
communications engineering Article

https://doi.org/10.1038/s44172-024-00330-0

Post-processing methods for delay
embedding and feature scaling of
reservoir computers

Check for updates

Jonnel Jaurigue 1 , Joshua Robertson 2, Antonio Hurtado 2, Lina Jaurigue1 & Kathy Lüdge 1

Reservoir computing is a machine learning method that is well-suited for complex time series
prediction tasks. Both delay embedding and the projection of input data into a higher-dimensional
space play important roles in enabling accurate predictions. We establish simple post-processing
methods that train on past node states at uniformly or randomly-delayed timeshifts. These methods
improve reservoir computer prediction performance through increased feature dimension and/or
better delay embedding. Here we introduce the multi-random-timeshifting method that randomly
recalls previous states of reservoir nodes. The use of multi-random-timeshifting allows for smaller
reservoirswhilemaintaining large feature dimensions, is computationally cheap to optimise, and is our
preferred post-processing method. For experimentalists, all our post-processing methods can be
translated to readout data sampled from physical reservoirs, which we demonstrate using readout
data from an experimentally-realised laser reservoir system.

Reservoir computing is a machine learning method that exploits the
dynamics of a reservoir for nonlinear mapping of inputs into a higher-
dimensional space1,2. This exploitation of reservoir dynamics means that
only the weights coupled to the final prediction output need to be trained.
This elementary training approach, combined with the fact that a reservoir
can be any dynamical system with finite memory showing consistent input
responses, means that reservoir computers are well-suited for hardware
implementation. In this paper, we will apply simple post-processing
methods to the elementary training scheme. We will then present a post-
processing method that improves reservoir computer performance for
minimal computational investment. Finally, we translate our post-
processing methods to the training scheme of a physical reservoir compu-
ter. This reservoir is implemented in photonic hardware using high-speed
light signals for information processing.

Our post-processingmethods are inspired by delay embedding. This is
the process in which delayed replicas of a time series can be used to
reconstruct the full state-space dynamics of the underlying dynamical
system3. In a reservoir computer, the sampled driving input is nonlinearly
mapped, and the resultant higher-dimensional representation is observed as
a readout of reservoir states evolving in response to the driving input. Our
simple post-processingmethods train on delayed versions of these reservoir
states, analogous to delay embedding, in order to better capture the driving
system and thus improve predictive performance. Our methods can apply
the delayed states in a uniform-timeshifting4,5 or random-timeshifting6,7

manner, and will do so only through state rearrangement or replication.
This notablypreserves the fundamental benefit of using reservoir computers
by keeping nonlinear mapping restricted only to the reservoir8.

Uniform-timeshifting of reservoir states was investigated by Marquez
et al.4, who concatenated each readout state vector with a delayed replica of
itself. Theydrewa connection toTaken’s delay embedding9 and showed that
optimal delays are required. Picco et al. recently demonstrated that such
uniformly timeshifted delays need not be evenly spaced10. The work of Del
Frate et al.6 introduced random-timeshifting. This approach stores the
readout of reservoir states, and the feature vector used for training is
comprised of states randomly sampled between the current time and some
appropriately chosen maximal delay. Carroll and Hart7 subsequently con-
nected the performance improvement due to random-timeshifting with an
increased covariance rank of the training state matrix.

Reservoir dynamics might also implicitly perform a delay embedding
of a time series input. Reservoir memory is particularly important for
optimal delay embedding and is dependent on the driving input’smeasured
precision, input timescale and the prediction task. In such cases, issues
relating to reservoir memory can be difficult to compensate for via hyper-
parameter optimisation11,12. For example, for a finely discretised input, the
optimal delay embeddingmaybe larger than the timescale of thememory of
the reservoir decays. Moreover, given that the most commonly used
reservoirs are networks of randomly connected nodes, such architectures
only allow for indirect tuning of reservoir memory through

1Institut für Physik, Technische Universität Ilmenau, Ilmenau, Germany. 2Institute of Photonics, SUPA Department of Physics, University of Strathclyde,
Glasgow, UK. e-mail: jonnel-anthony.jaurigue@tu-ilmenau.de

Communications Engineering | (2025) 4:10 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00330-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00330-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00330-0&domain=pdf
http://orcid.org/0009-0003-0802-076X
http://orcid.org/0009-0003-0802-076X
http://orcid.org/0009-0003-0802-076X
http://orcid.org/0009-0003-0802-076X
http://orcid.org/0009-0003-0802-076X
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0001-6316-5265
http://orcid.org/0000-0002-4448-9034
http://orcid.org/0000-0002-4448-9034
http://orcid.org/0000-0002-4448-9034
http://orcid.org/0000-0002-4448-9034
http://orcid.org/0000-0002-4448-9034
http://orcid.org/0000-0002-4831-8910
http://orcid.org/0000-0002-4831-8910
http://orcid.org/0000-0002-4831-8910
http://orcid.org/0000-0002-4831-8910
http://orcid.org/0000-0002-4831-8910
mailto:jonnel-anthony.jaurigue@tu-ilmenau.de
www.nature.com/commseng

hyperparameters such as the spectral radius. Conversely, time-multiplexed
delay-based reservoirs allow for direct tuning through the reservoir’s
internal delay. Indeed, we previously demonstrated predictive performance
improvement by optimising the internal delay of a time-multiplexed
reservoir5. Similar trends are shown in other works13–15. However, in this
paper, we will focus on post-processing methods that are applied after
reservoir states have already been generated, circumventing difficulties
associated with reservoir hyperparameter optimisation. Our post-
processing focus also contrasts our previous work that applied pre-
processing methods at the level of the driving input. We demonstrated that
adding an optimally-delayed replica of the driving input as it is fed into the
reservoir greatly improved performance. That approach could be con-
sidered a hybrid of reservoir computing and nonlinear vector regression, if
the additional delayed input is viewed as training feature selection16.

In the following sections,wewill establish some simple post-processing
methods on our simulated reservoir computer, for a variety of chaotic
attractor prediction tasks. These are the aforementioned uniform-
timeshifting and random-timeshifting methods. We also expand into
multi-uniform-timeshifting that takesmultiple uniformly-delayed states for
training. Based on key findings regarding predictive performance when we
recall past states using these simple post-processing methods, we introduce
ourmulti-random-timeshiftingmethod.Thismethod scaleswellwith larger
feature dimensions, is computationally cheap to implement and can out-
perform all other post-processing methods.

We will then translate our establishedmethods to an experimentally-
realised reservoir computing system built with photonic hardware17. Such
physical reservoir computers utilise complex nonlinear dynamics of phy-
sical systems for high-speed and energy-efficient analogue computing.
Examples of physically implemented reservoirs include optical, optoelec-
tronic and micro-mechanical systems18–21, among others. Although good
computing performance has been demonstrated for a number of
tasks10,22–25, this is often reliant on computationally expensive hyperpara-
meter optimisation. There have been numerous studies into efficient
methods of hyperparameter optimisation26–30, however, there are often
drawbacks which include the computation cost, lack of applicability to
hardware reservoirs and a lack of generalisability to a wide range of tasks.
Fortunately, our post-processingmethods are applied after reservoir states
have already been generated. We show that our methods are able to
improve the predictive performance of physical reservoir computers, and
circumvent the difficulties associated with physical reservoir hyperpara-
meter optimisation.

Methods
Reservoir computer model
Figure 1 illustrates the general architecture of our simulated reservoir
computer. We feed in a 1-dimensional input-series x of K steps into the
reservoir, and our output is a prediction of the 1-dimensional target series y
ofK steps. For every input-step xi 2 x 2 RK driving the reservoir there are
a total of n nodes through which we observe the corresponding reservoir
states vector si ¼ ðsi;1; :::; si;nÞ 2 Rn. For the entire input-series x of K
input-steps (x1, . . . , xK) we generate a total of K sampled reservoir states
vectors (s1, . . . , sK).

The focal methods of this paper relate to training and post-processing
methods on the state matrix S. To generate the state matrix S, the sampled
reservoir states (s1, . . . , sK) are collected into a state matrix

S ¼

s1
s2
:::

sK�1

sK

2
6666664

3
7777775
¼

s1;1 ::: s1;n 1

s2;1 ::: s2;n 1

::: ::: ::: 1

sK�1;1 ::: sK�1;n 1

sK;1 ::: sK;n 1

2
6666664

3
7777775

ð1Þ

where the i-th row is the vector siofn states (si,1, . . . , si,n) drivenby input-step
xi. A bias term of one is appended to each row for training. The predicted

target-series output of the reservoir ŷ is then given by

Sw ¼ ŷ

where w is the vector of n+ 1 output weights. The weights w are found by
minimising the difference31 between prediction ŷ and the target y. The
solution to this minimisation problem is analytically solved using ordinary
least squares in matrix form

w ¼ ðSTSþ λIÞ�1
STy

on a training set of k <K sequential rows of the state matrix S.
To evaluate the predictive performance of our trained model, we use

the normalised root mean square error (NRMSE) to quantify how accurate
the predicted target-series ŷ is to target-series y for both the training and
testing sets. NRMSE is given by

NRMSE ¼
ffiPk

i¼1 ðyi � ŷiÞ2
kσ̂2

s

where k is the row dimension of the training or testing set of the statematrix
S, and σ̂2 is derived from the set’s target y as an approximation of the true
population variance. For simulations that undergo repeat realisations, the
median NRMSE ±median absolute deviation (MAD) is recorded as the
predictive performance for that realisation set.

Thenumber of columns of statematrix Sused for training is the feature
dimension O. For base training without further post-processing, feature
dimensionO = n, referring to the number of sampled states (si,1, . . . , si,n)∈ si
per input-step xi equal to the node dimension n. We will refer to this state
matrix SwithO = n features described in Eq. (1) as the base state matrix on
which further post-processing methods will be applied.

Post-processing the state matrix
This paper focuses on several post-processing methods applied to the base
state matrix S described by Eq. (1). These methods rearrange and/or
replicate the base state matrix S in order to generate a post-processed state
matrix. Notably, our post-processing methods keep nonlinear input map-
ping restricted to the reservoir, thereby preserving the computational
advantage of reservoir computing8.

ⁱ ⁱ

ⁱ

ŷi

Fig. 1 | General architecture of our simulated reservoir computer. Input steps
xi 2 x 2 RK are mapped through the reservoir of n nodes. O = n features of state
matrix S are used for training. Post-processing may increase the number of features
O. The prediction output ŷi is measured to target yi using normalised root mean
square error (NRMSE).

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 2

www.nature.com/commseng

Uniform-timeshifting. The uniform timeshifts post-processing method
generates a state matrix that has a larger feature dimension O compared
to the base state matrix S. We start with a uniformly-timeshifted state
matrix Sd2 , which is a replica of the base state matrix S whose O = n
features are timeshifted d2 input-steps into the past. This uniformly-
timeshifted state matrix Sd2 is then horizontally concatenated (denoted
by ⌢) to the base state matrix S, generating the uniform-timeshift state
matrix

S_Sd2 ¼
s1
:::

sK

2
64

3
75 _

s1�d2

:::

sK�d2

2
64

3
75

¼
s1;1 ::: s1;n
::: ::: :::

sK;1 ::: sK;n

2
64

3
75 _

s1�d2 ;1
::: s1�d2;n

::: ::: :::

sK�d2 ;1
::: sK�d2 ;n

2
64

3
75:

In effect, any feature vector si∈ S is extended with the feature vector
si�d2

2 S, where d2 is the uniform time shift applied to the feature vector,
illustrated by Fig. 2 at N = 2 state matrix replicas. In this way, the uniform-
timeshift state matrix S_Sd2 that is used for training and testing has an
increased feature dimension of O = 2n. Earlier methods of concatenating
uniformly timeshifted features have been previously established4,5,32.

Multi-uniform-timeshifting. Inspired by delay embedding, we now take
multiple timeshifts in order to better reconstruct the underlying
dynamics of the driving systemand improve predictive performance. The
stepsize between multiple timeshifts can be of the same length, char-
acteristic of delay embedding3, or of varying length as demonstrated by
Picco et al. under their “Timesteps Of Interest” algorithm10.

Horizontally concatenating multiple uniformly-timeshifted state
matrices generates a multi-uniform-timeshifts state matrix

S_Sd2
_SdΣ3 ¼

s1
:::

sK

2
64

3
75 _

s1�d2

:::

sK�d2

2
64

3
75 _

s1�d2�d3

:::

sK�d2�d3

2
64

3
75

ofO = 3n features, where dΣ3 indicates the sumof iterative timeshiftsd2+ d3
(Fig. 2 at N = 3 replicas). For example, if uniform-timeshifts d2 = 2 and
d3 = 8, then thefirst replica is the base statematrix S, the second replica is the
uniformly-timeshiftedstatematrixSd2 atd2 = 2 input-steps into thepast and
the third replica is the uniformly-timeshifted state matrix SdΣ3 at
d2+ d3 = 2+ 8 = 10 input-steps into the past.

Concatenating N state matrix replicas generates a multi-uniform-
timeshifts state matrix S_Sd2

_SdΣ3
_:::_SdΣN of O =Nn features, with the

earliest state matrix replica SdΣN timeshifted d2+ d3+ . . . + dN input-steps

into the past. Allowing for an increased number of delayed states should in
general enable an improved embedding. The increased computational cost
associatedwith the increasing numberof optimisationhyperparameterswill
be discussed.

Random-timeshifting. The random-timeshifting post-processing
method is implemented according to published methods6. Here, each of
the O = n features of the base state matrix S is timeshifted a number of
input steps into the past. The timeshift for each feature is randomly
chosen. This random-timeshifts state matrix Sr1 can be described as

Sr1 ¼
s1�r1

:::

sK�r1

2
64

3
75 ¼

s1�r11 ;1
::: s1�r1n ;n

::: ::: :::

sK�r11 ;1
::: sK�r1n ;n

2
64

3
75

where the random-timeshifts vector r1 consists of random integers r11; :::; r
1
n

ranging from 0 to some max-random-timeshift R. Thus, the j-th feature of
the base state matrix S is timeshifted r1j 2 r1 input-steps into the past,
illustrated by Fig. 2 at N = 1 state matrix replica. The feature dimension of
this random-timeshifts state matrix Sr1 remains at O = n.

The max-random-timeshift R parameter sets the range of random-
timeshifts r∈ r thatmay be randomly chosen. It is analogous to themethod
used by Del Frate et al., where the half-life of the autocorrelation function is
multiplied by a real scalar6 to determine the range of allowed random
timeshifts r∈ r. Themax-random-timeshift R can be optimised with a one-
dimensional scan.

Prediction tasks
Various chaotic time series prediction tasks are performed on the simulated
reservoir to establish and quantify our post-processing methods in this
manuscript. Our driving input series is a coordinate of one of the Lorenz,
Rössler, orMackey–Glass attractors. Our target series is another coordinate
of the attractor for cross-prediction tasks, or the input series coordinates a
number of steps ahead for forecasting tasks. For configuring our simulated
reservoir computer and establishing our post-processing methods we car-
ried out prediction tasks on the Lorenz attractor.

Lorenz attractor driving input-series x = [x1, . . . , xK] was the Lorenz x-
coordinate defined by

dx
dt

¼ aðy � xÞ;
dy
dt

¼ xðb� zÞ � y;

dz
dt

¼ xy � cz;

and cross-prediction target-series y was the Lorenz z-coordinate33.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Fig. 2 | Post-processing methods on the base state matrix S. Each entry, reading
left-to-right, indicates timeshifting of S under a given post-processingmethod.N = 1
uniform-timeshifting indicates no post-processing.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 3

www.nature.com/commseng

The simulated reservoir training models established on the Lorenz
attractor were corroborated with Mackey–Glass attractor P-to-P 10-step-
ahead forecasting tasks (Suppl. Note 3). Mackey–Glass attractor driving
input-series x was the Mackey–Glass P-coordinate defined by

dP
dt

¼ β0θ
nPðt � τMGÞ

θn þ Pðt � τMGÞn
� γPðtÞ

and forecasting target-series y was the 10-step-ahead Mackey–Glass P-
coordinate34. All time series coordinates were iterated using 4th-order
Runga–Kutta. For the delay terms in the Mackey–Glass equation cubic
Hermitian interpolation was used. The system parameters for the Lorenz
andMackey–Glass attractors are given inTable 1. Cross-prediction tasks on
the Rössler attractor were also carried out in order to corroborate our
established methods (Suppl. Note 4).

The simulated reservoir training models were translated to
experimentally-realised readout data acquired from a laser-based
photonic reservoir system. Targets were P-to-P 1-step-ahead or 10-
step-ahead coordinates of the input series, corresponding to a
Mackey–Glass attractor.

Reservoir systems
Simulated reservoir. For our simulated reservoir, we use a time-
multiplexed nonlinear delayed map introduced by Jaurigue et al.5,16. This
system describes a semiconductor optical amplifier subject to weak self-

feedback given by

stþθ ¼
aðbst�τ þ ximgÞ
1þ bst�τ þ ximg

with simulated reservoir parameters specified in Table 1. The input-series x
is masked (m) and scaled (g). The evolving reservoir state over time st is
observed once during each mask interval θ and then indexed into the state
vector (si,1, . . . , si,n) driven by input-step xi∈ x. There are a total of n nodes
through which we observe the reservoir state s∈ si, distinguished by their
unique mask θ, so the length of a clock cycle driven by input-step xi is nθ.

Given that we apply a random mask on the driving input for our
simulated reservoir5, each reservoir computer configuration undergoes
repeat realisations, with each realisation using a different random mask.
When applicable, each realisation also uses a different vector of random
timeshifts r. For specific details on our simulated reservoir and the time-
multiplexedmaskingprocedure,we refer the reader topreviouswork5, given
that the reservoir has no influence on the post-processing methods which
are the focus of this paper.

Physical photonic reservoir. To investigate post-processing methods
on a physical reservoir system we utilised the readout of our previously
published photonic reservoir based on a vertical-cavity surface-emitting
laser (VCSEL) system17. This system enabled operation with high-speed
(GHz-rate) and low-power (sub-mW) optical input signals. This system
also enabled a hardware-friendly approach using a single VCSEL
requiring very low bias currents, operating at a key optical telecom
wavelength. The referredVCSEL-based photonic reservoir demonstrated
good performance in data classification and time series prediction tasks,
across a wide parameter space range. Physical reservoir parameters are in
Table 1. For specific details on the physical reservoir, we refer the reader
to our relevant work17.

We used a single hardware-realised readout, rather than a set of rea-
lisations each using a different randommask, as is the case in our simulated
reservoir computer. Multiple realisations were required in post-processing
when using different vectors of random timeshifts r.

Results
Simple post-processing
We established the simulated reservoir computer configurations and post-
processing methods by performing Lorenz x-to-z cross-prediction tasks.
Key results for characterising the performance of our post-processing
methods are summarised in Table 2, which we reference in the following
sections.

In Table 2, “N replicas” refers to the number of state matrix replicas
used to generate the final state matrix used for training and testing. “O
features” refers to the feature dimension of this state matrix, expressed as
multiples of the node dimension Nn. Results in the “uniform-timeshifting,
S_:::_SdΣN ” category are for state matrices with uniformly-timeshifted
features, which includes the base state matrix S at N = 1. Results in the
“random-timeshifting, Sr1

_:::_SrN ” category are for state matrices with
randomly-timeshifted features. We present the median NRMSE ±MAD
result under optimal delay configurations, for increasing replica numberN.
The reservoir is fixed at n nodes.

Uniform-timeshifting improvedperformance.We start with results for
uniformly timeshifted state matrices summarised in Table 2. For N = 1
replicas this corresponds to no post-processing on the base statematrix S.
As expected, the base training method demonstrates inferior perfor-
mance when compared to any of the optimised post-processing methods
performed on the base state matrix S.

For N = 2 replicas, we horizontally concatenate a uniformly-
timeshifted state matrix to the base state matrix in order to generate the
uniform-timeshifted state matrix S_Sd2 of O =Nn = 2n features. The
optimal uniform-timeshiftd2 is also listed inTable 2 andwasdeterminedvia

Table 1 | Task and reservoir parameters

Lorenz attractor task parameters

a = 10 b = 28 c ¼ 8
3

Integration timestep dt = 0.001

Signal discretision timestep = 0.02

Mackey–Glass attractor task parameters

n = 10 β0 = 0.2 τMG = 17

θ = 1 γ = 0.1

Integration timestep dt = 0.01

Signal discretisation timestep = 1

Simulated reservoir parameters

θ = 1 a = 40 b = 0.025

g = 0.05 m ~U [0, 1) τ = n+ θ

n = 60, unless indicated otherwise

Realisations = 30

Input ximg scaled to the interval [0,1]

Total K = 35,000 Training = 10,000 Testing = 5,000

Pre-training buffer = 10,000

Pre-testing buffer = 10,000

Uniform-timeshifts regularisation λ = 10−8

Random-timeshifts regularisation λ = 10−7

VCSEL physical photonic reservoir parameters

n = 325

Realisations = 30

Total K = 10,000 Training = 6,000 Testing = 3,000

Pre-training buffer = 500

Pre-testing buffer = 500

Uniform-timeshifts regularisation λ = 0.0

Random-timeshifts regularisation λ = 1.0

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 4

www.nature.com/commseng

a scan, illustrated in Fig. 3a (teal line). A 74%decrease in errorwas observed.
Superior performance was observed even at sub-optimal configurations of
uniform-timeshift d2, which we attribute to the increase in the feature
dimension O from n to 2n. The superior performance of training on the
optimally-delayed uniform-timeshift state matrix S_Sd2 , compared to
training only on the base state matrix S (orange dashed line), is consistent
with previously published results4,5.

In general, reservoir computer performance scales with the size of the
internal and readout layers of its reservoir, provided there are sufficient
readout nodes for adequately sampling the reservoir. This is reflected in the
information processing capacity introduced byDambre et al.35, where it was
shown that themaximal possible informationprocessing capacity is equal to
the readout node dimension n, which corresponds to the O = n features of
the base statematrix S. The improved performance of the uniform-timeshift
state matrix S_Sd2 can therefore, in part, be attributed to its increased
feature dimension O = 2n, compared to the O = n feature dimension of the
base state matrix S. Viewed in this way, uniform-timeshifting is a
computationally-inexpensive post-processing alternative to simulating
larger reservoirs for higher-dimensional mapping of the input-series36,37,
while achieving similar results. In the case of physical reservoir systems,
post-processing methods are sometimes the only viable option for
increasing statematrix feature dimensions when reservoir parameters, such
as node dimension, are constrained.

Multi-uniform-timeshifting improved performance. From the estab-
lished uniform-timeshifting post-processing method, we proceed with
multiple-uniform-timeshifting that increases the final state matrix fea-
ture dimension beyond O = 2n.

WithN = 3 statematrix replicas we generate a uniform-timeshifts state
matrix S_Sd2

_SdΣ3 of feature dimension O = 3n. Table 2 lists the NRMSE
forN = 3 replicas, referring toperformance at optimal uniform-timeshiftsd2
and d3 determined via a 2-dimensional scan.Weobserved a 60%decrease in
error over N = 2 replicas. For N replicas we generate uniform-timeshifts
state matrices of feature dimension O =Nn, and the optimal uniform-
timeshifts [d2, . . . , dN] are listed, determined via (N− 1)-dimensional scans.
Going to N = 4, to N = 5 and to N = 6 replicas show a 51%, 30% and 13%
decrease in error, respectively. Thus, a trend of increasingly improved
predictive performance with increasing O =Nn feature dimensions was
observed.

In addition to increasing state matrix features O =Nn, performance
with increasing N replicas and optimal uniform-timeshifts d is related to
delay embedding4,11,37. The optimal values of the uniform-timeshifts
[d2, . . . , dN]∈ d are not the same, indicating that the optimal
delay embedding fromthis task iswhen theuniform-timeshiftsd∈ d arenot
evenly spaced. In general, not all delay embeddings work equally well when

the input data has only finite precision3, as the theoretical guarantees of
Taken’s delay embedding theory (where delayed replicas of an input
time series can be used to reconstruct the full state-space dynamics of the
underlying dynamical system) only hold for infinite precision9. Further-
more, optimal delay embeddings depend on the criteria by which they are
judged, which in our case is the NRMSE of the resulting cross-prediction.
Moreover, since the reservoir itself performs a delay embedding11,37,38, this
affects the optimal delay embedding provided by multi-uniform-
timeshifting of the reservoir states. Indeed, we observed that the optimal
uniform-timeshift d2 atN = 2 replicas changes with our simulated reservoir
delay τ (Suppl. Note 3).

Finally, for multi-uniform-timeshifting, we show that the optimal
configurations for the uniform-timeshifts d are constrained to a single zone
only. For example, Fig. 3b illustrates the results of a 2-dimensional scan for
uniform-timeshifts [d2, d3]∈ d configurations when concatenating N = 3
replicas. We see superior performance for a single zone (dark teal/black
area) of [d2, d3]∈ d configurations. Figure 3c also illustrates a single optimal
configuration zone (dark teal/black area) forN = 4 replicas as was observed
for N = 3. We do not observe multiple or repeating optimal zone patterns,
illustrating that configurations must be specifically chosen for superior
performance. This indicates the importance of thorough scans to determine
the optimal uniform-timeshifts d∈ d configurations, which becomes
computationally intractable with increasing N replicas.

Random-timeshifting improved performance. Given our indications
that multi-uniform-timeshifting requires optimally chosen uniform-
timeshifts d∈ d configurations for superior performance, we looked to
post-processing methods that perform well with randomly chosen
timeshift parameters. Hence, we established the random-timeshifting
post-processing method for our simulated reservoir computer. The
“random-timeshifting, Sr1

_:::_SrN ” column of Table 2 lists the result
when training on the random-timeshifts state matrix Sr1 atN = 1 replica.
The optimalmax-random-timeshiftR found via a parameter scan is listed
alongside the NRMSE, with Fig. 3d illustrating this scan.

We report a 55% decrease in error when training on the optimal
random-timeshifts state matrix Sr1 (N = 1), compared to the base state
matrixSwith the same feature dimensionofO = n. Thisfinding is consistent
with the work of Carroll and Hart7, and Del Frate et al.6, who also
demonstrated improvedperformanceafter randomtimeshifting on thebase
state matrix, measured by a reduced prediction error or a reduction in
required reservoir state samplings per input.

The performance improvement as a result of random-timeshifting
cannot be explained by a feature dimension increase as it is for uniform-
timeshifting, because the random-timeshifts statematrixSr1 shares the same
feature dimension ofO = n as the base statematrix S. Additionally, although

Table 2 | Simulated reservoir computer results of Lorenz x-to-z cross-prediction

Uniform-timeshifting, S_:::_SdΣ
N

Random-
timeshifting, Sr1

_:::_SrN

N replicas O features NRMSE ±MAD d2 d3 d4 d5 d6 NRMSE ±MAD R

1 n 0.065 ± 0.007* – – – – – 0.029 ± 0.005 19

2 2n 0.017 ± 0.002 21 – – – – 0.011 ± 0.002 32

3 3n 0.0068 ± 0.0005 13 21 – – – 0.006 ± 0.001 40

4 4n 0.0033 ± 0.0004 10 17 19 – – 0.0040 ± 0.0005 44

5 5n 0.0023 ± 0.0006 8 14 17 21 – 0.0028 ± 0.0007 57

6 6n 0.0020 ± 0.0003 6 9 15 20 10 0.0024 ± 0.0004 55

10 10n – – – – – – 0.0014 ± 0.0002 59

60 60n – – – – – – 0.00055 ± 0.00003 94

120 120n – – – – – – 0.00047 ± 0.00004 123

NRMSE normalised root mean square error,MADmedian absolute deviation.
*Result of training on the base state matrix S.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 5

www.nature.com/commseng

random-timeshifting introduces delayedversions of states, these timeshifted
states replace the non-timeshifted base states as training features. Training
on delayed replicas of states that append to the base statematrix, as we do in
uniform-timeshifting, is more analogous to delay embedding.

Instead, a possible explanation for this performance improvement is
that random timeshifting increases the covariance rank of the final training
matrix, implying higher-dimensional mapping of the input7,39. Figure 3d
shows how covariance rank (maroon line) and NRMSE (teal line) change
with increasing max-random-timeshift R. Indeed, we see that covariance
rank is larger at the optimalmax-random-timeshiftR = 21 compared to the
base state matrix without random-timeshifting, consistent with previously
published explanations7,39. However, the complete scan shows that the
covariance rank of the random-timeshifts state matrix Sr1 increases with
max-random-timeshift R, and then the covariance rank remains high even
as predictive performancedegrades past the optimalmax-random-timeshift
R > 21. Note that changing the prediction task from x-to-z cross-prediction
to x-to-x 1-step-ahead forecasting gives the same outcome, where optimal
performance is achieved when covariance rank is minimal (Suppl. Note 2).
Thus, a large covariance rankmaynot guarantee goodperformance, and the
assumption that a state matrix with a larger covariance rank generally

outperforms a state matrix with a smaller covariance rank7,12,39,40 warrants
further investigation.

Recall implementation
Here we will report our investigation of recall, which refers to delayed
versions of states from the base state matrix S being replicated in post-
processing, in order to build up training state matrices of larger feature
dimensions. For example, uniform-timeshifting that concatenates
N = 2 statematrix replicas will result in states appearing up toN = 2 times in
the uniform-timeshifts statematrix S_Sd2 . The recalled state replicas Sd2 are
delayed versions of those in the base state matrix S, separated by the
uniform-timeshift d2.

Reservoir computing for time series prediction seems to work by both
delay embedding the input time series11 andbyprojecting the input data into
ahigher-dimensional space31. The latter is generally related to the number of
nodes of the reservoir. In the context of recall and uniform timeshifting, we
show that reservoirs with a smaller node dimension perform better than
reservoirs with a larger node dimension, which goes against the general
assumptions that a higher-dimensional reservoir would result in better
computational performance35.

Fig. 3 | Timeshifting on the simulated reservoir computer, Lorenz x-to-z cross-
prediction. a Scan of uniform-timeshift d2, for training error (grey line) and testing
error (teal line) at N = 2 replicas and O = 2n features. The orange dashed line indi-
cates the result of training on the base state matrix S. The shaded area around each
line indicates the MAD of the realisation set. b Scan of multi-uniform-timeshifts d2
vs d3, for testing error atN = 3 replicas andO = 3n features. c Scan ofmulti-uniform-

timeshifts d2 vs d3 vs d4, for testing error atN = 4 replicas andO = 4n features. d Scan
of max-random-timeshift R for covariance rank (maroon line), training error (grey
line) and testing error (teal line) at N = 1 replica and O = n features. The orange
dashed line indicates the result of training on the base statematrix S. The shaded area
around each line indicates the MAD of the realisation set. NRMSE normalised root
mean square error, MAD median absolute deviation.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 6

www.nature.com/commseng

To characterise the recall phenomenon, recall Jwill indicate howmany
nodes will have sampled states recalled during post-processing, thereby
introducing delayed versions of node states in the final state matrix.We start
with an extended statematrix S of feature dimensionO = 2n, generated from
a larger reservoir of 2n nodes. A possible configuration of timeshifts
[r1, . . . , r2n]∈ r applied to this extended statematrixS is illustrated inFig. 4a at
recall J= 0. For this timeshifts vector r the first n timeshifts [r1, . . . , rn] are 0
and the second subsetofn timeshifts [rn+1, . . . , r2n] are at themax-timeshiftR.

The constructed timeshifted state matrix Sr in Fig. 4a is similar to the
uniform-timeshift state matrix S_Sd2 at recall J = n. Here, both post-
processed state matrices haveO = 2n features, and the uniform-timeshift d2
is equal tomax-timeshift R. The key difference between these state matrices
is the number of nodes required to generate them. For the constructed
timeshift state matrix Sr, the timeshifted features [n+ 1: 2n] are sampled
states of the nodes [n+ 1: 2n], from a reservoir of 2n nodes. Conversely, for
the uniform-timeshift state matrix S_Sd2 , the timeshifted features
[n+ 1: 2n] are generatedby recalling the sampled states ofnodes [1:n], from
a smaller reservoir of n nodes. Specifically, the recalled node states are
collected at d2 = R input steps into the past, thereby clamping the required
node dimension to n. Thus, in Fig. 4a at null recall J = 0, we generate the

constructed timeshift state matrix Sr from a readout layer of 2n nodes.
Although the features [n+ 1: 2n] are timeshifted by R = d2 input steps into
the past, the final state matrix will have all states from the 2n nodes
appearing only once. At total recall J = n, we generate the uniform-timeshift
state matrix S_Sd2 from a readout layer of n nodes. All n nodes will have
delayed replicas of their sampled states appearing in the final statematrix at
d2 = R input steps into the past. A transitional state matrix at recall J = 0.5n
illustrates the case where only a third of the 1.5n nodes will have sampled
states recalled.

Total recall improves performance even as it reduces node dimen-
sion. We have shown how simple post-processing methods can intro-
duce delayed states into the training scheme that lead to predictive
performance improvement at optimal timeshift configurations. For
uniform-timeshifting andmulti-uniform-timeshifting, we attributed this
to both an improved delay embedding of the input and an increase in the
number of training features O. Recall J indicates how many nodes will
have delayed replicas of sampled node states appearing in the final state
matrix, and we investigated how recall affects prediction performance
with delay embedding and feature dimension scaling effects in mind.

Fig. 4 | Recall implementation on the simulated reservoir computer, Lorenz x-to-
z cross-prediction. a Applying recall to the 2n-extended base state matrix S. Null
recall J = 0 generates a timeshift matrix Sr. Partial recall J = 0.5n generates a transi-
tional final state matrix. Total recall J = n generates a uniform-timeshifts matrix
S_Sd2 . b Scan of recall J vs uniform-timeshift d2 = 1 (black line) and d2 = 21 (teal
line), for testing error atO = 2n features. The orange dashed line indicates the result

of training on the extended base state matrix S of node dimension 2n. The shaded
area around each line indicates the MAD of the realisation set. c Scan of recall J vs
uniform-timeshift d2, for testing error at O = 2n features. d Scan of recall J vs multi-
uniform-timeshifts d2 vs d3, for testing error atO = 3n features. NRMSE normalised
root mean square error, MAD median absolute deviation.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 7

www.nature.com/commseng

In Fig. 4b, we explored the effect of increasing recall J at specific
uniform-timeshift d2 values. The left side of the graph indicates null recall
J = 0, and the right side indicates total recall J = n for generating the final
statematrix ofO = 2n features, corresponding to the left-to-right orientation
of the Fig. 4a schematics. We see that at sub-optimal timeshift R = d2 = 1
(black line) performance suffers as recall J increases. This is to be expected,
since with increasing recall J values from 0 to n the node dimension of the
reservoir decreases from 2n to n. However, the trend reverses unexpectedly
at timeshiftR = d2 = 21 (teal line), wherewe reach peak performance at total
recall J = n, corresponding to the smallest node dimension n.

To explain this phenomenon, we can look to delay embedding. The
optimal delayed states introduced in post-processing are those that are
timeshifted by R = d2 = 21 input steps into the past. Thus, at null recall J = 0
we generate the constructed timeshifted state matrix Sr with max-timeshift
R = 21, and observe improved performance over sub-optimal delays. As we
increase from null recall J = 0 to total recall J = n, we increase the number of
delayed state replicas used for the final training state matrix. By increasing
this recall J, performance subsequently improves. Once we are at total recall
J = nwegenerate theuniform-timeshift statematrixS_Sd2 ,which shows the
best performance.Uniform-timeshift statematrixS_Sd2 introducesdelayed
replicas of states atd2 = 21 input-steps into thepast, and in thisway is amore
analogous implementation of delay embedding. This is in contrast to the
constructed timeshifted statematrixSrwhich introducesdelayed states from
newnodes, rather than recalling states from the past. Viewed in this way, we
consider recall J as a way to scale the influence of a larger reservoir vs the
influence of delay embedding. Therefore, the optimal amount of recall J
depends on whether the delay embedding is also optimal.

For completeness in Fig. 4b, we include the result of the state matrix
with null recall J = 0 at d2 = 0 (orange dashed line), which is equivalent to a
base state matrix derived from a reservoir of node dimension 2n. The
inferior performance of the base state matrix derived from 2n nodes
demonstrated that introducing even a sub-optimal uniform timeshift leads
to better predictive performance.

In Fig. 4c, we see predictive performance when scanning increasing
recall J with uniform-timeshift d2 values. We find superior performance
(dark teal/black area) at total or near total recall J ≈ n when uniform-
timeshift d2 is optimal, even though the reservoir node dimension is at its
lowest.Moreover, this superior performance at total or near total recall J ≈ n
is demonstrated even when the readout node dimension is not rescaled, but
kept at 2n (Suppl. Note 1), indicating that explicit delay embedding effects
introduced in post-processing dominate any implicit changes in reservoir
memory as a result of changing the node dimension from 2n to n.

Figure 4d illustrates the effect of recall withN= 3 replicas, generating the
multi-uniform-timeshifts state matrix S_Sd2

_SdΣ3 of feature dimension
O= 3n. Even in this higher-dimensional case, the optimal configurations of d2
and d3 demonstrate superior predictive performance (dark teal/black area) as
we approach total recall J= n. Thenodedimension subsequently shrinks from
3n ton, indicating that increasing the influenceof anoptimaldelay embedding
overcomes any potential negative effect of a smaller reservoir.

Given that increasing recall J reduces the reservoir node dimension n,
we evaluated the effect of recall J on the covariance rank of the state matrix,
because it has been hypothesised that larger covariance ranks generally lead
to superiorpredictiveperformance7,12,39,40.Weobserved that covariance rank
derived from the same realisation set used for Fig. 4c is not correlated with
zones of superior performance (Suppl. Note 1). This corroborates Fig. 3d,
where the covariance rank of the random-timeshifts state matrix Sr1
monotonically increased with max-random-timeshift R.

Multi-random-timeshifting
We now introduce multi-random-timeshifting. The motivation for this
post-processing method is to increase the feature dimension of the final
training statematrix, allow for better delay embeddings and utilise the lower
optimisation cost of randomly-timeshifting features. We were inspired by
recall, which scales the influence of delay embedding, and leads to improved
performance as if we had increased reservoir size directly.

Multi-random-timeshifting recalls past states and increases the state
matrix feature dimension beyond O = n, as is the case for uniform-
timeshifting but not random-timeshifting. N state matrix replicas are
timeshifted by a unique random-timeshift vector r, where the j-th compo-
nent of the i-th random-timeshift rij 2 ri is unique across all random-
timeshift vectors [r1, . . . , rN]. The randomly-timeshifted statematrix replicas
are then horizontally concatenated. As an example, concatenating N = 2
randomly-timeshifted state matrix replicas

Sr1
_Sr2 ¼

s1�r1

:::

sK�r1

2
64

3
75 _

s1�r2

:::

sK�r2

2
64

3
75

¼
s1�r11

::: s1�r1n ;n

::: ::: :::

sK�r11
::: sK�r1n ;n

2
64

3
75 _

s1�r21
::: s1�r2n;n

::: ::: :::

sK�r21
::: sK�r2n ;n

2
64

3
75

generates a multi-random-timeshifts state matrix of feature dimension
O = 2n, illustrated in Fig. 2 at N = 2 replicas. Multi-random-timeshifting N
replicas mean that states at each node are recalled up toN times, in order to
generate the multi-random-timeshifts state matrix Sr1

_:::_SrN of O =Nn
features.

We can generate any desired feature dimension O using this method.
In the case where the n features of the base statematrix S are not a divisor of
the desired feature dimension O, then the N-th random-timeshifts state
matrix replica SrN is only a partial replica of thefirstn� ðOmod nÞ features.

Multi-random-timeshifting gives the best performance. Multi-
random-timeshifting results in Table 2 list the best performances when
concatenating N ≥ 2 randomly-timeshifted state matrix SrN replicas. The
optimalmax-random-timeshift R is also listed.We report a 62% decrease
in error when training on N = 2 concatenated randomly-timeshifted
state matrices, compared to the single N = 1 randomly-timeshifted state
matrix Sr1 . The multi-random-timeshifts state matrix S _

r1 Sr2 as a result
of this concatenation has O = 2n features.

Performance up to N = 6 replicas shows continued improvement,
training on feature dimensions up to O = 6n. Additionally, we observe that
predictive performance up to N = 6 is the same when implementing either
multi-uniform-timeshifting or multi-random-timeshifting.

Weproceedwithmulti-random-timeshifting forN > 6 replicas.We see
that performance continued to improve with increasing replica numbersN
beyond what we achieved withmulti-uniform-timeshifting. Performance is
also seenas the increasingly better overlapofpredictedLorenz z-coordinates
ŷ vs target y (Suppl. Note 1).

We then investigated the parameter space for optimal max-random-
timeshift R configurations, illustrated in Fig. 5a. Here, we scanned themax-
random-timeshift R against increasing the feature dimension of the multi-
random-timeshift state matrix Sr1

_:::_SrN . The size of the reservoir is
clamped at n nodes, while the number of feature O increases in increments
of 1.When focusing on any specificmax-random-timeshiftRwe found that
predictive performance generally improveswith larger feature dimensionO,
even at partial multiples of n.

Another illustration of these data is in Fig. 5b, where we observed that
the optimal max-random-timeshift R (maroon dots) generally increases as
feature dimension O increases. This could be expected, since a higher
number of sampled states from each node must be recalled in order to
generate the multi-random-timeshifts state matrix Sr1

_:::_SrN . With very
high replica numbers up to N ≈ 100, multi-random-timeshifting continues
to improve (teal line). BeyondN ≈ 100 replicas,weobserve theoptimalmax-
random-timeshifts R-value consistently at the theoretical minimum R =
N− 1, and predictive performance no longer improves.

Theperformanceof the clamped reservoir ofnnodes at total recall J = n
performed just as well as the correspondingly upscaled reservoir of Nn
nodes at null recall J = 0 indicating that implementing multi-random-
timeshifting with total recall J = n is an effective way to increase the feature

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 8

www.nature.com/commseng

dimension O and maintain the superior predictive performance of this
method, while also clamping the reservoir size to n nodes (Suppl. Note 1).

The simple post-processing and the multi-random-timeshifting
methods were established on the Lorenz attractor. These methods were
corroborated with the Mackey–Glass P-to-P 10-step-ahead forecasting
(Suppl. Note 3) and Rössler x-to-z cross-prediction (Suppl. Note 4) tasks on
the simulated reservoir computer. We consistently observed our post-
processing methods improving performance. As expected, increasing the
number of replicas N improved performance even further. Moreover,
increased recall J resulted in superior performance, while also reducing
reservoir node dimension from Nn to n.

Optimising timeshift delays. Finding the optimal timeshift configura-
tions for our post-processingmethods is key to optimal delay embedding.
For multi-uniform-timeshifting, we saw that the optimal uniform-
timeshifts d vary with increasing N. As the number of replicas N
increases, each uniform-timeshifts configuration {d2, . . . dN}∈ dmust be
re-optimised by an (N− 1)-dimensional scan. To perform this optimi-
sation for all uniform-timeshifts d, the number of linear regression
operations required exponentially increases by

dN�1
scan

where dscan is the maximum of the range of uniform-timeshifts d∈ d to be
scanned.

For multi-random-timeshifting, only a 1-dimensional scan for the
max-random-timeshift R is required even as the number of N replicas
increases. The number of linear regression operations required for opti-
mising the max-random-timeshift R increases by

Rscan � N þ 1

whereRscan is themaximumof the range ofmax-random-timeshiftsR to be
scanned.

Computational timebenchmarks onour simulated reservoir computer
are given as an example. We require 190 s to compute a random-mask
realisation set, for a post-processed trainingmatrix ofO = 10n features from
N = 10 replicas. Optimising the max-random-timeshift R, where the

scanning range of max-random-timeshifts Rscan = 180, is calculated as

190 s � ð180� 10þ 1Þ ¼ 9 h:

Comparatively, the computational time required to optimise themulti-
uniform-timeshifts {d2, . . . d10}∈ d, where the scanning range for each
uniform-timeshift is dscan = 20, such that dscan(N− 1) = 180 matches the
scanningmax-random-timeshift scanning rangeRscan = 180, is calculated as

190 seconds � ð2010�1Þ ¼ 185083714 years:

Due to this ease of optimisation for larger Nn feature dimensions,
multi-random-timeshifting ultimately outperforms multi-uniform-
timeshifting in terms of scalability and predictive performance. For simi-
lar reasoning, random-timeshifting is preferable to non-random-
timeshifting of training features. Finding non-random, optimal-timeshifts
[r1, . . . , rn]∈ r quickly becomes computationally intractable as n increases,
due to the n-dimensional scan required to optimise every optimal-timeshift
r∈ r applied to each feature. First-order approximations of optimal time-
shifts have been previously implemented6.

Translation to a physical reservoir
Post-processing methods were established, characterised and corroborated
on our simulated reservoir computer. Implementing our post-processing
methods improves predictive performance, and need only be applied after
the readout is generated. Thus, in this section we translate our methods to a
physical reservoir implemented in a photonic system, enabling high-speed
operation using GHz-rate data inputs. To accomplish this, we took our
readout of a previously published VCSEL-based photonic reservoir system17

that was used for high-dimensional mapping of input. Figure 6a illustrates
the experimental setup. When compared to the simulated reservoir the
presence of an internal time delay (τ), as well as masking (m) and scaling (g)
of the input is reflected in the experimental setup.Thekeydifferencebetween
the simulated reservoir and the experimental reservoir is the number of
nodes n. Despite these differences in the readout, post-processing meth-
odologies remained unaffected and could be implemented as established.

In addition to the physical reservoir readout, we took our driving P-
coordinates of the input series, corresponding to a Mackey–Glass attractor.
This enabled us to choose our prediction task, which we set as P-to-P 10-
step-ahead forecasting.

Fig. 5 | Multi-random-timeshifting on the simulated reservoir computer, Lorenz
x-to-z cross-prediction. a Scan of feature dimension O (up to O = 13n features) vs
max-random-timeshift R, for testing error. Maroon dots indicate optimal max-
timeshift R at feature dimensionO. The maroon dashed line indicates the minimum
value that the max-random-timeshift R may take at a given feature dimension.
b Scan of feature dimensionO (up toO = 120n features) vsmax-random-timeshiftR,
for testing error (teal line). For O ≤ 20n, data are complete for partial replicas of the

state matrix. Maroon dots indicate optimal max-timeshift R at feature dimensionO.
The maroon dashed line indicates the minimum value that the max-random-
timeshift Rmay take at a given feature dimension. The orange dashed line indicates
the result of training on the base state matrix S. The shaded area around each line
indicates the MAD of the realisation set. NRMSE normalised root mean square
error, MAD median absolute deviation.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 9

www.nature.com/commseng

In the “uniform-timeshifting, S_:::_SdΣN ” column of Table 3, replica
number N = 1 corresponds to training on the base state matrix S, without
post-processing. We report a 45% decrease in error when training on the
N = 2 uniform-timeshift state matrix S_Sd2 . This improved performance is
consistent with improvements seen in the simulated computer. Training on
N = 3 uniform-timeshifts state matrix S_Sd2

_SdΣ3 gives a further 27%

decrease in error from N = 2. Training on N ≥ 3 uniform-timeshifts state
matrix S_:::_SdΣN indicates progressively improving performance. Uni-

form timeshifts {d1, . . . dN}must be re-optimised with increasingN replicas,
which is also consistent with the simulated reservoir computer. Addition-
ally, Fig. 6b shows the parameter space of optimal configurations (dark teal/
black) for uniform timeshifts d2 and d3. The optimal configuration space on
the physical reservoir follows a similar configuration space observed on the
simulated reservoir computer for the same Mackey–Glass P-to-P 10-step-
ahead-forecasting task, shown in Fig. 6d.

In the “random-timeshifting, Sr1
_:::_SrN ” columnof Table 3, starting

at N = 1 replica we report that optimal random-timeshifting leads to a 51%

decrease in error compared to base training. Consistent with observations
on the simulated reservoir system, Fig. 6c illustrates how training on N ≥ 2
multi-random-timeshifts state matrices Sr1

_:::_SrN progressively
improves predictive performance (teal line). We also observed that the
optimal max-random-timeshift R (maroon dots) generally increases with
replica number N, as was observed on the simulated reservoir computer.

Mackey–Glass P-to-P 1-step-ahead forecasting was also carried out
(Suppl. Note 5). Our results for training on the base state matrix S without
post-processingcorroboratewithpreviouslypublished results for this task17.

Taken together, these consistencies suggest that post-processing meth-
ods established using simulated reservoirs can be translated to experimentally
realised readout data generated from a physical reservoir system.

Conclusion
We established simple post-processingmethods on our simulated reservoir
computer for a variety of chaotic attractor prediction tasks. These methods
introduced delayed versions of reservoir states for training, as inspired by
delay embedding.

Fig. 6 | Timeshifting on the physical photonic reservoir computer, Mackey–Glass
P-to-P 10-step-ahead forecasting. a Experimental setup of our physical reservoir17.
The device receives and processes the input signal x(t) (gold components) before
feeding into the reservoir that performs nonlinear mapping (orange components).
The reservoir state is observed and collected as the physical reservoir’s readout (teal
components). b Scan of multi-uniform-timeshifts d2 vs d3, for testing error at N = 3
replicas and O = 3n features. c Scan of feature dimension O (up toO = 20n features)
vs max-random-timeshift R, for testing error (teal line). Maroon dots indicate

optimal max-timeshift R at feature dimension O. The maroon dashed line indicates
the minimum value that the max-random-timeshift R may take at a given feature
dimension. The orange dashed line indicates the result of training on the base state
matrix S. The shaded area around each line indicates the MAD of the realisation set.
d Simulated reservoir comparison to panel (b). NRMSE normalised root mean
square error, MAD median absolute deviation.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 10

www.nature.com/commseng

Improved performance of training on the optimal uniform-timeshift
statematrix, which concatenates a uniformly-timeshifted statematrix to the
base state matrix, was partly attributed to its increased feature dimension35.
Uniform timeshifting can thus be viewed as a computationally inexpensive
post-processing alternative to increasing reservoir node dimension for
higher-dimensional mapping of the input36,37, that achieves similar results.

We expanded uniform-timeshifting into multi-uniform-timeshifting,
which concatenates uniformly-timeshifted state matrices into a multi-
uniform-timeshifts state matrix. The improved performance with increas-
ing state matrix replicas is consistent with delay embedding playing a role.
Additionally, the optimal uniform timeshifts are not evenly spaced, indi-
cating that a non-uniform delay embedding is ideal.

Random-timeshifting of base state matrix features was established on
our simulated computer. The performance improvement when training on
the optimal random-timeshifts state matrix was consistent with previous
work6,7. We did not observe state matrices with larger covariance rank
generally outperform state matrices of smaller covariance rank7,12,39,40, when
scanning max-random-timeshifts at optimal and sub-optimal values. A
larger covariance rank is therefore not a complete explanation of why
optimal random-timeshifting outperformed training on the base state
matrix of equal feature dimension.

Under optimal timeshift delays, we found that the total recall of past
states from existing nodes is superior to collecting extra node states from a
larger reservoir. This finding inspired multi-random-timeshifting, by ran-
domly recalling past states of a clamped reservoir in order to increase the
number of training features. Multi-random-timeshifting performs just as
well as multi-uniform-timeshifting when training on equivalent feature
dimensions derived from equivalent reservoir sizes. However, given that
multi-random-timeshifting is much cheaper to optimise, we were able to
reach better performance with this method at feature dimensions that are
intractable to optimise for multi-uniform-timeshifting. Multi-random-
timeshifting is thus our preferred post-processing method among those
investigated in this paper.

We translated our established methods to an experimentally realised
physical photonic reservoir system17, given that our post-processing
methods are applied to the training scheme after reservoir states are gen-
erated.We showed that ourmethods improvedpredictive performance.We
believe that integratingmulti-random-timeshifting in the standard training
scheme of both simulated and physical reservoir computers can improve
performance for minimal computational investment.

Our implementation of the multi-random-timeshifting algorithm is
applicable to autonomous prediction tasks, such as Lorenz attractor closed-
loop predictions41. Aside from influencing training performance, themulti-
random-timeshifting algorithm introduces delay terms to the trained
autonomous system when the reservoir is operated in a closed loop. The

influence of these time delays on solutions and the stability of the trained
autonomous system remains to be explored in future work.

Data availability
The simulationdata that support thefindingsof this study are available from
the corresponding author upon reasonable request.

Code availability
Code implementing the timeshifting post-processing algorithms used
during the current study is available online42. Additional simulation code is
available from the corresponding author upon reasonable request.

Received: 15 July 2024; Accepted: 4 December 2024;

References
1. Jaeger, H. The “echo state” approach to analysing and training

recurrent neural networks, GMD Report 148. https://doi.org/10.
24406/publica-fhg-291111 (GMD—German National Research
Institute for Computer Science, 2001).

2. Maass, W., Natschläger, T. & Markram, H. Real-time computing
without stable states: a new framework for neural computation based
on perturbations. Neural. Comput. 14, 2531 (2002).

3. Tan, E. et al. Selecting embedding delays: an overview of embedding
techniques and a newmethod using persistent homology. Chaos 33,
032101 (2023).

4. Marquez, B. A., Suarez-Vargas, J. & Shastri, B. J. Takens-inspired
neuromorphic processor: a downsizing tool for random recurrent neural
networks via feature extraction. Phys. Rev. Res. 1, 033030 (2019).

5. Jaurigue, L. & Lüdge, K. Reducing reservoir computer
hyperparameter dependence by external timescale tailoring.
Neuromorph. Comput. Eng. 4, 014001 (2024).

6. Del Frate, E., Shirin, A. & Sorrentino, F. Reservoir computing with
random and optimized time-shifts. Chaos 31, 121103 (2021).

7. Carroll, T. L. & Hart, J. D. Time shifts to reduce the size of reservoir
computers. Chaos 32, 083122 (2022).

8. Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An
experimental unification of reservoir computing methods. Neural
Networks 20, 391 (2007).

9. Takens, F. Detecting strange attractors in turbulence. In Dynamical
Systems and Turbulence,Warwick 1980 (eds. Rand, D. & Young L. S.)
366–381 (Springer Berlin Heidelberg, Berlin, 1981).

10. Picco, E., Antonik, P. & Massar, S. High speed human action
recognition using a photonic reservoir computer. Neural Netw. 165,
662 (2023).

Table 3 | Physical photonic reservoir computer results of Mackey–Glass P-to-P 10-step-ahead forecasting

Uniform-timeshifting, S_:::_SdΣ
N

Random-
timeshifting, Sr1

_:::_SrN

N replicas O features NRMSE d2 d3 d4 d5 d6 NRMSE ±MAD R

1 n 0.55* – – – – – 0.27 ± 0.02 8

2 2n 0.30 4 – – – – 0.22 ± 0.02 10

3 3n 0.22 3 2 – – – 0.20 ± 0.01 12

4 4n 0.19 3 1 1 – – 0.193 ± 0.006 11

5 5n 0.17 3 1 1 2 – 0.19 ± 0.01 13

6 6n 0.15 3 1 1 7 9 0.18 ± 0.01 10

7 7n – – – – – – 0.174 ± 0.005 10

10 10n – – – – – – 0.165 ± 0.006 14

20 20n – – – – – – 0.158 ± 0.002 20

NRMSE normalised root mean square error,MADmedian absolute deviation.
*Result of training on the base state matrix S.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 11

https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.24406/publica-fhg-291111
www.nature.com/commseng

11. Hart, A. G., Hook, J. L. & Dawes, J. H. Embedding and approximation
theorems for echo state networks. Neural Netw. 128, 234 (2020).

12. Storm, L., Gustavsson, K. & Mehlig, B. Constraints on parameter
choices for successful time-series prediction with echo-state
networks.Mach. Learn. Sci. Technol. 3, 045021 (2022).

13. Hülser, T., Köster, F., Jaurigue, L. & Lüdge, K. Role of delay-times in
delay-based photonic reservoir computing. Opt. Mater. Express 12,
1214 (2022).

14. Köster, F., Ehlert, D. & Lüdge, K. Limitations of the recall capabilities in
delay based reservoir computing systems. Cogn. Comput. https://
doi.org/10.1007/s12559-020-09733-5 (2020).

15. Nieters, P., Leugering, J. & Pipa, G. Neuromorphic computation in
multi-delay coupled models. IBM J. Res. Dev. 61, 8:7 (2017).

16. Jaurigue, L., Robertson, E., Wolters, J. & Lüdge, K. Reservoir
computing with delayed input for fast and easy optimization. Entropy
23, 1560 (2021).

17. Bueno, J., Robertson, J., Hejda, M. & Hurtado, A. Comprehensive
performance analysis of a vcsel-based photonic reservoir computer.
IEEE Photon. Technol. Lett. 33, 920 (2021).

18. Appeltant, L. et al. Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 468 (2011).

19. Larger, L. et al. Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Opt. Express
20, 3241 (2012).

20. Barazani, B., Dion, G., Morissette, J.-F., Beaudoin, L. & Sylvestre, J.
Microfabricated neuroaccelerometer: Integrating sensing and reservoir
computing in mems. J. Microelectromech. Syst. 29, 338 (2020).

21. Van der Sande, G., Brunner, D. & Soriano,M. C. Advances in photonic
reservoir computing. Nanophotonics 6, 561 (2017).

22. Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel
photonic information processing at gigabyte per second data rates
using transient states. Nat. Commun. 4, 1364 (2013).

23. Goldmann, M., Köster, F., Lüdge, K. & Yanchuk, S. Deep time-delay
reservoir computing: dynamics and memory capacity. Chaos, 30,
093124 (2020).

24. Rodan, A. & Tiňo, P. Minimum complexity echo state network, IEEE
Trans. Neural Netw. https://doi.org/10.1109/tnn.2010.2089641
(2011).

25. Shahi, S., Fenton, F. H. & Cherry, E. M. Prediction of chaotic time series
using recurrent neural networks and reservoir computing techniques: a
comparative study.Mach. Learn. Appl. 8, 100300 (2022).

26. Viehweg, J., Worthmann, K. & Mäder, P. Parameterizing echo state
networks for multi-step time series prediction. Neurocomputing 522,
214 (2023).

27. Griffith, A., Pomerance, A. & Gauthier, D. J. Forecasting chaotic
systems with very low connectivity reservoir computers. Chaos 29,
123108 (2019).

28. Mwamsojo,N., Lehmann,F.,Merghem,K., Frignac,Y.&Benkelfat,B.-
E. A stochastic optimization technique for hyperparameter tuning in
reservoir computing. Neurocomput. 574, 127262 (2024).

29. Valencia, C. H., Vellasco, M. M. B. R. & Figueiredo, K. Echo state
networks: novel reservoir selection and hyperparameter optimization
model for time series forecasting.Neurocomputing 545, 126317 (2023).

30. Racca, A. &Magri, L. Robust optimization and validation of echo state
networks for learning chaotic dynamics.NeuralNetw.142, 252 (2021).

31. Lukosevicius, M. & Jaeger, H. Reservoir computing approaches to
recurrent neural network training. Comput. Sci. Rev. 3, 127 (2009).

32. Sakemi, Y., Morino, K., Leleu, T. & Aihara, K. Model-size reduction for
reservoir computing by concatenating internal states through time.
Sci. Rep. 10, 21794 (2020).

33. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130
(1963).

34. Mackey, M. C. & Glass, L. Oscillation and chaos in physiological
control systems. Science 197, 287 (1977).

35. Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information
processing capacity of dynamical systems. Sci. Rep. 2, 514 (2012).

36. Parlitz, U. Learning from the past: reservoir computing using delayed
variables,Front. Appl.Math. Stat. https://doi.org/10.3389/fams.2024.
1221051 (2024).

37. Duan, X. et al. Embedding theory of reservoir computing and reducing
reservoir network using time delays. Phys. Rev. Res. https://doi.org/
10.1103/PhysRevResearch.5.L022041 (2023).

38. Bollt, E. M. On explaining the surprising success of reservoir
computing forecaster of chaos? the universal machine learning
dynamical system with contrast to var and dmd. Chaos 31, 013108
(2021).

39. Hart, J. D., Sorrentino, F. & Carroll, T. L. Time-shift selection for
reservoir computing using a rank-revealing QR algorithm. Chaos 33,
043133 (2023).

40. Carroll, T. L. & Pecora, L. M. Network structure effects in reservoir
computers. Chaos 29, 083130 (2019).

41. Jaurigue, L. Chaotic attractor reconstruction using small reservoirs—
the influence of topology.Mach. Learn. Sci. Technol. 5, 035058
(2024).

42. Jaurigue, J. jonneljoja/reservoircomputer_postprocessing, Zenodo
https://doi.org/10.5281/zenodo.13849687 (2024).

Acknowledgements
J.J., J.R., A.H., and K.L. acknowledge funding from the European Union’s
Horizon 2020 programme under grant agreement number 101129904,
SPIKEPro. L.J. acknowledges funding from the Carl-Zeiss-Stiftung. A.H.
and J.R. acknowledge funding from the UKRI Turing AI Acceleration Fel-
lowships Programme (EP/V025198/1) and support from the Fraunhofer
Centre for Applied Photonics, FCAP.

Author contributions
J.J. performed the simulations. J.R. and A.H. performed the experimental
work. J.J. performed the analysis with L.J. and K.L. K.L. supervised this
work. All authors contributed to discussing and writing the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44172-024-00330-0.

Correspondence and requests for materials should be addressed to
Jonnel Jaurigue.

Peer review information Communications Engineering thanks Serge
Massar and the other, anonymous, reviewers for their contribution to the
peer review of this work. Primary Handling Editors: Fei Xia and Anastasiia
Vasylchenkova. Peer review reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 12

https://doi.org/10.1007/s12559-020-09733-5
https://doi.org/10.1007/s12559-020-09733-5
https://doi.org/10.1007/s12559-020-09733-5
https://doi.org/10.1109/tnn.2010.2089641
https://doi.org/10.1109/tnn.2010.2089641
https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.3389/fams.2024.1221051
https://doi.org/10.1103/PhysRevResearch.5.L022041
https://doi.org/10.1103/PhysRevResearch.5.L022041
https://doi.org/10.1103/PhysRevResearch.5.L022041
https://doi.org/10.5281/zenodo.13849687
https://doi.org/10.5281/zenodo.13849687
https://doi.org/10.1038/s44172-024-00330-0
http://www.nature.com/reprints
www.nature.com/commseng

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44172-024-00330-0 Article

Communications Engineering | (2025) 4:10 13

http://creativecommons.org/licenses/by/4.0/
www.nature.com/commseng

	Post-processing methods for delay embedding and feature scaling of reservoir computers
	Methods
	Reservoir computer model
	Post-processing the state matrix
	Uniform-timeshifting
	Multi-uniform-timeshifting
	Random-timeshifting

	Prediction tasks
	Reservoir systems
	Simulated reservoir
	Physical photonic reservoir

	Results
	Simple post-processing
	Uniform-timeshifting improved performance
	Multi-uniform-timeshifting improved performance
	Random-timeshifting improved performance

	Recall implementation
	Total recall improves performance even as it reduces node dimension

	Multi-random-timeshifting
	Multi-random-timeshifting gives the best performance
	Optimising timeshift delays

	Translation to a physical reservoir

	Conclusion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

