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Abstract This paper develops semi-analytical and
analytical methodologies to estimate the probability of
the Dawn spacecraft being captured into a 1:1 ground-
track resonance around Vesta. The spacecraft, using
low-thrust propulsion, approached the asteroid Vesta,
and one significant challenge during this phase is cross-
ing ground-track resonances with the asteroid. As the
capture phenomenon is dependent on the initial con-
dition of the trajectory, it is necessary to accurately
estimate the probability of such a capture. Firstly, the
system dynamics are described by a model incorporat-
ing Hamiltonian perturbations from the irregular grav-
itational field up to the second degree and order, and
continuous low-thrust that is constant in magnitude
and directed in the opposite direction of the space-
craft’s velocity. The resonance region is enclosed by
separatrices which are approximated with a fourth-
order polynomial for quantitative analysis. The Hamil-
tonian, serving as a proxy for the system’s energy,
changes when the spacecraft crosses the separatri-
ces, and these changes are quantified using a global
adaptive quadrature method. Finally, the probability
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of capture into ground-track resonance is estimated
based on the energy change across the separatrices,
and the accuracy and efficiency of the developed semi-
analytical and analytical methodologies are investi-
gated by comparing them to numerical simulations
based on the perturbedHamilton’s equations ofmotion.
This research makes a significant contribution to the
field of astrodynamics by providing a systematic and
efficient approach to estimating the probability of res-
onance capture.
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1 Introduction

Resonance, a fundamental concept in dynamical sys-
tems, occurs when these systems exhibit amplified
oscillations as they are externally perturbed at their
inherent natural frequencies. This concept is found
across various fields, including but not limited to
plasma physics [1], celestial mechanics [2], and astro-
dynamics [3]. Within celestial mechanics and astro-
dynamics, different types of orbital resonances exist.
These vary from mean-motion resonances, character-
ized by the orbital periods of two celestial objects hav-
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ing a simple integer relationship [4], to secular reso-
nances [5], secondary resonances [6], spin-orbit reso-
nances [7], and ground-track resonances (GTRs) [3].
For GTRs to occur, the orbital period of a spacecraft
needs to be commensurate with the rotational period
of the central celestial body, e.g. geostationary space-
craft orbit Earth in a 1:1 ground-track resonance [8].
Previous studies have delved into the impact of irreg-
ular gravitational fields on resonant satellite orbits.
Scheeres [9] focused on satellites orbiting irregularly
shaped asteroids, particularly investigating periodic
orbits around the ellipsoids mimicking asteroids Vesta
and Eros. Further studies have extended this research
to include asteroid Toutatis [10] and moons such as
Europa [11–13] and Enceladus [14,15].

In 2011, the Dawn spacecraft made a successful
approach with asteroid Vesta [16]. This mission was
among the first to use low-thrust propulsion for both its
cruising and approaching stages to an asteroid. It show-
cased the possibility of using low-thrust systems for
extended mission duration [17–19]. While low-thrust
propulsion systems, such as those employed by Dawn,
offer advantages like fuel efficiency and extended mis-
sion duration, they also present unique challenges in
designing the spacecraft’s trajectory [20]. A primary
concern in this context is the potential capture of the
spacecraft in a 1:1 GTR [3] with the target asteroid.
Delsate [21] found the 1:1 GTR to be the largest GTR
that the spacecraft crosses during its descent and for
this reason, this paper focuses on this GTR. With each
orbital revolution, the spacecraft is exposed to an identi-
cal gravitational configuration, the accumulated effects
of which substantially modify the spacecraft’s orbital
parameters like eccentricity and inclination [22,23]. It
restricts the spacecraft in descending to lower altitudes,
thereby potentially limiting its ability to achieve key
scientific observations and data collection.

Given the potential mission-critical implications of
GTRs, as illustrated in the Dawn’s mission, a detailed
investigation into the probability of a spacecraft being
captured into such resonances around an asteroid
becomes important. The primary aim of this paper is to
use the Hamiltonian formalism to analyze the capture
into GTR phenomenon and, specifically, estimate the
probability of capture in it through semi-analytical and
analytical approaches. Our approach is highly adapt-
able to similar missions: while specific parameters,
such as the asteroid’s shape and mass or the space-
craft’s orbit, may vary across missions, the underly-

ing approach remains consistent. Consequently, our
findings and models can be effectively tailored to suit
diverse mission scenarios, offering broad applicability
in the field of astrodynamics.

The paper is organized as follows: Section 2 pro-
vides a description of the unperturbed dynamic model
for the motion of Dawn around Vesta and derives
the equations of motion and introduces the low-thrust
model used in this paper. The semi-analytical and ana-
lytical methodologies used to estimate the probability
of capture into 1:1 GTR are presented in Sect. 3. The
results of these estimations and the comparison with
numerical estimations are discussed in Sect. 4, where
the errors and computational time are also character-
ized. This section concludes by showing the advan-
tages of using the analytical methodologies during the
mission design phase. Finally, Sect. 5 synthesizes our
key findings, offering a concise summary of the study’s
contributions to the field. This section also identifies
avenues for future research, underscoring the ongoing
relevance and potential extensions of our work.

2 Dynamical model

In this section, the dynamical environment around
Vesta is discussed to identify the key perturbations that
influence the spacecraft’s motion. Thus, the Hamilto-
nian that describes themotion of a spacecraft around an
asteroid with an irregular gravitational field is formu-
lated. Finally, the impact of non-conservative forces,
such as the low-thrust, is derived.

2.1 Main perturbations

In 2011, the Dawn spacecraft reached the asteroid
Vesta successfully. As part of its approach phase, the
spacecraft descended fromahigh-altitudemission orbit
(HAMO) to a low-altitude mission orbit (LAMO) by
using low-thrust propulsion. The orbital distances for
HAMO and LAMO are 1000 km and 460 km, respec-
tively [3]. Nevertheless, the use of low-thrust propul-
sion for the descent stage introduced the risk of the
spacecraft being captured in GTRs in the vicinity of
Vesta. The asteroid’s physical characteristics are pre-
sented in Table 1. Vesta is assumed to rotate uniformly
about its principal axis of inertia around a constant
direction in the inertial frame. The Vesta’s unnormal-
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ized spherical harmonic coefficients are provided in
[24].

The spacecraft is subject to the following perturba-
tions [26]:

– Vesta’s irregular gravitational acceleration

anm = (n + 1)
μ

r2
Rn
e

rn
Jnm;

where Jnm = √
C2
nm + S2nm .

– Sun’s gravitational acceleration

aSun = 2μ�
d3�

r;

– solar radiation pressure acceleration

aSRP = Cr
A

m
P�

where r denotes the spacecraft’s distance from Vesta,
Cnm and Snm are the unnormalized Stokes coefficients,
n and m are the degree and order of the spherical har-
monic expansion considered, μ� represents the grav-
itational constant of the Sun, d� is the distance of the
spacecraft from the Sun, Cr = 0.25 [3] is the reflectiv-
ity coefficient of the spacecraft, A/m = 0.04 m2/kg
[3] is the area-to-mass ratio of the spacecraft, and P�
is the solar radiation pressure at a distance d� from
the Sun. The magnitudes of the main perturbations at
different orbital radii are illustrated in Fig. 1.

A detailed analysis of the figure demonstrates that
at the orbital radius corresponding to the 1:1 GTR, 537
km, Vesta’s second-degree gravitational perturbations
are many orders of magnitude stronger than the pertur-
bations from the Sun’s gravitational influence and the
solar radiation pressure. This highlights the importance
of accurately accounting for Vesta’s gravitational influ-
ence in the dynamical modelling of the spacecraft’s
trajectory. The zonal harmonics J20 and J30 are not
included as they donot contribute to the phenomenonof
1:1GTR [8,25]. Furthermore, it is worth noting that the
relative magnitudes of these perturbations vary signifi-
cantly depending on the orbital radius of the spacecraft.
Given the dominant effect of Vesta’s irregular gravita-
tional perturbations at the 1:1 GTR and the potential
impact on the spacecraft’s trajectory, in this paper, only
these perturbations are considered in the dynamical

Fig. 1 Order of magnitude of the various perturbations to which
the Dawn spacecraft is subject at different orbital radii. The loca-
tion of the 1:1 and 2:3 GTRs are highlighted for reference

modelling; solar gravitation and solar radiation pres-
sure are ignored in the following analysis.

2.2 Hamiltonian model

In celestialmechanics, the spherical harmonics approx-
imation is a commonly used method for characterizing
the gravitational field of celestial bodies [26,27]. This
method is based on the expansion of the gravitational
potential in terms of spherical harmonics, which are a
set of orthogonal functions defined on the surface of
a sphere. This approach maintains a balance between
accuracy and computational cost and has been exten-
sively utilized in prior studies [3,24]. In these studies,
the spherical harmonics approximation was employed
to model the gravitational fields of various asteroids,
including Vesta, 1996 HW1, and Betulia. In this paper,
we adopt this methodology to approximate Vesta’s
irregular gravitational field. The asteroid’s shape and
density variations are quantitatively captured through
the spherical harmonic coefficients [27], which serve as
key parameters in defining the gravitational potential.
The gravitational potential V is formulated as

V = −μ

r
+

∞∑

n=2

n∑

m=0

n∑

p=0

∞∑

q=−∞
μRn

e

an+1 Fnmp(i)Gnpq(e)Snmpq(ω, M,�, θ) (1)

where a is the semimajor axis, e is the eccentricity, i
is the inclination, Fnmp(i) and Gnpq(e) are functions
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Table 1 Vesta’s physical parameters [3]

Gravitational constant μ 17.5 km3/s2

Reference radius Re 300 km

Angular velocity θ̇ 3.2671 × 10−4 rad/s

dependent on the inclination and eccentricity, respec-
tively. The parameters ω, M , and � refer to the argu-
ment of periapsis, the mean anomaly, and the longitude
of the ascending node respectively, where θ denotes the
sidereal angle, n,m, p, q have integer values, and also

Snmpq =
{
Cnm cos�nmpq+Snm sin�nmpq , if n−m is even

−Snm cos�nmpq+Cnm sin�nmpq , if n − m is odd

where �nmpq represents Kaula’s phase angle defined
as

�nmpq = (n−2p)ω+(n−2p+q)M+m(�−θ) (2)

GTRs occur when the rate of change of Kaula’s phase
angle, �̇nmpq , is zero, indicating a commensurability of
the spacecraft’s orbital period around the asteroid with
the asteroid’s rotational period around its spin axis. For
a spacecraft orbiting an asteroid with an irregular grav-
itational field, the dynamical behavior of the spacecraft
can be described using the Hamiltonian H formulated
as [21]

H = − μ2

2L2 +
∞∑

n=2

n∑

m=0

n∑

p=0

∞∑

q=−∞
Rn
e

μn+2

L2n+2 Fnmp(i)Gnpq(e)Snmpq(ω, M,�, θ) + θ̇�

(3)

where L = √
μa and � is the canonically conjugate

momentum to θ , and the term θ̇� accounts for the aster-
oid’s rotation [21]. The dynamics of the system in the
vicinity of the 1:1 GTR are predominantly influenced
by the second degree and order gravitational term [28]
and, as was done in previous works [25], only this har-
monic is considered in the Hamiltonian formulation.
The Hamiltonian that captures this dynamic behaviour
is

H1:1 = − μ2

2L2 + R2
e
μ4

L6 F220(i)G200(e)

S2200(ω, M,�, θ) + θ̇� (4)

According to [27], F220(i) = 3
4 (1+cos i)2,G200(e) =

1 − 5
2e

2 and S2200(ω, M,�, θ) = cos(2(M + ω −
θ)) Thus, in the case of equatorial orbit (i = 0), the
Hamiltonian takes the form

H1:1 = − μ2

2L2 − 15

2
R2
e
μ4

L6

(
−3

5
+ G2

L2

)

C22 cos(2(M + ω − θ)) + θ̇� (5)

where G = L
√
1 − e2. To further simplify the Hamil-

tonian and analyze the resonant behaviour, a canonical
transformation is employed. The generating function
used for this transformation, F = (M + ω − θ)L ′ +
(−ω)G ′ + θ�′, results in a new set of canonical vari-
ables, enabling a more simplified representation of the
Hamiltonian and facilitating a more straightforward
analysis of the dynamics near the resonance. Accord-
ing to standard formulas for canonical transformation
of variables with the generating function F

σ = ∂F

∂L ′ , Q = ∂F

∂G ′ , L = ∂F

∂σ
, ,

G = ∂F

∂ω
� = ∂F

∂θ
(6)

Thus, the new canonical variable set (σ, L ′, Q,G ′,�)
is defined as

σ = M + ω − θ , Q = −ω , L = L ′ , ,

G = L ′ − K � = −L ′ + �′ (7)

where K = G ′ = L − G. The new Hamiltonian H̃1:1
is

H̃1:1 = − μ2

2L2 − 15

2
R2
e
μ4

L6

(
−3

5
+ (L − K )2

L2

)

C22 cos(2σ) − θ̇L (8)

where �′ = const and K = const as the Hamilto-
nian does not depend on conjugate to them variables,
the term θ̇�′ is omitted and the prime sign is dropped
for conciseness. The new Hamiltonian H̃1:1 provides a
clearer understanding of the resonance dynamics. Fig.
2 provides a visual representation of the phase portrait
of H̃1:1. As an example, the case of e = 0.2 is consid-
ered. To plot the phase-space in Fig. 2, the eccentricity
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Fig. 2 Phase-space of the 1:1 GTR for e = 0.2. The red lines
differentiate the separatrix lines, which are indicated as l1 for
the upper separatrix and l2 for the lower one. The coloured area
represents the resonance region

value is determined for a fixed value of K and the value
of L at the saddle point as defined in Eq. 11.

The horizontal and vertical axis, labeled as σ and
L , cover the range from 0 to 2π and from about 90
to 105 km2/s, respectively. The contour lines repre-
sent energy levels of constant Hamiltonian values in
the phase-space. Two bold red lines, labeled l1 and l2,
are identified.These lines represent the separatrices that
define the boundary between the circulation region and
resonance region (area highlighted in red) within the
phase-space.

2.3 Pendulum approximation

This section introduces a pendulum approximation for
the full Hamiltonian model for the 1:1 GTR. This
approximation facilitates a more intuitive understand-
ing of the resonance dynamics by reducing the com-
plexity of the Hamiltonian [25,29]. Considering the
Hamiltonian from Eq. 8, the Hamiltonian is redefined
as

H̃1:1 = − μ2

2L2 − A(L , K ) cos(2σ) − θ̇L (9)

where

A(L , K ) = 15

2
R2
e
μ4

L6

(
−3

5
+ (L − K )2

L2

)
C22 (10)

The value of L evaluated at the location of the 1:1GTR,
Lr , is determined by

μ2

L3
r

= θ̇ (11)

To analyze the behavior near the resonance, the Hamil-
tonian is expanded around Lr up to the second order,
leading to

Ĥ1:1 = −1

2
αp2 − Â cos(2σ) (12)

where

Â = A(Lr , K ) , α = 3μ2

L4
r

(13)

and the constant term is neglected. This expansion sim-
plifies themodel while retaining the essential dynamics
of the vicinity of the resonance. The resulting Hamil-
tonian, Ĥ1:1, resembles the structure of a pendulum’s
Hamiltonian [30]. It is composed of two principal com-
ponents: the quadratic term, representing the kinetic
energy of a pendulum system, and the cosine term,
analogous to the potential energy. This analogynot only
simplifies the conceptual understanding of the system’s
dynamics but also provides further analytical explo-
ration with a familiar framework. Finally, one condi-

tion that needs to be satisfied is Â �= 0, i.e. e �=
√

2
5 . As

the eccentricity value approaches
√

2
5 , a decrease in the

resonance region area is observed until it vanishes at

e =
√

2
5 . For e >

√
2
5 , a growth of the resonance region

is noted, accompanied by a shift on the x-axis by π/2
of the saddle and equilibrium points as illustrated in
Fig. 3.

2.4 Dissipative Forces in the Hamiltonian Formalism

Introducing energy dissipation is accomplished by
adding dissipative terms to the right hand sides of
Hamilton’s equations of motion, as discussed in [31].
The time variation of L is expressed in terms of the
change in a as

dL

dt
= μ

2L

da

dt
(14)
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Fig. 3 Phase-space of the 1:1 GTR for e = 0.8. The red lines
differentiate the separatrix lines, which are indicated as l1 for
the upper separatrix and l2 for the lower one. The coloured area
represents the resonance region

From Eq. 8.2.7 in [32], the averaged over the mean
anomaly time derivative of the semi-major axis affected
by tangential accelerations is

da

dt
= 2at

a2

μ
< v > (15)

where at = − T
m represents the magnitude of the tan-

gential acceleration generated by low-thrust maneu-
vers, v is the spacecraft velocity and < · > denotes
averaging over the mean anomaly M . The velocity is
obtained from

v2 = μ

(
2

r
− 1

a

)
(16)

and, with r = a(1−e cos E)with E being the eccentric
anomaly, the expression of the velocity becomes

v =
√

μ

a

√
1 + e cos E

1 − e cos E
(17)

Then, the spacecraft’s velocity is averaged over the
mean anomaly M as

< v >= 1

2π

∫ 2π

0

√
μ

a

√
1 + e cos E

1 − e cos E
dM (18)

Since M = E − e cos E , the expression of the average
of the spacecraft’s velocity is

< v > = 1

2π

∫ 2π

0

√
μ

a

√
1 + e cos E

1 − e cos E
(1 − e cos E)dE =

(19)

= 1

2π

√
μ

a

∫ 2π

0

√
1 − e2 cos2 EdE = (20)

= 2

π

√
μ

a

∫ π/2

0

√
1 − e2 cos2 EdE = (21)

=
√

μ

a
< v̂ > (22)

where < v̂ >= 2
π

∫ π/2
0

√
1 − e2 cos2 EdE = 2

π
E(e)

and E(e) is the complete elliptic integral of the second
kind of e. Therefore, the time variation of L is

dL

dt
= − T

m

L3

μ2

√
μ

a
< v̂ >= (23)

= − T

m

L2

μ
< v̂ > (24)

Then, dL
dt is expanded up to the first order with respect

to p,

dL

dt
= − T

m

L2
r

μ

〈
v̂〉∣∣L=Lr

− 2
T

m

Lr p

μ

〈
v̂〉∣∣L=Lr

−

− T

m

L2
r

μ

∂

∂e2
< v̂ >

∂e2

∂L

∣∣∣∣
L=Lr

p (25)

where

∂e2

∂L
= ∂

∂L

[

1 −
(
1 − K

L

)2
]

= (26)

= −2

(
1 − K

L

)
K

L2 (27)

and

∂

∂e2
< v̂ > = − 1

π

∫ π/2

0

cos2 E√
1 − e2 cos2 E

dE = (28)

= − 1

π

E(e) − K(e)

2e2
(29)

where K(e) is the complete elliptic integral of the first
kind of e. So,

dL

dt
= − T

m
[FL(K ) + DL(K )p] (30)
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where

FL = L2
r

μ

〈
v̂〉∣∣L=Lr

(31)

DL = 2Lr

μ

〈
v̂〉∣∣L=Lr

+ L2
r

μ

∂

∂e2
< v̂ >

∂e2

∂L

∣∣∣∣
L=Lr

(32)

For clarity, the variation of L due to the low-thrust is
expressed as TL . Analogously, it is possible to define
the time variation of G. The time variation of G =√

μP is defined as

dG

dt
= μ

2G

dP

dt
(33)

where P is the semilatus rectum. From Eq. 8.2.10
in [32], the averaged over the mean anomaly rate of
change of P due to tangential low-thrust acceleration
is

dP

dt
= −2

T

m
P <

1

v
> (34)

From Eq. 22, the average of the inverse of the space-
craft’s velocity is derived as

<
1

v
> = 1

2π

∫ 2π

0

√
a

μ

√
1 − e cos E

1 + e cos E

(1 − e cos E)dE = (35)

= 1

π

√
a

μ

∫ π

0

(1 − e cos E)3/2√
1 + e cos E

dE = (36)

= 1

π

√
a

μ

∫ π

0

(1 − e cos E)2√
1 − e2 cos2 E

dE = (37)

= 1

π

√
a

μ

∫ π/2

0

[
(1 − e cos E)2√
1 − e2 cos2 E

+ (1 + e cos E)2√
1 − e2 cos2 E

]
dE = (38)

= 2

π

√
a

μ

∫ π/2

0

1 + e2 cos2 E√
1 − e2 cos2 E

dE = (39)

=
√

a

μ
<

1

v̂
> (40)

where < 1
v̂

>= 2
π

∫ π/2
0

1+e2 cos2 E√
1−e2 cos2 E

dE = 2
π
(2K(e) −

E(e)). Therefore,

dG

dt
= − T

m

LG

μ
<

1

v̂
> (41)

Since G = L − K and L = Lr + p, it is possible to
expand dG

dt up to the first order with respect to p,

dG

dt
= − T

m

Lr (Lr − K )

μ

〈1
v̂
〉
∣∣∣∣
L=Lr

− T

m

(2Lr − K )

μ
p 〈1

v̂
〉
∣∣∣∣
L=Lr

−

− T

m

Lr (Lr − K )

μ

∂

∂e2
<

1

v̂
>

∂e2

∂L

∣∣∣∣
L=Lr

p (42)

where

∂

∂e2
<

1

v̂
> = 2

π

(
E(e)

e2(1 − e2)
− E(e) + K(e)

2e2

)

(43)

So,

dG

dt
= − T

m
[FG(K ) + DG(K )p] (44)

where

FG = Lr (Lr − K )

μ
〈1
v̂
〉
∣∣∣∣
L=Lr

(45)

DG = 2Lr − K

μ

〈1
v̂
〉
∣∣∣∣
L=Lr

+ Lr (Lr − K )

μ

∂

∂e2
<

1

v̂
>

∂e2

∂L

∣∣∣∣
L=Lr
(46)

As K = L − G, the time variation of K due to the
low-trust is

TK = TL − TG = − T

m
[FK (K ) + DK (K )p] (47)

where FK = FL − FG and DK = DL −DG . Similarly
to the time variation of L , the variation of K due to the
low-thrust is expressed as TK . Finally, the effect of the
low-thrust on σ is evaluated as

dσ

dt
= d

dt
(M + ω) (48)
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Considering that M = M(E(ν, e), e), where ν is the
true anomaly, the expression is expanded as

dσ

dt
= ∂M

∂E

(
∂E

∂ν

dν

dt
+

(
∂E

∂e

)

ν

de

dt

)
+ ∂M

∂e

de

dt
+ dω

dt
(49)

Since dν
dt = − dω

dt [32], the expression is rearranged as
follows
dσ

dt
=

(
−∂M

∂e

∂E

∂ν
+ 1

)
Tω

+
(

∂M

∂E

(
∂E

∂e

)

ν

+ ∂M

∂e

)
Te (50)

where Te = de
dt , Tω = dω

dt and

∂E

∂ν
= 1 − e cos E√

1 − e2
,

∂M

∂E
= 1 − e cos E ,

∂M

∂e
= − sin E (51)

From Eqs. 8.2.3 and 8.2.4 in [32], the variation of
eccentricity and longitude of periapsis over time due
to the low-thrust is defined as

de

dt
= −2

v

T

m
(e + cos ν) (52)

= −2
√

a

μ

T

m

√
1 − e cos E

1 + e cos E

(1 − e2) cos E

1 − e cos E
(53)

dω

dt
= − 2

ev

T

m
sin ν = (54)

= −2

e

√
a

μ

T

m

√
1 − e cos E

1 + e cos E

√
1 − e2 sin E

1 − e cos E
(55)

From tan ν
2 =

√
1+e
1−e tan

E
2 , it is possible to derive the

expression of the rate of change of E with respect to e
as follows
∂

∂e

(
tan

ν

2

)
= ∂

∂e

(√
1+e
1−e

)
tan E

2

+
√

1+e
1−e

∂
∂e

(
tan E

2

)
(56)

So,

(
∂E

∂e

)

ν

= −2

√
1 − e

1 + e
cos2

E

2

∂

∂e

(√
1 + e

1 − e

)

tan
E

2

(57)

Given that

– ∂E
∂ν

is an even function of E ;

– ∂M
∂E is an even function of E ;

– ∂e
∂t is an even function of E ;

– ∂M
∂e is an odd function of E ;

– ∂E
∂e is an odd function of E ;

– ∂ω
∂t is an odd function of E ;

it can be concluded that dσ
dt is an odd function of E and

its average over M is zero. Thus, the low-thrust does
not affect the evolution of σ . Introducing the variable
p = L − Lr , the perturbed Hamilton’s equations of
motion become

⎧
⎪⎪⎨

⎪⎪⎩

σ̇ = ∂H̃1:1
∂p

ṗ = − ∂H̃1:1
∂σ

+ TL
K̇ = TK

(58)

where the first equation does not have any perturba-
tion term, since it is proven that the low-thrust does
not affect the evolution of σ . For the numerical prop-
agation of the trajectories the complete Hamiltonian
model H̃1:1 is used. While σ and p have a clear physi-
cal meaning, K does not have a clear physical meaning.
It is an intermediate quantity to facilitate mathematic
derivations. It is a quantity which is dependent on both
the semimajor axis and eccentricity represented by the
variables L and G, respectively. It is possible to con-
sider it as a conservation law for the system. In fact,
K = const for T = 0. Figure 4 shows a numeri-
cal validation of the resonance capture phenomenon
for e0 = 0.2. Initial resonance angles are uniformly
distributed in the range [0,2π ], and a semi-major axis
value of 700 km is adopted as the initial condition.

The numerical simulation results suggest a reso-
nance capture of the spacecraft, as highlighted in red
in Fig. 4. This capture is represented in the top-left plot
of Fig. 4, where the momentum L undergoes libration
about the resonance point at L = Lr . The top-right
plot of Fig. 4 offers a phase portrait that showcases the
system’s trajectory in phase-space. Herein, the trajec-
tory in resonance revolves around the stable equilib-
rium point (σ ,L) = (π /2,Lr ). As the system evolves,
the Delaunay action K increases, as illustrated in the
bottom-left plot. Similarly, the eccentricity e increases
over time as shown in the bottom-right plot. The growth
of the eccentricity e can be explained as follows. The
rate of change of e is the sum of two terms: the Hamil-

123



On estimations of Dawn spacecraft’s capture probability 14781

Fig. 4 Evolution of trajectory over time for the case of 1:1 GTR
crossing.Capture cases and the separatrices are highlighted in red
and in black, respectively. The top diagrams show the evolution
of L = p+Lr over time and in phase-space. The lower diagrams
show the variations of K and eccentricity with time, respectively

tonian one (due to the gravitational potential of the
asteroid) and non-Hamiltonian (due to the thrust). The
former term produces only oscillations of the eccen-
tricity. while the latter causes the secular evolution of
the eccentricity. Its rate is given by Eq. 53 via averaging
over the mean anomaly M

de

dt
= − 1

π

√
a

μ

T

m

∫ 2π

0

√
1−e cos E

1+e cos E

(1−e2) cos E

1−e cos E
dM

(59)

= − 1

π

√
a

μ

T

m

∫ 2π

0

√
1 − e cos E

1 + e cos E

(1 − e2) cos E

1 − e cos E

(1 − e cos E)dE (60)

= − 2

π

√
a

μ

T

m
(1 − e2)

∫ π

0

√
1−e cos E

1 + e cos E
cos EdE

(61)

= − 2

π

√
a

μ

T

m
(1−e2)

∫ π/2

0

(√
1−e cos E

1+e cos E

−
√
1 + e cos E

1 − e cos E

)
cos EdE (62)

= 1

π

√
a

μ

T

m
(1−e2)

∫ π/2

0

4e cos2 E√
1−e2 cos2 E

cos EdE

(63)

Therefore, as T is the thrust magnitude and it is always
positive, the eccentricity increases in average over time
for e �= 0. Finally, it is observed that the growth of the
eccentricity leads to an important phenomenon in the
behaviour of the periapsis. The radius of periapsis is
rp = a(1 − e). The semi-major axis a either decays
on average (when the spacecraft is not captured into
the resonance) or oscillates about ar = L2

r /μ (when
the spacecraft is captured in the resonance). Thus, the
growth of the eccentricity leads to a secular decay of rp ,
which in turn may lead to the collision of the spacecraft
with the asteroid. This should be considered in planning
missions similar to that of Dawn.

3 Methodology

This section explores into the semi-analytical method-
ology employed to estimate the probability of capture
into a 1:1 GTR. The phase-space region, denoted by
U and defined by the canonical coordinates (σ ,p), is
defined such that the initial conditions are uniformly
distributed within it. In this region, a specific subset
of initial conditions, denoted as Ures , is distinguished.
These conditions result in the system’s confinement
within the resonance region. The probability of cap-
ture into this resonance is expressed as [33]

Pr = mesUres

mesU
(64)

where mesUres and mesU represent the volumes of the
regions Ures and U in phase-space, respectively. It is
important to note that the above formulation is specif-
ically defined for a numerical evaluation of the prob-
ability. From an analytical standpoint, the probability
needs to be adapted using energy-related attributes of
the system. Drawing upon insights from [34], the prob-
ability of capture into 1:1 GTR is formulated as

Pr =
∫
l1∪l2

d
≈
H1:1
dt dt

∫
l1

d
≈
H1:1
dt dt

(65)

where
∫
l1∪l2 represents an line integration along both

l1 and l2 and
∫
l1

indicates the line integral along l1
exclusively. Indicating H̃SP as the Hamiltonian H̃1:1
from Eq. 8 evaluated at the separatrix’s saddle point,
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the Hamiltonian is normalized as

≈
H1:1 = H̃1:1 − H̃SP (66)

This normalization is required because the trajectory
evolution in phase-space along the separatrix is char-
acterized and can last for an infinite time duration as
explained in [33,34].Hence, by normalizing theHamil-
tonian, convergence of the integrals is guaranteed. As
is mentioned in Sect. 2.3, the phase portrait is different
depending on the value of the eccentricity. Thus in the

following sections, the case of e <

√
2
5 is considered.

3.1 Full model

Themethodology used to estimate the probability relies
upon the normalized full Hamiltonian model from Eq.
66. Firstly, the values of p associated with the separa-
trices, denoted as psep, are approximated numerically
using an N-th order polynomial function

psep =
N∑

i=0

ci (K )σ i (67)

where ci (K ) are the coefficients of the polynomial, and
σ is the variable of the function. Here, the coefficient K
is fixed at Ksep, the value corresponding to the trajec-
tory’s intersection with the separatrix. The determina-
tion of Ksep involves numerically solving the perturbed
Hamilton’s equations for various initial conditions to
identify the separatrix crossings. This process consists
in comparing the Hamiltonian’s value at each instant
with its value at the separatrix to ascertain Ksep for the
i-th trajectory. The average of these Ki

sep values is then
calculated to establish Ksep. An investigation into the
appropriate order of the polynomial for approximat-
ing the separatrices reveals that a 4th-order polynomial
suitably approximates the separatrices, as shown in Fig.
5, where the black dashed lines effectively approximate
the separatrix (in red).

Since the upper and lower separatrices have differ-
ent shapes, these functions are further classified into
lower and upper separatrices, labelled as plowsep and pupsep ,
respectively. Considering Eq. 65, the denominator’s

Fig. 5 Separatrices (in red) and their approximation psep (in
black)

integral argument is developed as

d
≈
H1:1
dt

= ∂
≈
H1:1
∂σ

∂σ

∂t
+ ∂

≈
H1:1
∂p

∂p

∂t
+ ∂

≈
H1:1
∂K

∂K

∂t
(68)

Substituting the perturbed Hamilton’s equation of
motion from Eq. 58, the Hamiltonian time derivative
is

d
≈
H1:1
dt

= ∂
≈
H1:1
∂σ

∂
≈
H1:1
∂p

− ∂
≈
H1:1
∂p

∂
≈
H1:1
∂σ

+ ∂
≈
H1:1
∂p

TL + ∂
≈
H1:1
dK

TK (69)

= ∂
≈
H1:1
∂p

TL + ∂
≈
H1:1
∂K

TK (70)

Thus,

∫

l1

d
≈
H1:1
dt

dt =
∫

l1

∂
≈
H1:1
∂p

TLdt +
∫

l1

∂
≈
H1:1
∂K

TKdt =
(71)

=
∫

l1

∂
≈
H1:1
∂p

TL
1
dσ
dt

dσ +
∫

l1

∂
≈
H1:1
∂K

TK
1
dσ
dt

dσ (72)

Substituting the expression of dσ/dt from the per-
turbed Hamilton’s equations of motion Eq. 58, the inte-
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gral is expressed as

∫

l1

d
≈
H1:1
dt

dt =
∫ 0

π

TLdσ +
∫ 0

π

∂
≈
H1:1
∂K

1

∂
≈
H1:1
∂p

TK dσ

(73)

This expression is then evaluated at p = pupsep(σ ) since
the expression is integrated along the upper separatrix,
and numerically integrated employing the global adap-
tive quadrature technique as outlined in [35]. This tech-
nique divides the integration domain into subintervals,
approximating the integral as the sum of their contribu-
tions. The subinterval sizes are dynamically adjusted to
minimize approximation errors. The numerator of the

equation is derived as

∫

l1∪l2
d

≈
H1:1
dt

dt =
∫

l1

d
≈
H1:1
dt

dt +
∫

l2

d
≈
H1:1
dt

dt (74)

The first term is the same as in the denominator. The
second one is developed similarly as

∫

l2

d
≈
H1:1
dt

dt =
∫ π

0
TLdσ +

∫ π

0

∂
≈
H1:1
∂K

1

∂
≈
H1:1
∂p

TK dσ

(75)

evaluated at the curve p = plowsep (σ ), since the expres-
sion is integrated along the lower separatrix. It is impor-
tant to notice that the integration along l1 is performed
from π to 0 while the integration along l2 is performed
from 0 to π , as this is the direction in which the trajec-
tory evolves in phase-space. Referencing to the upper
right plot of Fig. 4, the trajectory in phase-space evolves
from right to left. As the trajectory approaches the res-
onance region, it evolves along the upper separatrix l1
from 2π to π , while along the lower separatrix l2 from
π to 2π . Since the period of the Hamiltonian is π , the
integral is done in the interval from 0 to π .

3.2 Pendulum approximation

Similar to the full model, the Hamiltonian value under-
goes normalization, yielding ˆ̂H1:1 = Ĥ1:1 − Â, where
Â is defined in Eq. 13. Consequently, the new Hamil-

tonian, ˆ̂H1:1, is represented as

ˆ̂H1:1 = −1

2
αp2 + 2 Â sin2 σ (76)

The rate of change of ˆ̂H1:1 is determined as

d ˆ̂H1:1
dt

= −αp TL + 2
d Â

dK
sin2 σ TK (77)

So, the probability of capture is

Pr =
∫
l1∪l2 −αp [FL(K ) + DL(K )p] + 2 d Â

dK sin2 σ [FK (K ) + DK (K )p] dt
∫
l1

−αp [FL(K ) + DL(K )p] + 2 d Â
dK sin2 σ [FK (K ) + DK (K )p] dt

(78)

The expression needs to be evaluated along the separa-
trix. It is noted that the equation remains unaffected by
both the spacecraft mass and the thrust magnitude since
both T and m are cancelled from the equation as they
were included in each term of the equation. Imposing

the condition ˆ̂H1:1 = 0, it follows that

psep = ±2

√
Â

α
sin σ (79)

The pendulum model has the same shape of upper and
lower separatrices. Thus, there is no need to distinguish
between plowsep and pupsep as for the fullmodel.Upon com-
bining Eq. 77 and Eq. 79, the probability of achieving
a 1:1 GTR capture is

Pr =
8
√

Â
α
DL − 4 ∂ Â

∂K
1√
Âα

FK

πFL + 4
√

Â
α
DL − 2 ∂ Â

∂K
1√
Âα

FK − π
α

∂ Â
∂K DK

(80)

The advantage of using the pendulum model is the fact
that it is possible to formulate analytically the expres-
sion of the probability of capture, which is not possible
to do for the full model.
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4 Results

In this section, three different methodologies - numer-
ical, semi-analytical, and analytical - are presented
and compared. The probability of capture is estimated
across two thrust magnitude ranges: high thrust mag-
nitude cases with T = [0.2, 20] mN, and small thrust
magnitude cases with T = [0.02, 0.2] mN. If not oth-
erwise stated, the initial conditions for the simulations
are listed in Table 2. In particular, for the semimajor
axis, a small interval is chosen far enough considering
the location of the resonance.

4.1 Simulation setup

For numerical estimation of the probability of cap-
ture, 1000 different trajectories are propagated using
the perturbed Hamilton’s equations of motion from Eq.
58 where the initial conditions are included inside the
interval of initial conditions defined in Table 2. The
initial conditions are sampled across the intervals: 100
different initial semi-major axis values and 10 differ-
ent resonance angle values. The chosen semi-major
axis range can be changed with the only condition
that it has to be far enough from the resonance region.
The equations of motion are propagated for 20 days
using the MATLAB built-in function ode113 which
is a variable-step, variable-order Adams-Bashforth-
Moulton solver of orders 1 to 13 [36], with a relative
and absolute tolerance of 10−12. The mean probabil-
ity of capture is obtained by averaging the probabil-
ity obtained for 100 different thrust magnitude values
for 1000 trajectories with different initial conditions.
The simulations are performed in MATLAB’s Paral-
lel Computing Toolbox on a Macbook M3 Pro with
an 11-core CPU (5 performance cores and 6 efficiency
cores).

4.2 Sensitivity on the thrust magnitude

The probability estimations obtained using the three
approaches are compared and presented in Fig. 6.

In the two plots, the probability of capture into 1:1
GTR for e = 0.1 is distinguished by colour: the black
line represents the probability estimated numerically,
the red line represents the semi-analytical estimation,
obtainedwith Eq. 65 considering theHamiltonian from

Eq. 66, and the blue line represents the analytical esti-
mation, obtained with Eq. 80 considering the Hamil-
tonian from Eq. 76. Over the entire range of thrust
magnitudes, a lack of dependence of the probability
on thrust magnitude is demonstrated by the analyt-
ical estimation, which maintains a value of around
10.33%. Similarly, the semi-analytical estimation also
exhibits independence from thrust magnitude and has
a similar value of 10.13%. The probability of cap-
ture is accurately estimated by both methodologies and
in Section 4.3 this analysis is expanded to different
values of eccentricity. With increasing thrust magni-
tudes, a noticeable decrease in the mean probability
of capture is noted, as shown by the numerical esti-
mations. This trend is not reflected in the estimations
provided by the semi-analytical and analytical meth-
ods. This is briefly described after Eq. 80, where each
term of the analytical formulation of the probability
of capture is free from any term related to the low-
thrust. For this reason, in the last part of the paper, the
thrust magnitude interval between 0.02 and 0.2 mN is
considered.

4.3 Sensitivity on the eccentricity

This section is dedicated to examininghowvariations in
initial eccentricity impact the probability of spacecraft
capture into a 1:1 GTR. Under the setup presented in
Section 4, the probability of capture into a 1:1 GTR
is estimated across a range of eccentricity values from
0.025 to 0.5 to include a broad spectrum of possible
orbital scenarios. Table 3 summarizes the probability
values obtained with the three methodologies.

Figure 7 illustrates the mean probability of capture
for eccentricities ranging from 0.025 to 0.5.

The numerical probability estimation for e =
0.025 is about 12.10%. It is observed that both semi-
analytical and analytical methodologies estimate accu-
rately the probability of capture for the entire range of
eccentricities considered. A general trend is identified:
as the eccentricity value increases, the probability of
capture decreases.

For e0 > 0.4, the probability of capture drops to

zero. Additionally, for captured cases at e <

√
2
5 , the

eccentricity grows, A decays, and thus the spacecraft
should leave the regime of capture eventually as shown
in Fig. 8.
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Table 2 Range of initial conditions for the numerical simulations

Resonance angle [0, 2π ]

Semimajor axis [690,700] km

Eccentricity [0.025, 0.5]

Fig. 6 Probability of capture into 1:1 GTR evolution for e = 0.1
and for different thrust magnitude values estimated with numer-
ical (in black), semi-analytical (in red) and analytical (in blue)

methodologies. small thrust and high thrust cases are shown in
the left and right plots, respectively

Table 3 Probability estimations comparison between numerical, semi-analytical, and analyticalmethodologies for different eccentricity
values

Eccentricity [-] Numerical [%] Semi-analytical [%] Analytical [%]

0.025 12.10 12.22 12.53

0.05 11.49 11.27 11.56

0.1 10.25 10.13 10.33

0.2 6.96 6.55 6.60

0.3 0.25 0.10 0.47

0.4 0 0 0

0.5 0 0 0

These results arise because the numerator in both
the semi-analytical and analytical formulations of the
probability becomes negative.

4.4 Computational time

This subsection compares the computational times
required by numerical, semi-analytical, and analyti-
cal approaches in estimating the probability of capture
into a 1:1 GTR. Computational efficiency is one of the
driving factors in selecting a suitable methodological
approach. The numerical approach calculates the cap-
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Fig. 7 Mean probability of capture into 1:1 GTR evolution for
low thrust magnitude values and for different eccentricity values
estimated with numerical (in black), semi-analytical (in blue)
and analytical (in red) methodologies

Fig. 8 Evolution of trajectory over 50 days for the case of 1:1
GTR crossing. Capture cases and the separatrices are highlighted
in red and in black, respectively. The top diagrams show the
evolution of L = p + Lr over time and in phase-space. The
lower diagrams show the variations of K and eccentricity with
time, respectively

ture probability by propagating Hamilton’s equations
ofmotion and determining the ratio of initial conditions
leading to capture over the total number of initial con-
ditions. In contrast, the analytical approach requires
significantly fewer computational resources, with the
semi-analytical method positioned between the two in
terms of resource demand. Table 4 presents a compari-
son of computational times across different eccentricity
levels for each method.

Fig. 9 Probability of capture into 1:1 GTR for a range of μ and
R with e = 0.1

The computational time of the numerical approach
is significantly higher than that of the semi-analytical
and analytical one, clearly indicating the advantage of
the methodologies developed in this research. Given
its comparable accuracy and reduced computational
demand, the analyticalmethod is recommended for pre-
liminary mission analysis and design.

4.5 Uncertainty analysis

The analytical methodology allows for an efficient
analysis of the probability of capture in the case in
which the physical property values of the asteroid are
affected by uncertainty. An example is shown in this
section. Assuming a 5% uncertainty on both μ and R,
it is possible to analyze the change of probability of cap-
ture for a specific eccentricity value. Figure 9 shows the
result of such analysis.

The color gradient represents the magnitude of the
probability, with the color bar indicating the scale. Yel-
low or lighter shades correspond to higher probabili-
ties, while darker shades indicate lower probabilities.
An increase in the probability of capture is observed
with the increase of R, whereas an increase in μ leads
to a decrease in the probability of capture. Specifically,
a 5% uncertainty in both parameters yields a proba-
bility range of approximately [9.71, 10.98]% and the
computational time required for such analysis is around
0.35 seconds. However, the behavior of the probability
varies depending on the considered eccentricity value.
This is shown in Fig. 10, where the analysis is con-
ducted for e0 = 0.3.
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Table 4 Computational time comparison among numerical, semi-analytical, and analytical methods for different eccentricity values

Eccentricity Numerical [s] Semi-analytical [s] Analytical [s]

0.025 101467 2.08 0.0058

0.05 99033 1.58 0.0002

0.1 94780 1.74 0.0003

0.2 83218 1.74 0.0002

0.3 70729 1.70 0.0004

0.4 48609 1.61 0.0002

0.5 35115 1.61 0.0002

Fig. 10 Probability of capture into 1:1 GTR for a range ofμ and
R with e = 0.3

In this instance, the probability of capture is observed
to increase with μ. So, a general trend cannot be estab-
lished, necessitating the analysis of each case inde-
pendently. This issue emphasizes the need for a more
efficient method to estimate the probability of capture.
The same analysis can be extended to all four physical
parameters characterizing the asteroid (μ, R, C22, ω),
as shown in Fig. 11, where it is assumed a 5% uncer-
tainty on each parameter.

Each of the plots varies two parameters while keep-
ing the others fixed, showing how the probability of
capture changes with these parameters. Finally, Fig.
12 summarizes each one of these plot in a single plot
showing the mean, minimum and maximum range of
probabilities considering an uncertainty of 5%on every
parameter.

It is noticed that the higher the probability the
higher the uncertainty of such probability. In particular,
at lower eccentricities, the model exhibits an uncer-
tainty of approximately 2.93%, which is the high-

est. This value decreases progressively as the eccen-
tricity increases. When the eccentricity is increased
further, the absolute uncertainty drops to zero at the
higher eccentricity values. This methodology allows
mission analysts to conduct comprehensive analyses
on the GTR capture phenomenon, thereby enhancing
the robustness of explorationmissions against this phe-
nomenon.

5 Conclusion

This study develops three methodologies, i.e. the
numerical, semi-analytical, and analytical ones, to esti-
mate the probability of capture into the 1:1 GTR for
low-thrust spacecraft moving around an asteroid. A
perturbed Hamiltonian model is developed, consider-
ing the asteroid’s irregular gravitational field repre-
sented by a spherical harmonic approximation, and
the effect of low-thrust propulsion. The general for-
mulation of the probability of capture is presented and
applied to this model for numerical estimations. The
formulation is further developed for semi-analytical
estimations relying on energy-based quantities like the
Hamiltonian. Finally, an approximation of the Hamil-
tonian model is developed by expanding it around the
location of the resonance, which is used to develop
the analytical formulation for the probability of cap-
ture. The analysis indicates that for small thrust values,
the semi-analytical and analytical accurately estimate
capture probabilities. Computational time comparisons
reveal the superior efficiencyof the newmethodologies,
with a preference for the analytical approach due to
its advantage of best efficiency with similar accuracy
to that of the semi-analytical method. The advantage
of the analytical methodology is further demonstrated
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Fig. 11 Probability of capture into 1:1 GTR for a range of μ, R, C22 and ω with e = 0.1

Fig. 12 Probability of capture into 1:1 GTR for different eccen-
tricities values, assuming an uncertainty of 5% on different
parameters (in red). The black dashed line represents the absolute
uncertainty of the probability

by highlighting potential analysis that can be done to
make space exploration missions more robust against
the phenomenon of GTR. For future work, it is rec-
ommended to further refine these methodologies for
scenarios involving high thrust and different inclina-
tion values. This would allow the comparison of the
estimations obtained with these methodologies with
results obtained in previousworks [3,21]. Additionally,
extending these methodologies to other GTRs, such as
the 2:3 GTR around Vesta, could be a valuable area of
exploration.
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