
75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright ©2024 by the authors. All rights reserved.

IAC-24-C1.9.8

Generation and Classification of Critical Points in Uncertain N-Body Problems via Machine Learning

Callum Wilson(1, a)* and Massimiliano Vasile(1)

(1) Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow
G1 1XJ, United Kingdom

(a) callum.j.wilson@strath.ac.uk
* Corresponding author

Abstract
The study of dynamical systems is relevant for a wide variety of problems in astrodynamics. These are systems

defined by differential equations that may have no known analytical solution. Despite this, the study of such systems
gives rise to a rich variety of phenomena that are interesting in both a theoretical sense and for practical applications.

One such example is the location of critical points. In astrodynamics, these are commonly studied in the context of
equilibrium points in the N-body problem. Equilibrium solutions can be found numerically for some restricted cases of
the full system. Machine learning techniques are frequently used to find patterns from data and are therefore a promising
technique for studying patterns in dynamical systems. In particular, recent advances in generative models have shown
remarkable performance in synthesizing new data based on examples.

This work demonstrates the application of physics-informed generative models for learning distributions of critical
points in astrodynamics. The class of generative models used are flow-based models, which transform a tractable
distribution into a more complex one that allows direct sampling of new points. The architecture proposed in this paper
integrates the generative layers with a classification of the critical points according to their stability properties. In
many dynamical systems of interest, in fact, equilibrium points may be characterised as stable, unstable, or metastable
depending on the system’s behaviour in the region of the critical point. In addition to generating new points, the
proposed method classifies the critical points by learning in a semi-supervised manner from the classes of known critical
points. This allows further analysis of how certain types of solution are distributed in the system. The methodology is
applied to equilibrium solutions in the N-body problem with uncertain parameters.
Keywords: N-body Problem, Generative AI

1 Introduction

Machine Learning (ML) methods are now often applied
to problems that are difficult to solve using conventional
approaches. One of the main features of these methods is
their ability to extract patterns in data. Most early research
used this to solve classification tasks by finding similari-
ties between objects of the same class. Now there are new
generative architectures that can produce new data with
patterns similar to previously seen data [1]. This popular
new field of generative models has seen mainstream usage
in text, image, and video generation [2, 3].

One area that shows potential to benefit from ML is the
study of dynamical systems. These mathematical mod-
els are applied to a wide variety of real-world systems to
explain different phenomena from vibrating bodies to the
motions of planets. In such models we are often inter-
ested in their critical points that can represent equilibrium
points or periodic solutions of the system [4]. Traditional

approaches to finding these points use numerical methods
to find roots or minima of some mapping representing the
system dynamics. In systems modelling orbital dynam-
ics, this mapping is typically related to the energy of the
system [5].

This work investigates the potential for using genera-
tive models to determine critical points of dynamical sys-
tems. This problem is formulated as modelling a proba-
bility distribution that has a high density at the location
of critical points. To model the distribution, we use a
class of generative models referred to as flow-based mod-
els, which map a complicated probability distribution to a
more tractable distribution. We consider the problem of
finding equilibrium points in the Circular Restricted Five-
Body Problem (CR5BP) [6].

Other applications of ML methods to dynamical sys-
tems have focussed on creating reduced order models of
dynamical systems, both through deep learning and sim-
pler ML systems [7]. These models are useful for prop-
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agating complex systems or deriving controllers for such
systems. For example, in [8] the authors create a latent
embedding of image trajectories using variational autoen-
coders such that these trajectories are locally linear. This
allows the use of conventional optimal control methods
for solving complex non-linear problems. The methods
proposed here focus more specifically on finding solutions
to dynamical systems without directly modelling the tran-
sient behaviour of the system.

An earlier related work used Particle Swarm Optimi-
sation (PSO) to find periodic orbits in a dynamical sys-
tem [9]. The authors demonstrate that PSO is capable of
finding solutions for systems that are otherwise difficult to
solve with traditional root-finding algorithms. The added
benefit of using a flow-based model instead of a swarm
approach is the representation of the distribution of solu-
tions in a latent space that allows efficient sampling.

The remainder of the paper is organised as follows.
Section 2 describes the proposed method of using flow-
based model used to sample critical points. Section 3
then goes on to describe the formulation of the CR5BP to
which we apply the model and the generation of data for
training. Results of training several model configurations
are presented in section 4 and section 5 gives conclusions
and future work.

2 Methods

2.1 Flow-based Generative Model

This class of generative models, also referred to as “Nor-
malising Flows”, transform a prior distribution pZ(z)

through a series of invertible transformations to a target
distribution pX(x) [10]. The random variable Z ∈ RD

has a known and tractable distribution and the transforma-
tion is defined as Z = f(X). The change of variable rule
gives the following expression for the probability density
of X:

pX(x) = pZ(f(x))det (|Df(x)|) (1)

where Df(x) = ∂f(x)
∂x is the Jacobian of f at x. To gen-

erate a sample x from X, one can first sample from the
simpler distribution of Z and then transform this sample
via x = f−1(z). This is the main benefit of flow-based
models, where the transformation f represents a “flow”
from a potentially intractable distribution to a much sim-
pler one.

There are several different architectures of flow-based
generative models [11]. The architecture used here is

called Non-linear Independent Components Estimation
(NICE) [12], which is a volume-preserving flow since
the prior distribution has the same dimensionality as the
target, f : RD → RD. The transformation f is a
composition of several “layers” of transformations f =

fL ◦ . . . ◦ f2 ◦ f1. Each transformation is a bijective cou-
pling layer with a tractable inverse and unit Jacobian de-
terminant.

The output of layer fl is denoted h(l), where h(0) = x.
To make each layer invertible, the input is divided into two
parts: hI1 and hI2 where the indexes I1 and I2 define how
the vector is split. For the two-dimensional problems con-
sidered here, where x = (x, y), this is simply the first and
second terms, i.e. h

(0)
I1

= x and h
(0)
I2

= y. The additive
coupling law is defined as

h
(l+1)
I1

= h
(l)
I2
, (2)

h
(l+1)
I2

= h
(l)
I1

+m(l)(h
(l)
I2
), (3)

where m is a non-linear function defined for each cou-
pling layer. This function is parameterised as a Deep Neu-
ral Network (DNN) such that each m is trainable. At least
three coupling layers are required to allow all dimensions
in the input to influence each other. As in the original
work of NICE, the models trained here use L = 4 cou-
pling layers.

Since each coupling layer is designed to have unit Jaco-
bian determinant, these layers alone do not allow for scal-
ing of the inputs. Therefore, an additional scaling layer is
used in the output of the NICE model. This scaling layer
has the form

z = S ⊙ h(L), (4)

where S is a diagonal scaling matrix with Sii = esi , i =

1, . . . , D. One other distinguishing feature of NICE is it
uses a prior distribution that is factorial, i.e.

pZ(z) =

D∏
i=1

pZi(zi). (5)

Here a logistic distribution is used as the prior:

pZi(zi) =
e−zi/σ

1 + e−zi/σ
, (6)

where the variances σ2
i are also trainable parameters of

the model. Since this distribution is factorial, this results
in the “NICE criterion” shown in (7) that defines the log-
likelihood of the modelled distribution.

log(pX(x)) =

D∑
i=1

[log(pZi
(f(x)i)) + log(|Sii|)] (7)
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2.2 Conditional Flow-based Model

In the case of conditional generative modelling, we seek
to model a probability conditioned on a variable c ∈ C.
This variable can be a real valued vector, such as defining
one or more parameters of the target distribution, or a cat-
egorical one-hot vector defining different classes of points
in the distribution.

Now the target distribution has the form pX(x|c). In
this formulation of conditional model, the prior distribu-
tion remains the same as in the general flow-based model
and the transformation f includes the variable c. Equation
(1) can then be rewritten as

pX(x|c) = pZ(f(x, c))det (|Df(x, c)|) . (8)

The process for including c in the transformation is
similar to that of conditional GLOW [13]. At each cou-
pling layer, the input to m is concatenated with c such that
Eqs. 2 and 3 become

h
(l+1)
I1

= h
(l)
I2
, (9)

h
(l+1)
I2

= h
(l)
I1

+m(l)
([

h
(l)
I2

c
])

. (10)

This maintains the unit Jacobian determinant of NICE to
allow straightforward density estimation. The conditional
NICE criterion then becomes

log(pX(x|c)) =
D∑
i=1

[log(pZi
(f(x, c)i)) + log(|Sii|)]

(11)

2.3 Loss Functions

A general flow-based model aims to maximise the like-
lihood of training data Xtrain = xn, n = 1, . . . , N in
the model as defined by the NICE criterion in (7). This
is equivalent to minimising the KL-divergence between
model samples and true samples in physical space [11].
The objective is then defined as

max
θ

Ex∼px

D∑
i=1

[log(pZi(f(x)i)) + log(|Sii|)] , (12)

where θ denotes the trainable parameters of the model.

One of the known issues with training flow-based mod-
els using only maximum likelihood is the quality of sam-
ples generated by a trained model [14]. Flow-GAN is a
method for training flow-based models that combines the

advantages of easy density estimation of flow-based mod-
els with the high quality sampling of Generative Adver-
sarial Networks (GANs). In this formulation, the gener-
ator Gθ(z) = f−1(z) generates samples via the inverse
transformation of samples from the model prior. Then
the discriminator Dϕ : RD → R is trained to distin-
guish between generated samples and real samples from
the target distribution, with trainable parameters denoted
ϕ. Various objectives can be used in training a GAN; here
the Wasserstein GAN objective is used [15], which is ex-
pressed as

min
θ

max
ϕ

Ex∼px [Dϕ(x)]− Ez∼pZ
[Dϕ(Gθ(z))] . (13)

Extending these objectives to the case of a conditional
flow-based model, let the training data consist of tuples
of features and labels, (xn, cn), n = 1, . . . , N . The
maximum-likelihood loss can then be expressed as

Jml = − 1

N

N∑
n=1

D∑
i=1

[log(pZi
(f(xn, cn)i)) + log(|Sii|)] .

(14)

To calculate the GAN loss, the discriminator takes as
input both the features and labels, [xn cn]. The discrim-
inator loss is then

Jdisc = − 1

N

N∑
n=1

Dϕ([xn cn]), (15)

and the generator loss is

Jgen = − 1

N

N∑
n=1

Dϕ([Gθ(zn, c̃n) c̃n]), (16)

where Gθ(zn, c̃n) = f−1(zn, c̃n), zn ∼ Z, and c̃n ∈ C.
In practise, the values of c̃ are randomly sampled from C.

Suppose the dataset consists of both labelled samples,
(xl

n, cn), n = 1, . . . , Nl and unlabelled samples (xu
n),

n = 1, . . . , Nu where Nl and Nu denote the number of
labelled and unlabelled samples respectively. The maxi-
mum likelihood loss for labelled samples, J l

ml remains the
same as in (14). For unlabelled samples, the variable c for
each sample is assigned the value that gives the maximum
likelihood:

cun = argmax
c∈C

[log(pZi
(f(xu

n, c)i)) + log(|Sii|)] . (17)

When C is a set of categorical variables, the maximum
argument can be found by enumerating over all values of
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C. Then the loss for unlabelled samples is

Ju
ml = − 1

N

N∑
n=1

D∑
i=1

[log(pZi
(f(xu

n, c
u
n)i)) + log(|Sii|)] .

(18)

The overall loss function for training by example com-
bines the maximum likelihood and GAN objectives by
summing their losses:

Jtotal = J l
ml + Ju

ml + Jgen. (19)

2.4 Training Procedure

Algorithm 1 shows the procedure for training the con-
ditional flow-based model with labelled and unlabelled
training samples. At each training epoch, the discrimina-
tor is trained for Ndisc iterations. The number of discrim-
inator iterations per epoch is set as Ndisc = 5, as used in
other works [14].

Algorithm 1 Flow-based model semi-supervised training

1: Input: training data of labelled true points (xl
n, cn)

and unlabelled true points (xu
n)

2: initialise model (generator) parameters θ, discrimina-
tor parameters ϕ, and training data Xtrain

3: for epoch = 1 to Nepoch do
4: sample generated points (Gθ(z, c̃n), c̃n) from the

model
5: for disc. epoch = 1 to Ndisc do
6: train discriminator parameters ϕ on true points

and generated points
7: end for
8: train model parameters θ on batches of training

data
9: end for

3 Experiments

3.1 Five Body Problem

We use the formulation of the CR5BP originally intro-
duced by Ollöngren [16] and later studied in terms of its
basins of attraction [6]. The problem consists of four pri-
mary bodies Pi, i = 0, 1, 2, 3 with dimensionless masses
m0 = βm, m1 = m2 = m3 = m = 1. To model
the fifth body, the system uses a rotating frame of ref-
erence with origin at the centre of mass of the primary
bodies. The positions of the centres of the primary bodies
are (x0, y0) = (0, 0), (x1, y1) = (1/

√
3, 0), (x2, y2) =

(−1/(2
√
3), 1/2), (x3, y3) = (−1/(2

√
3),−1/2). The

fifth body has negligible mass and its position is denoted
(x, y).

As defined by Ollöngren [16], the time-independent ef-
fective potential function of this problem is

Ω(x, y) =
1

2

(
x2 + y2

)
+ k

3∑
i=0

[
mi

ri

]
, (20)

where

k =
1

3(1 + β
√
3)

, (21)

ri =
√
(x− xi)2 + (y − yi)2, i = 0, 1, 2, 3. (22)

The partial derivatives of this potential function are

∂Ω

∂x
= x− k

3∑
i=0

mi(x− xi)

r3i
, (23)

∂Ω

∂y
= y − k

3∑
i=0

mi(y − yi)

r3i
. (24)

The critical points that represent equilibrium solutions
of the system are defined by the points where ∂Ω

∂x = 0 and
∂Ω
∂y = 0.
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Figure 1: Locations of equilibrium points for a range of
values of mass parameter µ.

Defining a mass parameter µ = 1/(1 + β), the value
of µ controls the number of equilibrium points, their rel-
ative position, and their stability characteristics. In the
case where µ >= 0.98617275 there are 15 equilibrium
points and for values of µ lower than this there are 9. This
work considers values of the mass parameter with 9 equi-
librium points since these are more interesting in terms of
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Figure 2: Locations of stable and unstable equilibrium
points where the mass parameter µ < µcrit.

the stability of the points. Fig. 1 shows the location of
equilibrium points and primary bodies over a range of µ
values between 0.001 and 0.05.

The mass parameter of µcrit = 0.02263467 is a critical
value that affects the stability of the equilibrium points.
Above this value, all equilibrium points are unstable. Be-
low this value, 3 of the 9 equilibrium points are stable as
shown in Fig. 2.

3.2 Training Data

The training data for this problem are known locations of
equilibrium points for certain values of the mass param-
eter µ. The number of discrete mass parameters used in
training is denoted Nµ. For this scale of problem, these
points can be found using conventional root-finding meth-
ods as shown, for example, in [6]. Then the aim of train-
ing a conditional flow-based model on these data is to
generalise to any value of µ within a specified range and
generate points with certain stability characteristics. The
training dataset consists of 8192 points and their relevant
labels that are oversampled from the known equilibrium
points.

Fig. 3 shows the training data generated for 11 evenly
spaced values of µ in the range µ ∈ [0.001, 0.05]. The
training data contain the location of all minima for each
value of µ as well as their stability class label. In this
case, with 11 discrete values of µ, the problem effectively
becomes one of supervised learning where the model can
straightforwardly replicate the pattern in the training data.

0.00 0.01 0.02 0.03 0.04 0.05
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

x

crit

Stable equilibria
Unstable equilibria

(a) µ vs x

0.00 0.01 0.02 0.03 0.04 0.05
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y

crit

Stable equilibria
Unstable equilibria

(b) µ vs y

Figure 3: Training data with 11 discrete values of mass
parameter µ and labels according to stability.

Fig. 4 shows the training data generated for only 4 val-
ues of µ, which represents a more difficult learning task.
As before, the dataset has all minima for each value of µ
and the stability class label. In this case, the gaps between
values of the mass parameter make it more difficult for the
model to generalise to unseen values, as will be shown.

The experiments shown here use two different formula-
tions of physical variables, x and conditional variables c.
In the first case, the mass parameter µ is the conditional
variable. This is normalised to be in the range [−1, 1] as
indicated in (25). In this case, the model does not account
for the stability characteristics of these points. The other
formulation has the mass parameter included as a physi-
cal variable with the conditional variables indicating the
stability of the equilibrium point as shown in (26). The
stability class is encoded as a one-hot vector where [0 1]

corresponds to a stable point and [1 0] corresponds to an
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Figure 4: Training data with 4 discrete values of mass
parameter µ and labels according to stability.

unstable point.

x = [x y] , c ∈ [−1, 1] (25)

x = [x y µ] , c ∈ {[0 1], [1 0]} (26)

4 Results and Discussion

This section shows the results of training flow-based gen-
erative models on the problems described above. When
training on 11 discrete mass parameters, the model was
trained for 1000 epochs. When training on only 4 dis-
crete mass parameters, the model is trained for 100 or 500
epochs to reduce overfitting, as will be discussed. In each
training case, the number of discriminator iterations per
epoch is Ndisc = 5. Table 1 shows the hyperparameters
used in training. The values listed for the Generator in-
dicate values for the m function used in each of the four
coupling layers.

Table 1: Hyperparameters for training the discriminator
and generator DNNs.

Hyperparameter Value
Generator Discriminator

N hidden layers 3 3
N hidden units 512 256
Learning rate 0.001 0.001

Batch size 256 256

Figure 5: Mean log-likelihood of equilibrium points of
model trained with mass parameter as conditional vari-
able.

4.1 Mass parameter conditional variable

The initial model training uses the mass parameter µ as
the conditional variable. Fig. 5 shows the mean log-
likelihood of equilibrium points across different mass pa-
rameters for each of the trained models. Higher log-
likelihoods are desirable since this indicates a higher
probability of the model sampling at or near these points.
When training with Nµ = 11, the model learns a mapping
with high log-likelihood across the range of mass param-
eters. However, when reduced to Nµ = 4, the values
of mass parameter outwith the training data show signifi-
cantly lower log-likelihoods. Nevertheless, even when the
log-likelihood of certain points are lower on average, the
model can still effectively converge on all minima over
the range of mass parameters using conventional root-
finding approaches. This is shown in Fig. 6, which com-
pares the mean number of function evaluations to find all
minima from model samples to random uniform samples.
Note that for the model samples, points are only shown
for values of the mass parameter outwith those used in
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Figure 6: Mean number of function evaluations to find all
equilibrium points for a given mass parameter.

training. As expected, sampling from the model consis-
tently requires fewer function evaluations than sampling
uniformly over the physical space.

Samples generated and converged to equilibrium points
by the model conditioned on mass parameter can be used
to generate unlabelled training data. This is shown in
Fig. 7 where unlabelled samples effectively fill the gaps
in mass parameter between labelled samples where Nµ =

4. Using these additional points allows semi-supervised
training of a model conditioned on stability, which has
some advantages as will be shown.

4.2 Stability conditional variable

All of the following models are trained using the stabil-
ity as conditional variable and the position and mass pa-
rameter as physical variables as described by (26). Ini-
tially, the models are trained only using labelled training
data. Fig. 5 shows the mean log-likelihood of equilibrium
points across different mass parameters for both stable
and unstable points. Similarly to the model conditioned
on mass parameter, the model trained with Nµ = 11 has a
higher log-likelihood across the range of mass parameters
than those trained with Nµ = 4. This is the case for both
the unstable and stable equilibria. However, the unstable
equilibria see a decrease in log-likelihood for values of µ
slightly larger than µcrit. This is due to the model having
less certainty on the correct class of points in this region.
Compared to the mass parameter conditional model, these
models show far more significant dips in log-likelihood
for mass parameters not in the training data. This effect
is more pronounced when training for a larger number of
epochs, which indicates overfitting to certain mass param-
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Figure 7: Training data with 4 discrete values of mass
parameter µ and labels according to stability.

eters can be an issue in these models.

To visualise how well these models generalise over val-
ues of mass parameter, we can observe the distribution of
samples generated by the model. Fig. 9 shows this as a
Gaussian kernel density estimate over values of mass pa-
rameter for 1000 samples of each class from the trained
models. Clearly, the model with Nµ = 11 has the most
even distribution of points in mass parameter. However, it
also creates more samples with a stable class label above
the critical mass parameter, which cannot be stable. As
expected, the models with Nµ = 4 have a much higher
density of samples near points within the training data,
which again highlights their tendency to overfit to previ-
ously seen points.

The trained models can also be used for classification
by observing which class gives the highest log-likelihood
for a given point in physical space. Each model is tested
by classifying points over a range of 21 discrete mass pa-
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Figure 8: Mean log-likelihood of equilibrium points of model trained with stability class as conditional variable.
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Figure 9: Kernel density estimate over mass parameter of 1000 sampled points from models trained with stability class
as conditional variable.
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rameters. This gives a testing set of 189 points of which
27 are stable and 162 unstable. The classification perfor-
mance of each of the trained models is shown in Table 2,
Table 3, and Table 4.

Table 2: Confusion matrix of classes for conditional
model trained with Nµ = 11.

Predicted Class
Stable Unstable Total

True
Class

Stable 27 0 27
Unstable 2 160 162
Total 29 160

Table 3: Confusion matrix of classes for conditional
model trained with Nµ = 4, Nepoch = 100.

Predicted Class
Stable Unstable Total

True
Class

Stable 26 1 27
Unstable 37 125 162
Total 63 126

Table 4: Confusion matrix of classes for conditional
model trained with Nµ = 4, Nepoch = 500.

Predicted Class
Stable Unstable Total

True
Class

Stable 27 0 27
Unstable 34 128 162
Total 61 128

As in previous cases, the model trained with Nµ = 11

has the best classification performance with only two
points classed incorrectly as stable. Both models trained
with Nµ = 4 tend to over-classify points as stable and
have a similar overall classification performance.

4.3 Semi-supervised training

The case where equilibrium points are given for only 4
discrete mass parameters represents a more realistic sce-
nario for more complex dynamical systems for which
these points are difficult to calculate. As shown in the re-
sults above, the performance of models trained with only
these points is poor. One possible way to improve the
models is to train semi-supervised using the data shown
in Fig. 7. The following results are from models trained
in a semi-supervised manner over 100 and 500 epochs
with the stability class as conditional variable. Results
are compared to the model trained with Nµ = 11.
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Figure 10: Mean log-likelihood of equilibrium points of
model trained semi-supervised with stability class as con-
ditional variable.

The mean log-likelihood over mass parameter for these
models is shown in Fig. 10. As with the other models,
there is a noticeable dip in likelihood for unstable equilib-
ria with mass parameters slightly higher than the critical
value. However, the log-likelihood does not decrease as
substantially as in the case with only Nµ = 4. Over most
values of mass parameter, the mean log-likelihood is sim-
ilar to that of the model trained with Nµ = 11. In fact,
in some cases the model trained semi-supervised for 500
epochs has better performance in terms of log-likelihood
than the baseline model. Both of the semi-supervised
models clearly perform better in this regard than the mod-
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els trained with Nµ = 4.
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Figure 11: Kernel density estimate over mass parame-
ter of 1000 sampled points from models trained semi-
supervised with stability class as conditional variable.

Now considering the samples across mass parameter,
Fig. 11 shows the kernel density estimate over mass pa-
rameter of sampled points from the semi-supervised mod-
els. Compared to the models trained without unlabelled
points, the samples are distributed far more evenly in
mass parameter. However, they also have a tendency to
generate more unphysical samples labelled as stable with
mass parameters higher than µcrit - particularly for the
model trained for 100 epochs. This suggests that the mod-
els trained with unlabelled samples have greater difficulty
learning the distribution of classes as would be expected.

Table 5: Confusion matrix of classes for semi-supervised
conditional model with Nepoch = 100.

Predicted Class
Stable Unstable Total

True
Class

Stable 27 0 27
Unstable 32 130 162
Total 59 130

Table 6: Confusion matrix of classes for semi-supervised
conditional model with Nepoch = 500.

Predicted Class
Stable Unstable Total

True
Class

Stable 27 0 27
Unstable 15 147 162
Total 42 147

Table 5 and Table 6 show the confusion matrices for
the semi-supervised models. Despite their sampling per-
formance, these models perform better in classification
than the other models trained with Nµ = 4. The model
trained semi-supervised shows the best performance with
15 points misclassified as stable - although this is still
worse than the model trained with Nµ = 11. This shows
that unlabelled examples can also improve the classifica-
tion ability of a model.

5 Conclusions

This work introduced a new method for the joint genera-
tion and classification of critical points using conditional
flow-based models. Conditional variables can be a physi-
cal parameter of the system or a characteristic of the crit-
ical points. The proposed approach allows the model to
learn in a semi-supervised manner to generate points with
a specified stability characteristic. Compared to training a
model on only labelled points, the semi-supervised train-
ing using samples from another model improved the like-
lihood of sampling equilibrium points across the range of
mass parameters.

The application considered here of equilibrium points
in the CR5BP is small scale to serve as a demonstration.
Future work will investigate how well this approach can
scale to more complex systems. In addition, further work
is necessary to unify the two approaches of conditioning
the flow-based model on both physical parameters and
stability characteristics.
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Appendix A - Model log-likelihood in
physical space

The following figures give visualisations of the density
predicted by some of the trained models. These are shown
for a value of the mass parameter not seen by the model
during training. Figs. 12, 13, and 14 show these plots
for the models trained with stability conditional variable,
semi-supervised stability conditional variable, and mass
parameter, respectively.
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