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A B S T R A C T

In this paper, we look at how model structure and constraints can be incorporated into scientific computing using 
functional programming and, implicitly, category theory, in a way that constraints are automatically satisfied. 
Category theory is the study of different types of objects (e.g., sets, groups, vector spaces) and mappings between 
them (e.g., functions, homomorphisms, matrices) and is used in mathematics to model the underlying structure 
associated with systems we wish to describe and how this underlying structure is preserved under trans
formations. In this paper, we look at the structure associated with the representation of, and calculations using, 
quantitative data. In particular, we describe how measurement data can be represented in terms of the product C 
× D of two groups: the first, C, the counting algebra, and the second, D, the dimension algebra. Different but 
equivalent unit systems are related through group isomorphisms. The structure associated with this represen
tation can be embedded in software using functional programming.

1. Introduction

Current practice in scientific computing in metrology usually in
volves a) writing a report or paper providing a model for the system 
under study and how measurement data can be used to extract infor
mation about quantities of interest, b) designing an algorithm that uses 
the model and measurement data to compute estimates of the relevant 
model parameters (and their associated uncertainties), c) implementing 
the algorithm in software, and d) testing software to increase the level of 
trust in the software. Good practice dictates that the software should be 
well commented and documented so that a user can follow the logic and 
intent of the written instructions. However, while the intent of a piece of 
software may be made clear in the comments section and supporting 
documentation, for nearly all computing languages used regularly in 
scientific computing, the compiler only sees the coded instructions and 
has no way of checking whether the code is actually performing the 
required tasks.

The way most of us write software has not changed much in 50 years 
and we use essentially the same text editors to write software as we use 
to write reports and papers. However, computer science has evolved 
enormously over the last 50 years, not just in terms of faster computa
tion and larger memory, but also in terms of the semantic reach of 
computer languages that embed logic and inference. In particular, 
functional programming languages are designed to be able to represent 
model structure and constraints that we normally would write in 
mathematics.

Category theory [1,2] is the study of different types of objects (e.g., 
sets, groups, vector spaces) and mappings between them (e.g., functions, 
homomorphisms, matrices) and is used in mathematics to model the 
underlying structure associated with systems we wish to describe and 

how this underlying structure is preserved under transformations.
Model constraints can be used in two ways [3]. Firstly, software that 

claims to perform the required calculations can be checked by the 
compiler to see if the constraints are satisfied. The second point of view 
is that each model constraint reduces the set of programs/mappings, 
from all possible programs that could be written, that are consistent with 
the constraints. With enough model constraints, we can end up with only 
one program/mapping that satisfies the constraints and the compiler 
implicitly or explicitly constructs this program based on the constraints. 
In fact the role of a functional requirements specification in standard 
programming methodologies is to specify the required behaviour of the 
program. Such functional requirements, if they were written in appro
priate language, act as the model constraints that help check or even 
construct the required software. By incorporating model constraints 
such as those defined by dimensioned variables, it is hoped that much 
more programming errors will be detected by the compiler, significantly 
increasing the trustworthiness of numerical computation.

In this paper, we are interested in model constraints and how they 
relate to functional programming, section 2, the type of constraints that 
arise from assigning dimensions (length, mass, etc.) to variables, section 
3, and how these constraints can be incorporated into scientific 
computing, section 4. A discussion and our concluding remarks are 
given in section 5.

2. Functional programming: a motivation

There are two main computer programming paradigms, imperative 
programming and functional programming. Most standard languages 
used for scientific computation are imperative and programs are a list of 
instructions (imperatives, commands) that the computer has to perform 
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in order to complete the calculation. Functional programs regard func
tions as the primary element and programs are compositions of functions 
in which the behaviour of each function is constrained to achieve a 
specific result. As long as each function is specified correctly, the com
posite program is constrained to produce the correct result: ‘correctness 
is built in’. A simple example below attempts to give a flavour of a 
functional programming approach.

2.1. Example: A collection of mass standards

Suppose a mass laboratory has a set of mass standards S = {s1,s2, …, 
sn} that it uses to calibrate other mass artefacts using a mass balance. 
Each of the standards is a right circular cylinder in shape. In order to 
compensate for air buoyancy effects [4], it is necessary to know the 
volume and density of each artefact.

We suppose that the mass, height and radius of each artefact is 
known, defining three functions m,h,r: S → R. We denote of the set of 
mappings from S to R by RS so that m, h, and r are three elements of RS.

Since S has n elements, we note that RS can be represented as Rn derived 
from the indexing of the elements of S. We say that RS isomorphic to Rn 

and write RS ≅ Rb (as sets) with f ∈ RS identified with the n-tuple (f(s1),

…, f(sn)) ∈ Rn. The functions m, h, and r equivalently, specify three n × 1 
vectors m, h and r, in Rn. we can also think of (m,h,r) as an element of 

RS ×RS ×RS ≅
(
R3)S

≅
(
R3)n

≅R3n ≅ (Rn)
3 

This chain of isomorphisms maps the three functions (m,h,r) to the 
3n-vector 

(
mT, hT

, rT
)T and the 3-tuple (m,h, r).

More generally, for any three sets A, B and C, with CA denoting the 
set of functions from A → C, CA×B ≅

(
CB)A

≅
(
CA)B. The exponential 

notation suggests the analogous arithmetical identities for numbers a, b 
and c: cab = (ca)

b
=

(
cb)a. Here, and above, A × B denotes the Cartesian 

product of A with B given by the set of pairs {(a,b): a ∈ A,b ∈ B}. The 
Cartesian product has two associated mappings, also referred to as 
projections, πA: A × B → A and πB: A × B → B defined by πA(a,b) = a and 
πB(a,b) = b.

The density associated with a right circular mass artefact can be 
inferred from the following facts: a) density is mass over volume, b) the 
volume of a right cylinder is its height times its cross-sectional area, c) 
the cross-section of a right circular cylinder is a circle, and d) the area of 
circle is π times its radius squared. These facts can be represented by 
functions d(m,v) calculating density, v(h,a) calculating the volume of a 
cylinder, and a(r) calculating the area of a circle. The density calculation 
d: S → R can therefore be written as 

d(s)= d(m(s), v(h(s), a(r(s)))) =
m(s)

πr2(s)h(s)
(1) 

Implicit in this calculation are the deductions about the volume of a 
right circular cylinder and its density. The density function is a function 
of the volume function which is in turn a function of the area function. It 
can also been seen that the density function can be applied to m, h and r 
where now m,h,r ∈ RS are themselves functions, defining d ∈ RS and, 
along the way, v ∈ RS. We can generalise to other right cylinders having 
square or elliptical cross sections, for example. The density function 
d can be written as d = d(m,v(h,a))) where the area function a has yet to 
be specified. With the m and v functions specified, such a function maps 
functions calculating area to functions calculating densities and is 
specified by facts a) and b) above. Adding facts c) and d) reduces the set 
of density functions satisfying the constraints to a set with one element 
given by (1).

These simple examples involve sets (objects), Cartesian products, 
functions between sets, sets of functions, functions of functions, 
applying model constraints to determine subsets of functions that meet 
the model constraints and so on. The Curry-Howard-Lambek (CHL) 
[5–7] correspondence relates concepts in logic, computing and category 
theory and says, loosely, that proofs are programs and programs are 

mappings. Much of science involves finding symmetries, invariances, 
conservation laws, etc., associated with the systems under study. The 
appeal of using category theory as a tool for scientific discourse derives 
in part from the CHL correspondence since it allows the model con
straints and contextual information such as controlled vocabularies and 
ontologies to be encoded [8], enables logical inferences to be made, and 
supports constructive computation. Functional programming can use 
categorical concepts to ensure software respects the model constraints in 
an appropriate context.

3. Type constraints and the representation of scientific data in 
terms of dimensions and units

This section is concerned with the representation of physical quan
tities in terms of numerical values and associated units [9–11], partic
ularly from the point of view of enabling machine-actionable 
interoperability, an issue of importance in the move towards a digital SI 
[12]. We are concerned with a measurable attribute or quantity Q 
associated with an object: its mass, its length, etc. A methodology for 
defining a measurement representation scheme has the following 
elements.

3.1. A set of base dimensions

The first component of the representation system involves a set of 
base attributes, A1, …, Ap. The base attributes should be chosen so that 
any quantity Q of interest is associated with a unique dimension vector D 
(Q) expressed as 

DA(Q) =Ad = Ad1
1 Ad2

2 …Adp
p ,

where d is an n-vector of integers. The set of dimensions associated with 
A can be identified with the free Abelian group on the n generators A1,

…,Ap, which, in turn is isomorphic to Zp through the isomorphism 

Ad1
1 Ad2

2 …Adp
p ↦ d ∈ Zp.

Below, we use the symbol D to represent Zp The unit of the group A 
associated with so-called ‘dimensionless’ quantities is mapped to 0D, the 
p− vector of zeros in Z p.

As a primary example, according to the SI brochure [13], the 
dimension vector can be written as 

DSI(Q) = dim(Q) = TαLβMγIδΘϵNζJη,                                                (2)

where T, L, M, I, Θ, N and J represent time, length, mass, electric current, 
thermodynamic temperature, amount of substance, and luminous in
tensity, respectively.

3.2. A counting algebra used to specify numerical values

The second component of a representation system is required to 
represent the numerical value associated with a (measurement of) a 
quantity. Most usually, we use the positive real numbers 
R> = {r∈ R : r> 0} to specify numerical numbers but it is possible to 
use other algebraic structures for a counting algebra. A requirement for 
the counting algebra is that it supports the operation of multiplication. 
We will denote the counting algebra by C and the multiplicative identity 
by 1C. In practice, it is necessary to extend the counting algebra to 
support addition and subtraction. Usually, the real numbers R performs 
this role.

3.3. Representation of a measured value as a mapping to R = C× D

Given base dimensions Ak and counting algebra C, the representation 
of measured values can be thought of as a mapping from quantities to 
R = C × D which we will denote by 
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Q ↦ (cA(Q), dA(Q)), cA(Q) ∈C, dA(Q) ∈ D,

and refer to cA(Q) as the count associated with Q and dA(Q) the 
dimension associated with Q for the particular choice of base di
mensions, indicated by the subscript A.

The fact that C and D are both Abelian groups with respect to 
multiplication and addition, respectively, means that the Cartesian 
product R = C × D is also an Abelian group with respect to the operation 
*R defined component-wise as 

(c, d)*R(e, f)= (c× d, e+ f) (3) 

We denote the identity element by 1R with 1R = (1C,0D). The inverse 
(c, d)− 1 of (c, d) is given by (c− 1, − d). We also use the symbol *D to 
denote the group operation associated with D.

The group R, as a Cartesian product, has associated projections that 
are also group homomorphisms 

πC(c, d) ↦ c∈C, πD(c, d) ↦ d ∈ D.

There are also group homomorphisms ιC : C ⟶R and ιD : C⟶R 
given by 

ιC(c)= (c, 0D), ιD(d)= (1C, d).

with the properties that πC ∘ ιC and πD ∘ ιD are the identity homomor
phisms on C and D, respectively. By group homomorphism, we mean a 
mapping that preserves the group operation: a mapping f : G⟶H be
tween two is a groups is a homomorphism if f(x*Gy) = f(x)*Hf(y) where 
*G and *H are the group operations of G and H, respectively.

The Abelian group structure of R enables the dimensions of products 
of quantities to be calculated automatically. Representing physical 
quantities as elements of R allows us to make sure that the numerical 
value and associated unit are always aligned.

3.4. Equivalent systems of measurement representation

Two systems of representing measurement results 

Q ↦ (cA(Q), dA(Q)),Q ↦ (cB(Q), dB(Q)),

using R = C × D can be said to be equivalent if there is a group 
isomorphism, i.e., an invertible homomorphism F : C × D⟶C × D from 
C × D to itself such that (cB,dB) = F(cA,dA). Such an automorphism has 
the form 

F=

[
FCC FDC
FCD FDD

]

where FCC : C⟶C and FDD : D⟶D are group isomorphisms and 
FCD : C ⟶D and FDC : D⟶C are group homomorphisms.

3.5. Example: R = R> × Zp

The only isomorphism of R> to itself as a group under multiplication 
is the identity mapping. Isomorphisms of D = Zp can be represented by a 
p × p matrix M with integer entries and determinant ±1. For example, 
suppose a dimension system has base dimensions momentum, P, force, 
F, and energy, E. These are related to the SI base dimensions for time, T, 
length, L, and mass, M through 
⎡

⎣
dT
dL
dM

⎤

⎦=

⎡

⎣
1 − 1 0
0 − 1 1
− 2 0 − 1

⎤

⎦

⎡

⎣
dP
dF
dE

⎤

⎦,

so that time T has dimensions PF− 1, and length L has dimensions F− 1E, 
etc.

The only homomorphism from R>⟶Zp is the trivial mapping that 
maps all elements to the unit element 0D = (0,…, 0) ∈ Zp. Homomor
phisms Zp⟶R> take the form 

(
d1,…, dp

)
↦

∏p

k=1
ak

dk , (4) 

where ak are fixed numbers in R>. Thus, an automorphism of R> × Zp 

maps (c, d) to (e, f) with 

e= c
∏p

k=1
ak

dk , f = Md.

In principle, the mapping between two equivalent unit systems based on 
R> × Zp is defined a p-vector of positive real numbers a =

(
a1,…, ap

)T 

and a p × p integer matrix with determinant ±1. This vector and matrix 
enables the interoperability of the two unit systems. For two represen
tation systems with the same base dimensions Ak, an isomorphism be
tween the two is defined by the p-vector a =

(
a1,…, ap

)T where the 
numbers ak are conversion factors, for example, converting metres to 
inches. We note that degrees Kelvin and degrees Celsius are not related 
by such a conversion factor (but degrees Kelvin and degrees Rankine are 
with 1 K = 1.8◦ Rankine).

3.6. Base units associated with the base dimensions

The base dimensions give a way of specifying attributes associated 
with a system and the counting algebra enables numerical calculations 
associated with quantities. The role of the base units is to specify, 
directly or indirectly, quantities Qk whose representation rQk is such that 
rQk = (1C,ek), where ek is the kth generator of the free Abelian group D. 
For D = Zp, ek is the p-vector with one in the kth element and zeros 
elsewhere. Thought of in this way, measurement units are names of 
specific elements of R. In the SI, the second is the name for (1, e1), the 
metre is the name for (1, e2), the Newton is the name for (1, dN where 
dN = ( − 2, 1,1, 0,0, 0,0)T, etc.

3.7. Conventional representation of measurements

The SI brochure [13, Section 5.4] and the NIST publication on the use 
of the international system of units [14, Section 7] emphasise that the 
value of a quantity Q can be written as Q = {Q}[Q] where {Q} is the 
numerical value and [Q] is the (name of the) associated unit, and that 
{Q}[Q] should be regarded as the product of mathematical entities.

The statement L = 5 m implies {L} = 5 and [L] = m and is equivalent 
to the statement L/m = 5. The representation of the measurement result 
Q as rQ ∈ R provides a formal, mathematical realisation of the idea of a 
product of a numerical value and a unit. Regarding m as the name for 
(1C,e2) the ‘product’ 5 m is realised as the product (5,e2) = ιC(5) *R ιD(e2) 
= (5,0D) *R (1C,e2) of elements or R. The representation rQ ∈ R also 
supports the notion that the numerical value and associated unit should 
be conjoined and are not to be separated without caution.

3.8. Quantity kinds, dimensional constraints and counting algebras

The advantage of representing quantitative data in R within the 
context of richly typed programming languages is that it enables the 
interoperability of systems of dimensions and associated units to be 
implemented at a high level. It also allows the compiler to check that all 
calculations are dimensionally consistent, a capability that has been 
sought after for many decades, see, e.g., Ref. [15]. For example, the 
programming language F♯ [16] which supports functional programming 
allows variables to be assigned dimensions and units, based on the work 
of Kennedy [17] and others. Examples of the implementation of 
dimension checking in other computer languages are given in Refs. [3,
18].

While dimensional consistency represents a necessary constraint, it is 
by no means the only constraint relating to the representation of mea
surement results [19] as quantities that are different can have the same 
dimension. For example, in the SI [13], both the derived units the hertz, 
the unit for frequency, and the becquerel, the unit for radioactivity, have 
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dimension T− 1 but represent different quantities. If we regard the hertz 
as a rate of one cycle per second and the becquerel as a rate of one 
nucleus decay per second, then it is not unreasonable to regard the hertz 
and becquerel as instances of the more general concept of a rate of one 
event per second. In urban environments, it might be required to esti
mate the average number of vehicles – motorbikes, cars and trucks, etc. – 
passing along a street per day. The frequency of cars is a different 
quantity from the frequency of trucks. In order to maintain clarity in 
describing the real world it is necessary to have a controlled vocabulary 
to describe different types of events. Similarly, in chemistry, it is 
necessary to have a controlled vocabulary to discuss counts relating to 
different chemical elements, molecules, etc.

In the example of a right circular cylinders, section 2.1, both the radius 
and height of a cylinder are associated with dimension L but represent 
different quantities and getting them mixed up in calculating the volume 
v = πr2h of the cylinder would lead to errors. Adding a height to a radius 
also seems wrong but the complete surface area s of a solid cylinder is 
given by s =2πrh +2πr2 =2πr(r +h) so in this context (and others) adding 
them together is fine. In order to make appropriate inferences, it is 
necessary to encode or model in a formal language/controlled vocabu
lary/ontology what is meant by cylinder, radius (or diameter), height 
etc., so that using the height to calculate the cross-sectional area of the 
cylinder would detected as inconsistent with the model.

Even if two quantities have the same dimension and are of the same 
kind, it might not make sense to add them together. The main examples 
are intensive quantities such as density d = m/v which is the ratio of two 
extensive quantities mass m and volume v and has dimension L− 3M. 
Given two densities dk = mk/vk, k = 1,2, the sum d = d1 + d2 might not 
represent anything physically meaningful. However representing dk as 
(mk,vk) ∈ R × R gives 

d=(m, v)= (m1 +m2, v1 + v2)= d1 + d2 ∈R × R 

and is valid.
Is a difference in two masses (lengths, temperatures) the same kind of 

quantity as mass (length, temperature)? We can use R> as a counting 
algebra to represent a mass measurement but for a difference in masses 
we need to use R. Different counting algebras can reflect differences in 
quantity kinds and it is possible to consider counting algebras that are 
more general such as the complex numbers C, quaternions, Lie groups, 
etc., and can include measurement uncertainty by constructing counting 
algebras that are probability distributions defined on R>, R, etc.

4. Numerical calculations and R = C× D

Current practice in numerical computing is usually implemented in 
software in languages in which variables have only a limited number of 
types: Boolean, integer, real (single, double precision), complex, string, 
etc. In this section, we look at issues in implementing numerical calcu
lations in which variables are represented in R = C × D, where R = R×

Zp. We use R rather than R> as we want to accommodate differences of 
quantities with the same dimension.

4.1. Functions R⟶R

A function f : R⟶R defines a subset F = {(x,y): y = f(x)} of R × R. 
We assume that all functions f : R⟶R involved have a fixed dimension 
defined by (d,e) ∈ D × D and are such that (x, d) ↦

(
fC(x), e

)
, with 

fC : R⟶R. Usually, we will denote fC also by f if there is no confusion. If 
f(x) is differentiable and has dimension (d,e), the derivative fʹ(x) = df/dx 
is a function of dimension (d,e− d). Similarly, the second derivative fʹ́ (x)
has dimension (d,e − 2d). It follows that the Taylor expansion for f about 
x0 given by 

f(x)= f(x0)+ fʹ(x0)(x − x0)+
f ʹ́ (x0)

2!
(x − x0)

2
+

fʹ́ʹ(x0)

3!
(x − x0)

3
+ … 

is consistent with the dimension constraints. In the same vein, if p(x) is a 
model response function of dimension (d,e) modelled as a polynomial p 
(x) = a0 + a1x + a2x2 + … + anxn, then the coefficients are such that a0 
has dimension e, a1 has dimension e − d, a2 dimension e − 2d, and so on.

In probability theory, a cumulative distribution function (CDF) must 
have dimension of the form (d,0D) since probabilities are dimensionless. 
The corresponding probability density function (PDF) is the derivative 
of the CDF and therefore has dimension (d,− d).

We also consider multivariate functions f : Rn⟶R that satisfy 
dimensional constraints. For example, suppose z = f(x,y) = ax2 + bxy +
cy2 is of fixed dimension (d(x),d(y),d(z)) involving coefficients a, b and c, 
elements of R. The dimensions of these coefficients must satisfy d(a) = d 
(z) − 2d(x), d(b) = d(z) − d(x) − d(y) and d(c) = d(z) − 2d(y) as elements 
of D = Zp. The partial derivative function ∂f/∂x = 2ax + by has 
dimension (d(x),d(y),d(z) − d(x)). Note that if πC(a) = πC(b) = πC(c) = 1 
as elements of R, while we can write f(x,y) = x2 + xy + y2 as a function 
R2⟶R, we cannot ignore the coefficients when regarding f as a func
tion R2⟶R.

4.2. Vector spaces and matrices

See also [10,20]. We can construct the equivalent of vector spaces 
and mappings between vector spaces involving the Cartesian product 
Rn = (R × Zp)

p
≅ Rn × (Zp)

n where now we regard Rn as a vector space 
with inner product 〈x,y〉 = xTy =

∑n
i=1 xiyi for x, y ∈ R n. For x, y ∈ R n 

with associated dimension vectors d(x) and d(y) in (Z p)n, we can only 
form the inner product z = 〈x,y〉R if d(xi) + d(yi) = d(z) is constant, i = 1, 
…,n. We can also consider matrices A ∈ R m×n = R m×n × (Z p)m×n where c 
(A) is our usual concept of a real-valued m × n matrix and d(A) is an m ×
n array of elements of Z p. For n-vector x ∈ Rn, we can construct the 
matrix-vector product y = Ax if we can form all the inner products 〈ai, 
x〉R, where ai is the ith row of A. The dimensions associated with A, x and 
y must satisfy d(aij) + d(xj) = d(yi), j = 1, …,n, where aij = A(i,j). We can 
summarise this constraint by d(A) = d(y) *D (− d(x⊤)) where the term on 
the right is the outer ‘product’ of m × 1 vector of dimensions d(y) with 
the 1 × n vector of dimensions − d(x⊤), remembering that the group 
operation *D in Z p is given by addition.

If A is a matrix with associated dimensions given by e*D (− d⊤) then A 
can act on vectors of dimension d + g = (d1 +g,d2 +g, …,dn + g)⊤ ∈ (Z p)n 

for any g ∈ Z. Note that the dimensions of A can also be expressed as ((e 
+ h)*D (d− h) for h ∈ Z. A representation of such dimensions that 
removes this degree of freedom in discussed in Ref. [20].

In standard matrix algebra involving matrices with real elements, if 
A ∈ R m×n and B ∈ R k×ℓ we can from the matrix product C = AB if and 
only if n = k. For matrices with elements in R, constraints relating to 
dimension are much more binding. Suppose A ∈ Rm×n and B ∈ Rn×ℓ are 
such that the dimensions of A and B are given by outer products: d(A) =
d *D e⊤ and d(B) = f *D g⊤. The matrix product C = AB in R can be formed 
if d(ej) + d(fj) = h is constant, j = 1, …,n, in which case, d(C) = h *D (d *D 
g⊤), i.e., d(cij) = h + d(di) + d(gj), i = 1, …,n, j = 1, …,ℓ.

The dimensional constraints on matrix-vector and matrix-matrix 
multiplications have a significant bearing in what we mean by the 
identity matrix and the inverse of a matrix. In standard numerical linear 
algebra the n × n identity matrix I is such that for any n-vector x, Ix = x. 
For dimensioned vectors, we can only form Ix if the dimensions conform. 
Suppose d is a n × 1 dimension vector and let x ∈ Rn be any n-vector with 
dimension d. We would like an identity matrix Id to have the property 
that Idx = x as elements of Rn. This property holds if Id = (I,d *D (− d⊤)) 
∈ R n×n × (Z p)n×n. Furthermore, IdId = Id and IT

d = I− d.
Suppose A ∈ R n×n has inverse B. If A = (A,e *D(− d)⊤) ∈ Rn, set B = (B, 

d *D (− e⊤)). Then BA =(I,d *D (− d)⊤) = Id so that B acts as the left in
verse of A in Rn. The product AB can only be formed if e = d, in which 
case, AB = BA = Id.
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4.3. Regression problems

Many data analysis problems in metrology involve finding the best- 
fit model to data y = (y1, …,ym)⊤. Typically, the model response may 
be a function ϕ(x,a) depending on covariates x and parameters a = (a1, 
…,an)⊤, and the optimal values of the parameters [21] are found by 
minimising some measure F(a,y), for example 

F(a, y)=
∑m

i=1
f2(xi,a), fi = f(xi, a)= yi − ϕ(xi, a).

The Gauss-Newton algorithm can be used to perform this least- 
squares minimisation [22]: given estimates of a, updated estimates of 
a are given by a + p where p = − (J⊤J)− 1J⊤f. Here, J is the m × n Ja
cobian matrix of partial derivatives Jij = ∂fi/∂ai and f = (f1, …,fm)⊤

evaluated at a. If J has QR factorisation [23] given by J = QU, where Q is 
an m × n orthogonal matrix and U is an n × n upper-triangular matrix, 
then p solves Up = − Q⊤f. We are interested in how these types of 
calculation can be made if all quantities are represented in R = C × D 
rather than just as real numbers.

Example: estimation of parameters associated with a mass 
artefact.

Suppose a cylindrical mass artefact is characterised by three pa
rameters a = (m,r,h)⊤ where m is its mass, r the cylinder radius and h the 
cylinder height. In addition to estimates y1, y2 and y3 of these three 
parameters, we have two other measurements, an estimate y4 of its 
volume v = πr2h and an estimate y5 of its density d = m/v. An estimate of 
a using all five pieces of information can be found by minimising F(a) =
∑5

i=1
(
yi − ϕi(a)

)2 where ϕj(a) = aj, j = 1, 2, 3, ϕ4(a) = πa2
2a3, and 

ϕ5(a) = a1
(
πa2

2a3
)− 1. Using standard programming languages we can 

implement a Gauss-Newton algorithm to perform this minimisation, 
regarding aj, yi and ϕj(a) as real variables. However, as soon as we apply 
the model constraints that a and y are members of R = C × D, then the 
algorithm as it stands cannot be implemented since F(a) involves adding 
a variable of dimension M2 to a variable of dimension L2, etc. We can 
choose to ignore the dimension information by effectively projecting all 
variables in R to C = R using πC. (Implementing the calculations in a 
standard programming language essentially involves applying this 
‘forgetful’ projection.) However, this defeats the purpose of using the 
model constraints. A better approach is as follows.

Least-squares optimisation arises often as maximum likelihood esti
mation for problems involving Gaussian noise. Suppose we write the 
observation equations as yi ∈ N(ϕi(a),σi

2), where σi has the same dimen
sion as yi. Maximum likelihood estimates of a are found by minimising 

F(a)=
∑5

i=1
f2
i (a), fi(a) = zi − ψ i(a),

where zi = yi/σi and ψ i(a) = ϕi(a)/σi. Each summand function fi(a) is now 
dimensionless so that forming F(a) is consistent with the model con
straints relating to dimensions. (Applying the same change of units to yi, 
ϕi and σi means the F(a) is also invariant with respect to choice of units.) 
The Jacobian matrix of partial derivatives is such that the dimensions 
are homogeneous column-wise: if aj has dimension vector dj then Jij has 
dimension vector − dj, i = 1, …,m. In fact, d(J) is given by the outer 
product d(J) = 0D *D (− d(a⊤)). The matrix product H = J⊤J is such that 
Hjk has dimension − dj − dk, i.e., d(H) = (− d(a)) *D (− d(a⊤)). H can act 
on vectors of dimension d(a). If H has numerical inverse V ∈ Rn×n, set V 
= (V,d(a) *D d(a)⊤) ∈ Rn×n which can act on vectors of dimension − d(a). 
The vector J⊤f has dimension − d(a) and p = − V J⊤f has dimension d(a), 
so that forming a+p is consistent with the dimension constraints.

Suppose a QR factorisation approach J = QU is used to determine the 
update step p. The orthogonal matrix Q can be expressed as a product of 
2 × 2 Givens rotations, for example. The fact that all the elements of any 
column of J have the same dimension means that each Givens rotation 
and hence all the elements of Q are dimensionless. Correspondingly, 

each element of the jth column of U has dimension − dj. The vector g =
− Q⊤f can be formed since both Q and f (and hence g) are dimensionless. 
In terms of solving 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u11 u12 u13

0 u22 u23

0 0 u33

u14 u15

u24 u25

u34 u35

0 0 0

0 0 0

u44 u45

0 u55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1

p2

p3

p4

p5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1

g2

g3

g4

g5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for p, we have p5 = g5/u55 has dimension d5, p5=(g4− u45p5)/u44 and has 
dimension d4, recalling that u45p5 has dimension − d5 + d5 = 0, etc. In 
other words, the QR factorisation approach can also be implemented in a 
way that is consistent with the dimension constraints.

In standard numerical analysis, we would estimate the (un-dimen
sioned) variance matrix Va associated with the fitted parameters by Va =

(J⊤J)− 1. For m > n, a posterior adjustment to this estimate is given by 

V̂a = σ̂2( JTJ
)− 1

, σ̂2
=

1
m − n

∑

i
f2
i ,

evaluated at the solution a, an estimate that takes into account the 
estimated noise associated with the observed data. These variance ma
trix calculations can also be made for dimensioned variables with d(Va) 
= d(V) = d(a) *D d(a⊤) and d(σ̂) = 0D. The variance matrix V can also be 
computed as U− 1U− T using the QR factorisation of J where U− 1 has 
dimension d *D 0T and U− T has dimension 0*DdT.

4.4. Law of propagation of uncertainty

Suppose f(a) is a multivariate function of dimensioned variables a 
with associated dimension vector d and f is such that d(f(a)) = e. We 
assume that a has been estimated with associated variance matrix V with 
d(V) = d *R d⊤. Given an estimate of a, let g be the vector of sensitivity 
coefficients with gj = ∂f(a)/∂aj. Then d(gj) = e − d(aj). The variance 
associated with f(a) is given by u2(f) = g⊤V g with d(u2(f)) = 2e, where 
all matrix-vector calculations obey the dimensional constraints. This 
calculation shows how the law of propagation of uncertainty that un
derlies the GUM uncertainty framework [24,25] can be implemented 
using dimensioned variables.

5. Discussion and concluding remarks

The examples above show that calculations that we routinely un
dertake in the analysis of data can also be implemented in a way that 
takes into account the dimensions and associated units of the quantities 
through representing them in R. (With care, the calculations can also be 
made invariant to changing the dimension and units using an isomor
phism of R.) Functional programming promotes the embedding of model 
constraints into software. However, to embed model constraints relating 
to dimension it is also necessary to represent the algebraic nature of the 
dimension constraints represented here in terms of the free Abelian 
group Z p, as is already done in languages such as F♯. However, F♯ only 
caters for matrices for which all elements have the same dimension, so 
that calculations associated with regression problems, uncertainty 
evaluation and other calculations common in metrology cannot easily be 
implemented for dimensioned variables or checked for dimensional 
consistency. Recent research [26] has shown how the functional pro
gramming toolset can be extended to support general matrix algebra 
associated with dimensioned variables and used to check programs 
implementing calculations common in data science. Importantly, the 
toolset can be applied to programs written in widely used languages 
such as MATLAB, through the use of auxiliary directives, given in 
comments, that enable variable dimensions to be specified, propagated 
and checked [3,27].
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The model constraints defined by dimensioned variables vastly re
duces (but does not eliminate, of course) the scope for making pro
gramming errors, including conceptual errors, that are undetected by 
the compiler. The extension of functional programming technologies to 
support dimensioned variables and other model constraints could have a 
significant impact in promoting trustworthy numerical computation.
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