. 2023. What

if the devil is my guardian angel: ChatGPT as a case study of using chat-

bots in education. Smart Learning Environments 10 (12 2023), 1-24. Issue 1.

https://doi.org/10.1186/540561-023-00237-X/FIGURES/13

[24] UNESCO. 2023. Guidance for generative Al in education and research.

[25] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the Power of
LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Trans. Knowl. Discov.
Data 18, 6, Article 160 (apr 2024), 32 pages. https://doi.org/10.1145/3649506

[11

[12

[14

[15

[16

(18

[19

[20

[21

[23

https://doi.org/10.9781/ijimai.2024.02.011
https://doi.org/10.1145/3649217.3653543
https://doi.org/10.1145/3649217.3653543
https://doi.org/10.1109/CSEET62301.2024.10662994
https://doi.org/10.1109/CSEET62301.2024.10662994
https://doi.org/10.1145/3657604.3662046
https://doi.org/10.1145/3657604.3662046
https://doi.org/10.1145/3328778.3372701
https://doi.org/10.1145/3328778.3372701
https://doi.org/10.1109/MS.2024.3385309
https://doi.org/10.1109/MS.2024.3385309
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1109/MS.2018.2880823
https://doi.org/10.48550/ARXIV.2406.04817
https://doi.org/10.48550/ARXIV.2406.04817
https://doi.org/10.54963/jic.v4i1.220
https://digitalcommons.lindenwood.edu/faculty-research-papers/485
https://digitalcommons.lindenwood.edu/faculty-research-papers/485
https://doi.org/10.1109/FIE.2017.8190507
https://doi.org/10.1109/FIE.2017.8190507
https://doi.org/10.1109/FIE.2005.1612249
https://doi.org/10.1109/FIE.2005.1612249
https://doi.org/10.3389/fpsyg.2020.600814
https://doi.org/10.1145/3626252.3630938
https://doi.org/10.1145/3626252.3630938
https://doi.org/10.1145/3649217.3653602
https://doi.org/10.1109/ACCESS.2019.2936660
https://doi.org/10.1021/acs.jchemed.4c00242
https://doi.org/10.1021/acs.jchemed.4c00242
https://doi.org/10.1145/3616961.3616974
https://doi.org/10.1145/3616961.3616974
https://doi.org/10.1145/3641399.3641403
https://doi.org/10.1145/3641399.3641403
https://doi.org/10.3389/frai.2024.1436350
https://doi.org/10.3389/frai.2024.1436350
https://doi.org/10.1186/S40561-023-00237-X/FIGURES/13
https://doi.org/10.1145/3649506

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

