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Abstract
Assessing the risk associated with new missions in orbit has become increasingly important. With the large number

of spacecraft and debris now in orbit, there are many more close encounters between objects, which makes it more
difficult to estimate the risk over the lifetime of a mission. Several approaches exist for determining the collision risk
associated with a single object. This work uses a novel methodology for calculating the induced risk of a mission
to define a more general measure of risk in the space environment. Risk is quantified as the product of likelihood
and severity. Likelihood refers to the likelihood of a collision occurring and severity refers to the consequence of
a collision. The proposed approach approximates collision likelihood between populations of objects based on the
intersection of their distributions. This intersection computes the probability of the minimum orbit intersection distance
between the distributions being less than a threshold distance value and scales this probability based on the number
of objects. The model of severity uses data from simulated fragmentation events to model the likelihood of collisions
with fragments based on parameters of the collision. These values of likelihood and severity give a risk measure for an
individual object. We extend this metric to the whole environment by summing the risks associated with each object
in the environment. The resulting metric considers the distribution of objects not only in altitude but also over orbital
parameters of inclination and eccentricity, as well as right ascension in GEO. Example results are shown for baseline
environment conditions and a range of future projected scenarios in LEO, MEO, and GEO regimes. The proposed
risk metric requires assumptions on the covariance and masses of objects as well as defining the threshold distance for
calculating the intersection. We further examine the effect of varying these parameters to see how different modelling
assumptions would affect the metric.
Keywords: Space Environment, Collision Risk, Debris Index

1 Introduction

The recent increase in space traffic has seen a renewed
interest in modelling risk in the space environment amid
growing concerns around the debris environment. Early
research in space environment modelling highlighted lim-
its to the capacity of orbital regions [1]. Now we are at a
stage where there are more objects in orbit than ever be-
fore and we could be approaching these limits [2]. There-
fore, it is important to find new ways of assessing the over-
all health of the space environment and to monitor how
this might change in the future.

In response to this need, many metrics have been pro-
posed to quantify the criticality of individual missions and
the overall space environment. Most of these are “risk-

based” metrics that compute a likelihood and severity to
determine the overall risk [3]. Likelihood refers to the
probability of collision and severity the consequence of
collisions. Due to the large number of objects in orbit,
particularly in Low Earth Orbit (LEO), it can be difficult
to estimate the probability of collision between all objects.
In addition, determining the consequences of collisions
requires estimating the effects of all fragments resulting
from a collision. This is expensive to simulate and there-
fore cannot be simulated for every possible collision.

Existing risk-based metrics calculate the likelihood and
severity in a variety of ways. The Criticality of Spacecraft
Index (CSI) does not explicitly calculate severity but in-
stead has a single formula for overall risk [4]. This consid-
ers densities of objects in orbital shells with an additional
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term to account for inclination. Each term in this index is
also normalised with respect to a reference value. The En-
vironmental Consequences of Orbital Breakups (ECOB)
index evaluates the risk of fragmentations from collisions
and has also been extended to consider explosions [5, 6].
Collision likelihood in this metric is based on the density
of objects in the relevant orbit while excluding larger ob-
jects that can be avoided. The severity term is based on the
increased collision probability for operational satellites.
Both these terms are evaluated over orbital parameters of
Semi-Major Axis (SMA) and inclination. The criticality
index developed by ISTI/CNR uses debris flux for esti-
mating collision likelihood [7, 8]. The severity depends
on the persistence of debris from a fragmentation event
and a term related to inclination, since debris at certain
inclinations can result in more collisions. As with CSI,
values are normalised with respect to reference values.
Previous work by JAXA proposed two formulations of a
debris index of differing complexity [9]. The simplest for-
mulation is the product of mass, area, and debris flux on
an object. Then the more complex formulation considers
the expected number of fragments generated by a collision
based on extensive simulations using the NEODEEM de-
bris environment simulator [10].

The metric introduced here is based on previous work
defining a measure of risk for individual missions [11].
This risk metric was designed to be suitable where there
are many background objects and for missions consist-
ing of single satellites, swarms, or large constellations.
It is also applicable to objects across the orbital regions
of LEO, Medium Earth Orbit (MEO), and Geostationary
Earth Orbit (GEO) and can take into account distributions
across all orbital elements. As with other risk-based met-
rics, this can be extended to the overall environment by
summing the risk associated with each object. This pro-
vides a simple metric for quantifying overall health as
well as seeing how different objects affect the metric.

Most measures of risk will have parameters that can be
varied depending on different modelling assumptions. For
example, there may be different levels of uncertainty as-
sociated with object locations. Although it is desirable to
report a single value for the environment metric to allow
for comparisons, it is worthwhile exploring how different
assumptions may affect the predicted health of the envi-
ronment. To this end, this study investigates the effect of
changing some parameters of the risk metric on its output.
In addition, we apply the metric to a reference population
simulated over 100 years using default parameters which

can be compared to other metrics.

The remainder of this paper is organised as follows.
Section 2 describes the method for calculating the risk as-
sociated with an individual object and the extension to the
whole environment. Section 3 introduces the scenarios
and different parameter values used to test the risk metric,
the results of which are presented in section 4. Section 5
gives conclusions and future work.

2 Methods

This section describes the risk metric for individual mis-
sions that is used to determine overall risk. The metric has
two components of collision likelihood, lcol and severity,
sfcol. The risk associated with a single object, Ri is cal-
culated as

Ri = lcol · sfcol (1)

The total risk metric, Renv is the sum of risks for all ob-
jects in the environment

Renv =

N∑
i=1

Ri (2)

where N is the total number of objects in the relevant
regime used to calculate the metric. The following sec-
tions describe the steps to calculate collision likelihood
and severity.

2.1 Distributions of RSOs and Individual
Objects

The background population of Resident Space Objects
(RSOs) is modelled as a probability distribution across the
relevant orbital regime. This allows a quick estimation of
collision likelihood without needing to calculate all-vs-
all conjunction probabilities. Gaussian Mixture Models
(GMMs) are a suitable class of multivariate distributions
for modelling the background population, which have a
probability density of the form:

p(x) =

K∑
i=1

wiϕ(µi,Σi) (3)

where x is the vector of modelled parameters, K is the
number of mixture components, ϕ(µi,Σi) is the den-
sity of a multivariate normal distribution, and wi is the
weight of the ith component. In this case the parameters
x are Keplerian orbital elements. In LEO and MEO, the
RAAN and argument of pericentre are assumed to be uni-
formly distributed across the RSOs. Therefore, in these
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Figure 1: Density of GMM fit to locations of RSOs in
LEO for a fixed eccentricity of 0.001.

regimes the only parameters modelled in the GMM are
SMA, eccentricity, and inclination. Objects in GEO have
a stronger dependence on RAAN and argument of peri-
centre, so in this regime these parameters are included in
the GMM. Fig. 1 shows the density of an example GMM
fit to SMA, eccentricity, and inclination of RSOs in LEO,
where a higher density value indicates more objects for
those orbital parameters.

Individual objects in the environment are considered to
have a known orbit with small uncertainties. This means
that each object can be modelled as a single peaked multi-
variate Gaussian with a variance that depends on the accu-
racy of satellite tracking. As with the model of RSOs, the
RAAN and argument of pericentre can be assumed uni-
formly distributed for a mission, except in GEO or spe-
cific orbits such as frozen orbits, where they are included
in the distribution.

2.2 Collision Likelihood via Intersection of
Distributions

The collision likelihood between an object and RSOs is
calculated from the intersection of their distributions. In-
stead of converting from orbital elements to covariances
in cartesian coordinates, the proposed approach uses the
Minimum Orbit Intersection Distance (MOID) between
the distributions to approximate collision likelihood. For a
threshold value ν, the probability that the MOID between

the distributions is less than this value can be expressed as

p(MOID < ν) =

∫ ∫
MOID<ν

(p(xsat)p(xbkgd)) dxsatdxbkgd, (4)

where xsat and xbkgd are the orbital parameters of the
object of interest and the background population, respec-
tively. The integral is taken over the space of orbital pa-
rameters where the MOID is less than the threshold ν.
Equation 4 can be numerically approximated via Monte-
Carlo integration by sampling points from the distribu-
tions of the object of interest and background population
and finding the points where the MOID is less than the
threshold value. This is calculated as

p(MOID < ν) =
1

NI

NI∑
i=1

(p(x
(i)
sat)p(x

(i)
bkgd)

(MOID(i) < ν)VsatVbkgd), (5)

where NI is the number of samples used to integrate, x(i)
sat

and x
(i)
bkgd are orbital parameters sampled from the distri-

butions of the object of interest and background popula-
tion, respectively, (MOID(i) < ν) is 1 when the MOID
is less than the threshold and 0 otherwise, and Vsat and
Vbkgd are the volumes of orbital parameters over which
the distributions are sampled. In the case of a single ob-
ject, Vsat is the volume of a hyperellipsoid with radius 6σ
in each direction, where σ is the variance of the relevant
orbital parameter. Samples from the background popula-
tion are taken from a range of each parameter, so Vbkgd

is the volume of a hypercuboid with side lengths of the
range of each parameter. The calculation of the MOID
between two samples of orbital parameters uses a fast im-
plementation to maintain the overall speed of the method
[12].

To account for the number of objects in the population,
the probability is scaled to give the collision likelihood:

lcol = Nsat ·Nbkgd · p(MOID < ν) (6)

where Nsat is the number of objects for which the risk is
calculated, which is always 1 when considering a single
object, and Nbkgd is the number of objects in the back-
ground population. This value gives an estimate of the
likelihood of collision between two populations of ob-
jects.

2.3 Severity Factor

The severity of a collision has two parts: the induced
severity and the encountered severity [11]. “Induced”
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refers to the additional risk of collision in the environment
caused by debris from a collision. “Encountered” refers
to the effect of a collision on the object of interest. In this
risk metric, we are interested in the induced risk, i.e. the
effect of a collision on other objects in the environment.

This induced severity factor uses simulations of frag-
mentation events to calculate their collision likelihood
with a distribution of objects and fits a simple model to
estimate this probability. The procedure for modelling the
severity is as follows:

1. Simulate a number of fragmentations with the NASA
Standard Breakup Model (SBM),

2. Propagate each fragment cloud for 10 years,

3. Determine a worst-case payload population based on
the current population and 10-year launch model,

4. Find the collision likelihood between this population
and each propagated fragment cloud,

5. Fit a function of the collision and environment pa-
rameters to estimate the collision likelihood for each
fragment cloud – equivalent to the induced severity.

The first step is to run simulations of collisions over
a range of orbital and collision parameters. Further de-
tails of these simulations can be found in [11]. The output
of these simulations are orbital parameters of fragments
that are then propagated for 10 years. After this time, the
fragment band will have spread across the orbital shell
in RAAN and so its distribution does not change signifi-
cantly.

Future launches are modelled as an exponential-logistic
curve of the total number of objects launched per year.
This curve has the following form:

N(t) = n0 +
Aed(t−t0)

b+ e−c(t−t0)
(7)

where N is the number of objects, t is the year, and the
other parameters are adjusted to closely replicate histori-
cal launches while giving a reasonable future trend. Us-
ing the categories of objects as defined on DISCOSWeb1,
launched objects are either Payloads, Rocket Bodies, or
Mission Related Objects (MROs). The proportion of each
is taken from historical data and used to calculate the
number of launched payloads as a fraction of the total
number of objects. The orbital and physical parameters
of newly launched payloads are modelled as a GMM fit

1https://discosweb.esoc.esa.int/

to historical data and sampled for each launched object.
As a worst-case assumption, all currently active payloads
and newly launched payloads over ten years are assumed
to remain active. Therefore the future payload population
is taken as the current payload population plus launched
payloads.

With the populations of future objects and propagated
fragments defined, the next step is to estimate the like-
lihood of collision between these two populations. This
is done using the same approach as described in Section
2.2 by fitting a GMM of both populations and finding the
intersection via Eq. 5. This is used to calculate the like-
lihood via Eq. 6, where Nsat is the number of fragments
after 10 years and Nbkgd is the number of objects in the
estimated future object population. This gives the like-
lihood of fragments from each simulated event colliding
with the future population, which are then used as training
data for the severity model.

The final step in defining the severity factor fits a sim-
ple model to the simulated probabilities of collision with
fragments. The features of a collision used to estimate the
severity factor are:

• Equivalent mass M ,

• Density of background objects ρ,

• Normalised object decay rate rdecay .

The equivalent mass comes from the NASA SBM and is
defined as

M =

{
mtarget +mchaser if E > 40J/g,

mchaser · vrel
1000 otherwise,

(8)

where mchaser is the median mass of all objects at the
start of the relevant simulation and vrel is assumed to be
twice the circular orbit velocity at the altitude of the ob-
ject. The density of background objects comes from a
kernel density estimate over altitude of the future popula-
tion as defined above. This value is used since fragmen-
tations in more densely populated altitudes are likely to
result in higher collision likelihoods. In GEO, the density
of objects in RAAN can also affect the future collision
likelihood. To account for this, the density term in this
regime is the sum of densities in altitude, ρa and RAAN,
ρr. Fig. 2 shows the variation in ρ over altitude in MEO
for an example future population of objects.

The final feature is the decay rate. Some of the frag-
ments in each simulated scenario will decay over the 10-
year propagation duration. The proportion of fragments
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Figure 2: Kernel density estimate over altitude of future
payload population in MEO.

that decay depends on the altitude as shown in Fig. 3. This
trend can be captured using the log-exponential model of
Eq. 7 by replacing the year t with the altitude h in me-
tres. The parameters shown in Fig. 3 are calculated using
a least-squares fit.
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Figure 3: Log-exponential model of decay rate of frag-
ments in LEO.

The severity factor takes the following form:

sfcol = a ·M0.75 · ρb · rdecay (9)

where a and b are coefficients calculated using a least-
squares fit for each regime and the terms M , ρ, and rdecay
are calculated as described above. After fitting the val-
ues of a and b to simulated fragmentations, Eq. 9 can
be used to estimate the severity of a fragmentation event
without needing to propagate all fragments. Further de-
tails on the simulated fragmentations and model fit can be

found in [11]. The calculated coefficients for each regime
are shown in Table 1.

Table 1: Severity factor coefficients.

Regime a b

LEO 2.31e+4 0.229
MEO 1.49e+6 1
GEO 27.14 -0.21

3 Test Scenarios

This section describes the scenarios for applying the risk
metric described above. To test the effect of changing
the parameters of the model, this metric was applied to a
range of scenarios across LEO, MEO, and GEO with dif-
ferent parameters. The process for creating these scenar-
ios is described below. Using a default set of parameters,
further tests were carried out using a reference environ-
ment simulation, which is also described below.

3.1 Launch Scenarios

In these scenarios, an initial population of objects is prop-
agated with new objects added via launches and fragmen-
tations. The launch model uses the log-exponential curve
of Eq. 7 to model the total number of objects launched
each year. An alternative to this trend is to assume a lin-
ear increase in number of objects launched as follows:

N(t) = m · t+ c0 (10)

where the parameters m and c0, are selected to produce
the desired trend. Then the orbital and physical param-
eters are sampled from a GMM fit to historical data. A
more detailed description of this launch model can be
found in [13].

This study uses three different launch scenarios: no
launches, realistic, and worst-case. Table 2 lists the launch
model parameters for the realistic and worst-case scenar-
ios. The models for the total number of objects launched
for LEO and GEO use Eq. 7 and for MEO Eq. 10. In
LEO, this trend excludes constellation payloads, which
are added separately based on planned future constella-
tions. Table 3 shows 6 of the largest current and planned
constellations, including missions that already have a sub-
stantial number of operational payloads. These values
are used to estimate the number of additional payload
launches each year to maintain the constellation.

IAC-24-A6.10-E9.4.1 Page 5 of 11



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the authors. All rights reserved.

Table 2: Launch model parameters for different scenarios in each orbital regime.

Regime Scenario A b c d t0 n0 m c0

LEO
Realistic 1100 0.8 0.2 0.002 2025 100 - -
Worst-case 2000 1.3 0.4 0.03 2024 150 - -

MEO
Realistic - - - - - - 0.8 5
Worst-case - - - - - - 1.8 10

GEO
Realistic -12 1 0.3 0.0001 2030 23 - -
Worst-case 50 1.8 0.9 0.008 2025 25 - -

Table 3: Parameters of some planned constellations.

Name
Number of Deploy Mission Lifetime

Mass (kg) SMA (km) Ecc. Inc. (◦)
Spacecraft Start Start (years)

OneWeb 648 2020 2023 10 147 7578 1e-4 87.9
Starlink 8064 2020 2023 5 386 6938 1e-4 53
Spire Global 110 2020 2023 2 5 6868 1e-4 51.6
Amazon Kuiper 3264 2024 2025 7 650 6988 1e-4 51.9
Telesat 300 2026 2027 10 700 7626 1e-4 50.88
Boeing 147 2026 2027 10 3000 7463 1e-4 50

Simulations were run using ESA’s DELTA software
with all force models in the propagator and fragmenta-
tions resulting from collisions and explosions. Table 4
shows the change in the number of objects for each sce-
nario at the start, mid-point, and end of the 50-year sim-
ulation. LEO shows the most substantial change in num-
bers of objects across the different scenarios, whereas in
GEO there is little change resulting from the different
launch models.

Table 4: Total number of objects each year for different
scenarios across each orbital regime.

Regime Scenario
Total N Objects

2023 2048 2073

LEO
No Launches 19410 16579 17872
Realistic 19410 109146 211599
Worst-case 19410 126393 347841

MEO
No Launches 589 616 669
Realistic 589 903 4706
Worst-case 589 933 24518

GEO
No Launches 853 799 854
Realistic 853 799 853
Worst-case 853 799 854

3.2 Model Parameters

As described in Section 2, the risk model has parameters
that can be adjusted based on different modelling assump-
tions. The two parameters that are analysed here are the
MOID threshold ν and the tracking accuracy of the ob-
ject of interest. In conjunction analysis, it is common to
devise measures of risk based on miss distance, where it
is possible to relate these measures to probability of colli-
sion [14]. Therefore, the MOID threshold can be chosen
based on the maximum desired collision probability for
an individual encounter. A description of the process for
calculating this threshold can be found in [11]. Common
thresholds for “high-risk” conjunctions range from 10−6

to 10−4 [15]. Here we use three values of ν correspond-
ing to probabilities of 10−6, 10−5, and 10−4, which are:
1.05km, 3.32km, and 10.51km, respectively.

The level of tracking accuracy of an object affects its
covariance, which in turn will affect the estimated col-
lision likelihood for each object. Table 5 lists the covari-
ances associated with different levels of tracking accuracy
for an object’s orbital elements. These values are based on
those presented for equinoctial elements in [14], which
are assumed to be similar for the Keplerian elements used
here.
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Figure 4: Total number and mass of objects in the refer-
ence environment.

Table 5: Variance values for orbital elements with differ-
ent levels of tracking accuracy.

Tracking SMA Ecc. Inc. RAAN aPer
Accuracy (km) (◦) (◦) (◦)
Low 20 10−4 10−3 10−3 10−3

Medium 2 10−5 10−4 10−4 10−4

High 0.05 10−6 10−5 10−5 10−5

3.3 IADC Reference Environment

In addition to the scenarios described above, we apply
the metric over 100 years to a reference scenario that
allows comparisons between different metrics. The sce-
nario shown here is used by the Inter-Agency Space De-
bris Coordination Committee (IADC) for comparing de-
bris indices2. The simulated environment includes re-
peated launches from historical data and fragmentations.
Most of the objects in this scenario are located in LEO;
any objects outside of LEO are considered to have a colli-
sion likelihood of 0 when calculating the risk metric. Fig.
4 shows the trend in the number of objects and total mass
of objects in this scenario, which simulates between the
years of 2018 and 2119.

Fig. 5 shows the trend in the number of objects di-
vided into each object type in the reference environment.
Across the timescale of the simulation, fragments make
up the majority of the number of objects and the num-
ber of inactive satellites steadily increases. Fig. 6 shows
the trend in the total mass of objects for the same classes
of objects. Despite their large numbers, fragments make

2Reference environment developed by Dr Alessandro Rossi for use
in IADC debris index studies.

up relatively little of the overall mass in the environment,
which is dominated by upper stages and inactive satellites.
As will be shown, this has a substantial effect on the dis-
tribution of the risk across objects types.
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Figure 5: Total number of objects by object type in the
reference environment.
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Figure 6: Total mass of objects by object type in the ref-
erence environment.

4 Results and Discussion

4.1 LEO

Fig. 7 shows the trend in the metric Renv in LEO across
the different scenarios and parameters. In the no launches
scenario, as expected the total risk remains stable across
the simulation duration for each set of parameters. The
realistic scenario shows a significant increase in risk for
all parameters, noting the log-scale of the plot. The gen-
eral trend, as observed in most scenarios, is for the metric
to decrease with increased tracking accuracy. By defini-
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Figure 7: Risk metric for different parameters and scenarios in LEO.

tion, increasing the MOID threshold results in an increase
in the risk as observed across all simulations. In both the
no launches and realistic scenario, the risk values for low
tracking accuracy and ν = 1.05km are nearly identical to
those of medium tracking accuracy and ν = 10.51. For
this range of MOID thresholds, the high tracking accuracy
always results in lower risk than the other levels.

Another way of examining the change in trend with dif-
ferent parameters is to look at the normalised value of risk.
Here we normalise the risk across each set of parameters
with respect to their value in 2023 to observe the relative
change in risk. This is shown in Fig. 8 for LEO, since
this regime gave the biggest variation in risk across years
and scenarios. The no launches case has the lowest varia-
tion in normalised risk across runs since in each case the
value does not change substantially. While the realistic
and worst-case scenarios have a larger range of risk val-
ues, the general trend over time is still discernible. This
indicates that although the magnitude of the risk metric
can change substantially with the model parameters, its
relative change over time is more consistent.

4.2 MEO

Fig. 9 shows the risk metric trend across parameters and
scenarios in MEO. Compared to LEO, the increase in
risk in the scenarios with launches are more modest. The
worst-case launches also see a slight decrease in risk in
the middle of the simulation across parameters. As be-
fore, there are also some overlaps in the total risk for dif-
ferent parameter values. What is most interesting to note
is that in the no launches case, for the MOID thresholds of
ν = 1.05km and ν = 3.32km, the the total risk is lower
with low tracking accuracy than with medium tracking ac-
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Figure 8: Normalised risk metric across scenarios in LEO.
Solid lines indicate mean across all parameters, shaded
area indicates minimum and maximum across all param-
eters.

curacy. This suggests that the collision likelihoods in this
scenario experience probability dilution - a phenomenon
in encounters where more uncertainty results in lower es-
timated likelihood [16].

4.3 GEO

The risk metric trend in GEO, shown in Fig. 10, has the
strongest dependence on tracking accuracy. The magni-
tude of the risk metric does not vary substantially across
scenarios. However, for the same MOID threshold, the
value of the risk metric can vary by as much as 6 orders
of magnitude depending on the assumed tracking accu-
racy. The other notable feature of the trends in GEO is
that for low tracking accuracy, different MOID thresholds
slightly change the shape of the trend in the no launches
and worst-case scenarios.
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Figure 9: Risk metric for different parameters and scenarios in MEO.
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Figure 10: Risk metric for different parameters and scenarios in GEO.

4.4 IADC

Simulations in the IADC reference environment used a
MOID threshold of ν = 3.32km and variance values for
high tracking accuracy (Table 5). Fig. 11 shows the vari-
ation in the total risk metric over the 100 years of simu-
lation. While there is some level of noise in the values,
there is a clear upward trend which is steeper from around
2100.

Fig. 12 compares the normalised trend of the total risk
metric to the number of objects and the square of the
number of objects in the environment. Each value is nor-
malised with respect to their value in 2023. Certain trends
in the risk match up with those of the number of objects,
such as the sharp increase after 2070 and steeper trend af-
ter 2100. The square of the number of objects shows bet-
ter agreement with the trend of the normalised risk metric
but the risk metric increases more rapidly. This highlights
that the distribution of objects is also significant in deter-
mining this metric.
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Figure 11: Risk metric trend for the reference environ-
ment.
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Figure 12: Normalised risk metric for IADC reference en-
vironment.
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Figure 13: Share of overall risk in the reference environ-
ment for individual objects.

In addition to the overall trend, it is possible to iden-
tify the contribution of each object and different object
classes to the risk metric. Considering the contribution of
individual objects, Fig. 13 shows the share of the total risk
metric contributed by the share of objects in the environ-
ment at the start, middle, and end of the simulation. This
shows that the share of contribution does not significantly
change over the course of the simulation. Furthermore, in
this scenario less than 10% of objects contribute over 80%
of the overall risk, which shows the imbalance in risk for
each object.

Fig. 14 shows the distribution of risk across each object
class in the reference environment. This clearly shows
that inactive satellites make up the majority of the risk
metric and are most responsible for the steep increase in
risk following 2100. This is despite their small share of
the overall number of objects as shown in Fig. 5. Al-
though they constitute a significant proportion of the total
mass, upper stages make up more of the total mass and
far less of the total risk. This is a result of the inactive

2020 2040 2060 2080 2100
Year

0

20000

40000

60000

80000

100000

120000

140000

R e
nv

Active satellite
Inactive satellite
Upper stage
Fragment
MRO

Figure 14: Risk metric by object type for the reference
environment.

satellites being located in regions where active payloads
are more likely located, giving them a higher severity fac-
tor. Note that this risk model does not take into account
object manoeuvrability and so the risk is not calculated
differently for active or inactive satellites.

As shown in the previous results, the risk model pa-
rameters have a strong effect on the magnitude of esti-
mated risk. In LEO, where the risk is evaluated for the
IADC reference environment, different tracking accura-
cies resulted in a change of one order of magnitude in the
overall risk and different MOID thresholds saw a change
of three orders of magnitude. However, in most cases the
trend in the risk over different snapshots remained similar.
Although the risk over time in the reference environment
is only calculated for one set of parameters, it is reason-
able to assume the trend in the risk would be similar for
different values of these parameters.

5 Conclusions

This work introduced a new metric for quantifying over-
all risk in the space environment based on a risk metric
for individual missions. The metric is applicable to LEO,
MEO, and GEO orbital regions. As with similar risk-
based metrics, the proposed metric has parameters that
affect the output and two of these parameters have been
studied here. The results indicate that the magnitude of
the metric can change significantly with the parameters,
but the general trend is similar across values of param-
eters. Results from application to a reference environ-
ment also highlight the different relative contribution of
object types to the total metric. Since inactive satellites
contribute the majority of overall risk in this formulation,
this suggests adherence to post mission disposal guidance
will be important for improving the long-term health of
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the space environment.

Due to the scaling by number of objects, this metric
gives a large range of values that can be difficult to com-
pare across scenarios and regimes. Further work is needed
to find ways to normalise the metric that allow easier com-
parisons.
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