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A B S T R A C T

This paper presents the development of a semi-analytical theory for the long-term propagation
of the attitude motion of Earth-orbiting objects with arbitrary shape. The attitude dynamics
includes the effects of gravity-gradient, residual magnetic, and light-pressure torques. The
equations of motion are expressed in Sadov variables. The equations of motion are averaged
over the Sadov angles and the orbital mean anomaly and a combination of Lie transformations
is applied to transform from non-averaged to mean attitude variables. It will be shown how
this technique can be used to estimate the approximation error and improve the accuracy of
the averaged solution. Furthermore, we introduce an alternative set of variables, that removes
one of the singularities in the formulation in Sadov variables. The results of the numerical
tests demonstrate that the proposed semi-analytical theory, provides a good balance between
accuracy and computational cost.

. Introduction

While perturbation techniques are widely applied to study the orbital dynamics of artificial satellites or celestial bodies, the
evelopment of analytical or semi-analytical theories for studying the attitude dynamics is less frequent. It is worth recalling the
orks by Ferrandiz and Sansaturio [1], Vallejo [2], Elipe and Vallejo [3], Lara and Ferrer [4], Lara [5] who deal with the rotational
ynamics of triaxial bodies under the effect of the gravity-gradient torque. The Hamiltonian nature of the problem allows them to
pply the classical Lie series technique (see [6]) consisting of the iterative composition of Lie transformations to obtain a normal
orm suitable to study the dynamics over long periods of time. One of the main advantages of this method is that the transformation
rom non-averaged to mean attitude variables can be analytically determined. Not only is this useful to reverse the transformation,
ut also to compute the initial value of the mean variables, which is fundamental to compute an accurate evolution of the mean
ttitude motion. In the remainder of the paper we will use the term osculating to indicate the non-averaged variables. The Lie
eries approach is adopted also by Lara et al. [7], San Juan et al. [8], Mohmmed et al. [9], who deal with the case of axisymmetric
odies under the effect of different conservative torques. Zanardi and Vilhena de Moraes [10] treat a similar case adding the effects
f non-conservative perturbations, which make the rotational problem non-Hamiltonian. The authors mix the Lie series technique
ith a successive approximations approach. Benson and Scheeres [11,12] deal with the problem of artificial triaxial objects, along
eosynchronous orbits, perturbed by light pressure. The problem is completely non-Hamiltonian and the authors develop a semi-
nalytical model by averaging the equations of attitude motion over the fast variables. Garcia et al. [13] use a similar technique for
he perturbations coming from the residual magnetic and eddy current torques.

All previous works in the literature deal with specific perturbations, specific geometries, or specific orbital regimes. The work in
his paper proposes a more general averaged model suitable to propagate the attitude dynamics of both triaxial and axisymmetric
bjects in Earth orbit under the combined effect of gravity gradient, residual magnetic, and light pressure torques.
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The semi-analytical theory, proposed in this paper, is developed by averaging the equations of attitude motion over the fast
attitude variables and the orbital mean anomaly. To determine the required transformation from the osculating to the averaged
vector field, we apply a method similar to the one described in Barrio and Palaciàn [14]. It is a generalised Lie series technique
suitable for problems with both Hamiltonian and non-Hamiltonian terms. In this paper we will cover the general case of triaxial
odies. The action–angle variables for the general case of triaxial bodies are the so-called Sadov variables, introduced almost

contemporary by Sadov [15] and Kinoshita [16]. The use of action–angle variables is advantageous because it is straightforward
to identify the fast attitude variables over which the equations of motion are to be averaged. The disadvantage is that the
dynamic equations expressed in Sadov angles contain Jacobi elliptic functions, which makes computing the Lie transformations
more complicated. In this paper, we follow the method suggested by Vallejo [2] and Elipe and Vallejo [3] and expand the Jacobi
lliptic functions in Fourier series before applying the Lie transformations. The generators of Lie transformations, combined to
ransform the osculating variables in mean variables, are also used to compute higher-order correction terms to be added to the

averaged equations to increase their accuracy.
This paper extends the results in [17], with more in depth theoretical developments and an analysis of accuracy and limits

f applicability. In Section 2, we briefly introduce the Andoyer–Serret and Sadov action–angle variables. In Sections 3 and 4,
we write the equations of attitude motion in Sadov variables and the models of the external torques acting on an Earth-orbiting
object. In Section 5 we describe the procedure to derive the averaged dynamical model and the computation of the higher-order
orrections required to increase the accuracy of the propagation. In the same section, we propose a new set of variables that avoids
ne of the singularities in the equations of motion. The model is developed assuming constant orbital parameters, except for the
ean anomaly. However, over long periods of time, the effects of various perturbations on the orbital dynamics are not negligible.

Thus, in Section 6 we introduce the coupling of the attitude averaged model with an orbital averaged model accounting for orbit
perturbations. In Section 7 we present some numerical simulations, in which the averaged attitude dynamics is compared to the
high-precision propagation of the full non-averaged attitude and orbital dynamics. Finally, Section 8 contains the analysis of the
accuracy of the semi-analytical propagation.

2. Attitude representation

The classical sets of attitude variables, such as the Andoyer–Serret variables, describe the orientation of a reference frame
embedded in the rotating body with respect to a reference frame with fixed axes. In particular, the Andoyer–Serret variables are
employed when the rotating reference frame is in principal axes of inertia. In this work, we take a geocentric equatorial reference
frame 𝐸 𝑋 𝑌 𝑍 as inertial reference frame, with the 𝑍 axis pointing towards the Earth’s north pole. Furthermore, we consider a
rotating reference frame 𝑂 𝑥𝑦𝑧 centred in the satellite centre of mass with principal axes of inertia. The 𝑧 axis is the axis of maximum
inertia and the 𝑥 axis is the axis of minimum inertia so that 𝐴 ≤ 𝐵 ≤ 𝐶 where

𝐴 = ∫ (𝑦2 + 𝑧2)d𝑚,

𝐵 = ∫ (𝑥2 + 𝑧2)d𝑚,

𝐶 = ∫ (𝑥2 + 𝑦2)d𝑚,

with d𝑚 a mass element. Thus, the classical sets of attitude variables are used to describe the orientation of 𝑂 𝑥𝑦𝑧 with respect
o 𝑂 𝑋 𝑌 𝑍, i.e. with respect to the inertial reference frame translated into the satellite’s centre of mass. The physical meaning of
he Sadov variables is less straightforward. They are action–angle variables for the torque-free problem when triaxial bodies are

considered and derive from a canonical transformation of the Andoyer–Serret variables.
After briefly reviewing the classical Andoyer–Serret variables, we introduce the main steps of the canonical transformation

leading to the Sadov variables, following the work by Lara and Ferrer [4].

2.1. Andoyer–Serret variables

The Andoyer–Serret variables (𝐿, 𝐺 , 𝐻 , 𝑙 , 𝑔 , ℎ) are canonical variables for the description of attitude motion. Variables (𝐿, 𝐺 , 𝐻)
re the momenta conjugated to the angles (𝑙 , 𝑔 , ℎ). Let 𝑮 be the angular momentum of the satellite and 𝛾 the plane perpendicular

to 𝑮. Consider also the intersections between the planes 𝑂 𝑋 𝑌 and 𝛾 and between the planes 𝑂 𝑥𝑦 and 𝛾, which can be respectively
identified by the unit vectors

𝒆̂𝑖𝐺 =
𝒆̂𝑍 ×𝑮

‖𝒆̂𝑍 ×𝑮‖

, 𝒆̂𝑏𝐺 =
𝑮 × 𝒆̂𝑧

‖𝑮 × 𝒆̂𝑧‖
,

with 𝒆̂𝑍 and 𝒆̂𝑧 the unit vectors in the direction of the 𝑍 and 𝑧 axes. Variable 𝐺 is the magnitude of 𝑮, 𝐿 is the projection of 𝑮
on the 𝑧 axis, 𝐻 is the projection of 𝑮 on the 𝑍 axis, 𝑙 ∈ (0, 2𝜋) is the angle between 𝒆̂𝑏𝐺 and the 𝑥 axis, 𝑔 ∈ (0, 2𝜋) is the angle
etween 𝒆̂𝑖𝐺 and 𝒆̂𝑏𝐺, and ℎ ∈ (0, 2𝜋) is the angle between the 𝑋 axis and 𝒆̂𝑖𝐺. These variables describe a set of five rotations from
 𝑋 𝑌 𝑍 to 𝑂 𝑥𝑦𝑧 (see Fig. 1): a rotation around the 𝑍 axis by the angle ℎ; a rotation around 𝒆̂𝑖𝐺 by the angle 𝛿 ∈ (0, 𝜋), defined as

𝛿 = ar ccos
(𝐻
𝐺

)

,

2 
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Fig. 1. The rotation angles described by the Andoyer–Serret variables to describe the orientation of the rotating frame 𝑂 𝑥𝑦𝑧 with respect to the reference frame
𝑂 𝑋 𝑍 𝑌 . In the figure, 𝑮 is the angular momentum of the satellite.

a rotation around 𝑮 by the angle 𝑔, a rotation around 𝒆̂𝑏𝑖 by the angle 𝜎 ∈ (0, 𝜋), equal to
𝜎 = ar ccos

(𝐿
𝐺

)

,

and a rotation around the 𝑧 axis by the angle 𝑙. The rotation matrix is
𝐑i2b = 𝐑𝑙𝐑𝜎𝐑𝑔𝐑𝛿𝐑ℎ,

with

𝐑ℎ =
⎡

⎢

⎢

⎣

cosℎ sinℎ 0
− sinℎ cosℎ 0

0 0 1

⎤

⎥

⎥

⎦

, 𝐑𝛿 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝛿 sin 𝛿
0 − sin 𝛿 cos 𝛿

⎤

⎥

⎥

⎦

, 𝐑𝑔 =
⎡

⎢

⎢

⎣

cos 𝑔 sin 𝑔 0
− sin 𝑔 cos 𝑔 0

0 0 1

⎤

⎥

⎥

⎦

,

𝐑𝜎 =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜎 sin 𝜎
0 − sin 𝜎 cos 𝜎

⎤

⎥

⎥

⎦

, 𝐑𝑙 =
⎡

⎢

⎢

⎣

cos 𝑙 sin 𝑙 0
− sin 𝑙 cos 𝑙 0

0 0 1

⎤

⎥

⎥

⎦

.

(1)

The Hamiltonian of the torque-free problem in the Andoyer–Serret variables is
 = 1

2

(

sin2 𝑙
𝐴

+ cos2 𝑙
𝐵

)

(

𝐺2 − 𝐿2) + 𝐿2

2𝐶
, (2)

(see [18]). For axisymmetric bodies with 𝐴 = 𝐵, the Andoyer–Serret variables become action–angle variables, as  depends on the
momenta only. For axisymmetric bodies with 𝐶 = 𝐵 the same is true if one considers an alternative rotating frame 𝑂 𝑥′𝑦′𝑧′, with 𝑥′
the axis of maximum inertia and 𝑧′ the axis of minimum inertia, such that

𝐴′ = ∫ (𝑦′2 + 𝑧′2)d𝑚 = 𝐶 ,

𝐵′ = ∫ (𝑥′2 + 𝑧′2)d𝑚 = 𝐵 ,

𝐶 ′ = ∫ (𝑥′2 + 𝑦′2)d𝑚 = 𝐴.

(3)

2.2. Sadov variables

The canonical transformation (𝐿, 𝐺 , 𝐻 , 𝑙 , 𝑔 , ℎ) ↦ (𝐽𝑙 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝜓𝑔 , 𝜓ℎ), from the Andoyer–Serret variables to the Sadov variables,
derives from the generating function

(𝐽𝑙 , 𝐽𝑔 , 𝐽ℎ, 𝑙 , 𝑔 , ℎ, 𝑡) = −𝑡𝛷(𝐽𝑙 , 𝐽𝑔) + ℎ𝐽ℎ + 𝑔 𝐽𝑔 +(𝑙 , 𝐽𝑙 , 𝐽𝑔),
in which 𝑡 is the time variable, the function 𝛷(𝐽𝑙 , 𝐽𝑔) is the new targeted Hamiltonian depending only on the new momenta, and
(𝑙 , 𝐽𝑙 , 𝐽𝑔) is the characteristic function fulfilling the Hamilton–Jacobi equation

(

sin2 𝑙
𝐴

+ cos2 𝑙
𝐵

) (
𝐽 2
𝑔 −

( 𝜕
𝜕 𝑙

)2)

+ 1
𝐶

( 𝜕
𝜕 𝑙

)2
= 2𝛷(𝐽𝑙 , 𝐽𝑔). (4)
3 
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From (4), it follows that

 = 𝐽𝑔 ∫
√

d𝑙 ,  =
sin2 𝑙∕𝐴 + cos2 𝑙∕𝐵 − 1∕𝐽𝑑
sin2 𝑙∕𝐴 + cos2 𝑙∕𝐵 − 1∕𝐶

,

where

𝐽𝑑 =
𝐽 2
𝑔

2𝛷

is the dynamic moment of inertia (see [12]). By performing the change of coordinates

sin 𝑙 = cos 𝜆
√

1 + 𝜅 sin2 𝜆
, cos 𝑙 = −

√

1 + 𝜅 sin 𝜆
√

1 + 𝜅 sin2 𝜆
, (5)

and introducing the function

𝜇(𝐽𝑙 , 𝐽𝑔) = 𝐴
𝐶
𝜅
𝐶 − 𝐽𝑑
𝐽𝑑 − 𝐴

, (6)

where 𝜅 is a constant depending on the moments of inertia. i.e.

𝜅 =
𝐶(𝐵 − 𝐴)
𝐴(𝐶 − 𝐵)

, (7)

we have that

 =
𝜅(1 − 𝜇 sin2 𝜆)

𝜅 + 𝜇
, 𝜕

𝜕(1∕𝐽𝑑 )
=
𝐴𝐶(1 + 𝜅 sin2 𝜆)

𝐴 − 𝐶
, d𝑙 =

√

1 + 𝜅
1 + 𝜅 sin2 𝜆

d𝜆,

and

𝛷(𝐽𝑔 , 𝐽𝑙) =
𝐽 2
𝑔

2𝐴𝐶
𝜅 𝐴 + 𝜇 𝐶
𝜅 + 𝜇

. (8)

Thus,

𝐿 = 𝜕
𝜕 𝑙 = 𝐽𝑔

√

𝜅
𝜅 + 𝜇

√

1 − 𝜇 sin2 𝜆, (9)

𝐺 = 𝜕
𝜕 𝑔 = 𝐽𝑔 , (10)

𝐻 = 𝜕
𝜕 ℎ = 𝐽ℎ, (11)

𝜓𝑙 =
𝜕
𝜕 𝐽𝑙

= −𝐽𝑔
2

√

𝜅(1 + 𝜅)
(𝜅 + 𝜇)3∕2

𝐹 (𝜆, 𝜇) 𝜕 𝜇
𝜕 𝐽𝑙

, (12)

𝜓𝑔 =
𝜕
𝜕 𝐽𝑔

= 𝑔 +
√

𝜅 + 𝜇
√

1 + 𝜅
𝜅

(

𝛱(−𝜅 , 𝜆, 𝜇) − 𝐹 (𝜆, 𝜇)
𝜅 + 𝜇

(

𝜇 +
𝐽𝑔
2

𝜅
𝜅 + 𝜇

𝜕 𝜇
𝜕 𝐽𝑔

)

)

, (13)

𝜓ℎ = 𝜕
𝜕 𝐽ℎ

= ℎ, (14)

where 𝐹 (𝜆, 𝜇) is the incomplete elliptic integral of first kind and 𝛱(−𝜅 , 𝜆, 𝜇) is the incomplete elliptic integrals of third kind, defined
as:

𝐹 (𝜆, 𝜇) = ∫

𝜆

0

d𝜗
√

1 − 𝜇 sin2 𝜗
, 𝛱(−𝜅 , 𝜆, 𝜇) = ∫

𝜆

0

d𝜗

(1 + 𝜅 sin2 𝜗)
√

1 − 𝜇 sin2 𝜗
,

(see [19]). The new canonical variables 𝜓𝑙 and 𝜓𝑔 are angles only if they fulfil conditions

∮ 𝜓𝑙 = 2𝜋 , ∮ 𝜓𝑔 = 2𝜋 . (15)

Considering that 𝐹 (0, 𝜇) = 0, 𝐹 (2𝜋 , 𝜇) = 4𝐾(𝜇), 𝛱(−𝜅 , 0, 𝜇) = 0 and 𝛱(−𝜅 , 2𝜋 , 𝜇) = 4𝛱(−𝜅 , 𝜇), where 𝐾(𝜇) and 𝛱(−𝜅 , 𝜇) are the
following complete integrals of the first and third kind, i.e.

𝐾(𝜇) = 𝐹 (𝜋∕2, 𝜇), 𝛱(−𝜅 , 𝜇) = 𝛱(−𝜅 , 𝜋∕2, 𝜇),

the conditions in (15) applied to 𝜓𝑙 in (12) and 𝜓𝑔 in (13) imply that:
𝜕 𝜇
𝜕 𝐽𝑙

= − 𝜋
𝐽𝑔

1

𝜁
3
2

𝜅
√

1 + 𝜅
1

𝐾(𝜇)
, (16)

𝜕 𝜇
𝜕 𝐽𝑔

=
2𝜅 (𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝜇))

𝐽𝑔𝐾(𝜇)𝜁2
, (17)
4 
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with

𝜁 = 𝜅
𝜅 + 𝜇

. (18)

As explained by Lara and Ferrer [4], in order to find a particular solution of the partial differential system composed by Eqs. (16)
and (17), it is convenient to introduce the constraint 𝜇 = 𝜇(𝐽𝑙∕𝐽𝑔), for which

𝐽𝑙
𝜕 𝜇
𝜕 𝐽𝑙

+ 𝐽𝑔
𝜕 𝜇
𝜕 𝐽𝑔

= 0,

so that relation
𝐽𝑙
𝐽𝑔

= 2
𝜋

√

1 + 𝜅
𝜁

(𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝜇))

holds true. It follows that the Sadov variables are:

𝐽𝑙 =
2𝐺
𝜋

√

1 + 𝜅
𝜁

(𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝜇)) ,

𝐽𝑔 = 𝐺 ,
𝐽ℎ = 𝐻 ,
𝜓𝑙 =

𝜋
2
𝐹 (𝜆, 𝜇)
𝐾(𝜇)

,

𝜓𝑔 = 𝑔 +
√

1 + 𝜅
𝜁

(

𝛱(−𝜅 , 𝜆, 𝜇) − 𝛱(−𝜅 , 𝜇)
𝐾(𝜇)

𝐹 (𝜆, 𝜇)
)

,

𝜓ℎ = ℎ,

(19)

where the value of 𝜇 is given by Eq. (6). The rotation matrix from 𝑂 𝑋 𝑌 𝑍 to 𝑂 𝑥𝑦𝑧 in Sadov variables can be written by, first,
onsidering that the angle 𝜆 corresponds to the Jacobi amplitude

𝜆 = am(𝑢, 𝜇),
with

𝑢 =
2𝐾(𝜇)𝜓𝑙

𝜋
, (20)

as it follows from the definition of 𝜓𝑙 in (19), so that

𝑔 = 𝜓𝑔 + 𝛿 𝑔 , sin 𝑙 = cn(𝑢, 𝜇)𝑑 𝑛𝑘− 1
2 , cos 𝑙 = −

√

1 + 𝜅sn(𝑢, 𝜇)𝑑 𝑛𝑘− 1
2 ,

cos 𝜎 = 𝐿
𝐺

=
√

𝜁dn(𝑢, 𝜇), sin 𝜎 =
√

1 − 𝜁 𝑑 𝑛𝑘 1
2 ,

(21)

where cn(𝑢, 𝜇) is the Jacobi elliptic cosine, sn(𝑢, 𝜇) is the Jacobi elliptic sine, dn(𝑢, 𝜇) is the Jacobi elliptic delta amplitude, and

𝛿 𝑔 = −
√

1 + 𝜅
𝜁

(

𝛱(−𝜅 , am(𝑢, 𝜇), 𝜇) − 𝑢𝛱(−𝜅 , 𝜇)
𝐾(𝜇)

)

, (22)

𝑑 𝑛𝑘 = 1 + 𝜅sn2(𝑢, 𝜇), (23)

as it follows from Eqs. (5), (9) and the definition of 𝜓𝑔 in (19). Thus, from (1) it is straightforward to see that the rotation matrix is
𝐑i2b = 𝐑𝑏𝐑𝛿𝐑𝜓ℎ , (24)

where 𝐑𝜓ℎ = 𝐑ℎ|ℎ=𝜓ℎ , 𝐑𝛿 with

𝛿 = 𝛿(𝐽ℎ, 𝐽𝑔) = ar ccos (𝐽ℎ∕𝐽𝑔
)

,

and 𝐑𝑏 = (𝑏𝑖𝑗 )𝑖=1..3,𝑗=1..3 with elements

𝑏11 = −(
√

𝜁 sin
(

𝜓𝑔 + 𝛿 𝑔
)

cn(𝑢, 𝜇)dn(𝑢, 𝜇) +
√

1 + 𝜅 cos (𝜓𝑔 + 𝛿 𝑔
)

sn(𝑢, 𝜇))𝑑 𝑛𝑘−
1
2 , (25)

𝑏12 = −(
√

1 + 𝜅 sin (𝜓𝑔 + 𝛿 𝑔
)

sn(𝑢, 𝜇) −
√

𝜁 cos
(

𝜓𝑔 + 𝛿 𝑔
)

dn(𝑢, 𝜇)cn(𝑢, 𝜇))𝑑 𝑛𝑘− 1
2 , (26)

𝑏13 =
√

1 − 𝜁 cn(𝑢, 𝜇), (27)

𝑏21 = −(cos (𝜓𝑔 + 𝛿 𝑔
)

cn(𝑢, 𝜇) −
√

1 + 𝜅
√

𝜁 sin
(

𝜓𝑔 + 𝛿 𝑔
)

sn(𝑢, 𝜇) dn(𝑢, 𝜇))𝑑 𝑛𝑘−
1
2 , (28)

𝑏22 = −(
√

1 + 𝜅
√

𝜁 cos
(

𝜓𝑔 + 𝛿 𝑔
)

sn(𝑢, 𝜇) dn(𝑢, 𝜇) + sin (𝜓𝑔 + 𝛿 𝑔
)

cn(𝑢, 𝜇))𝑑 𝑛𝑘−
1
2 , (29)

𝑏23 = −
√

1 − 𝜁
√

1 + 𝜅 sn(𝑢, 𝜇), (30)

𝑏31 =
√

1 − 𝜁 sin (𝜓𝑔 + 𝛿 𝑔
)

𝑑 𝑛𝑘
1
2 , (31)

𝑏32 = −
√

1 − 𝜁 cos
(

𝜓𝑔 + 𝛿 𝑔
)

𝑑 𝑛𝑘
1
2 , (32)

√

𝑏33 = 𝜁 dn(𝑢, 𝜇). (33)
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Note that the canonical transformation leading to the Sadov variables can be suitably performed only if:
𝐵 ≤ 𝐽𝑑 ≤ 𝐶; (34)

and

𝐿 > 0. (35)

Indeed, since |𝐿| < 𝐺, from (9), we have that  ∈ (0, 1) which implies condition (34). Moreover, since 𝐽𝑔 > 0, from (9) it also follows
condition (35). When the disequality (34) is fulfilled, the satellite is in a short axis mode (SAM), with the largest components of its
ngular velocity along its shortest axis, corresponding to the axis of maximum inertia. Instead, when 𝐴 < 𝐽𝑑 < 𝐵, the satellite is in a
ong axis mode (LAM), with the largest components of its angular velocity along its longest axis, which is the axis of minimum inertia.
n this case, the set of Sadov variables can be introduced considering the alternative rotating reference frame 𝑂 𝑥′𝑦′𝑧′ discussed in
ection 2.1. The transformation can be applied as described using Andoyer–Serret variables defined with respect to 𝑂 𝑥′𝑦′𝑧′ and
eplacing 𝐴, 𝐵 , 𝐶 with 𝐴′, 𝐵′, 𝐶 ′, given in (3). Similarly, if disequality (35) is not fulfilled, it is sufficient to consider the alternative

reference frame 𝑂 𝑥o𝑦o𝑧o with the 𝑦o and 𝑧o axes in the opposite directions of the 𝑦 and 𝑧 axes.
The transformation to Sadov variables can be applied also in the case of axisymmetric bodies such that either 𝐴 = 𝐵 or 𝐵 = 𝐶,

hich correspond to 𝜅 = 0 and 𝜇 = 0. On the contrary, if 𝐴 = 𝐵 = 𝐶 the transformation is not well defined and the Andoyer–Serret
variables should be employed as action–angle variables.

3. Attitude dynamics in Sadov variables

When propagating the attitude dynamics, it is convenient to employ a set of modified Sadov variables, in which the momentum 𝐽𝑙
is replaced by either 𝜇 or 𝜁 . Indeed, as one can simply verify in the torque-free problem given the Hamiltonian in (8), the equations
of motion depend only implicitly on 𝐽𝑙 through 𝜇 and 𝜁 . For axisymmetric bodies, while 𝜇 is equal to zero,

lim
𝜅→0

𝜁 =
𝐶(𝐽𝑑 − 𝐴)
𝐽𝑑 (𝐶 − 𝐴)

,

as it follows from Eqs. (6) and (18). Thus, while the value of 𝜇 can be immediately inferred from the value of 𝜁 , the inverse is not
possible. For this reason, we select 𝜁 . This choice becomes advantageous when non-conservative external torques act on the satellite,
since 𝜇 and 𝜁 may vary in time. When the satellite is affected by both a total conservative torque with potential energy  and total
non-conservative torque 𝑴 , setting 𝒔 = (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝜓𝑔 , 𝜓ℎ), we have that the equations of motion become

d𝒔
d𝑡

= 𝐀∇𝒔𝛷 + 𝐀∇𝒔 + 𝐁𝑴 , (36)

where ∇𝒔 is the gradient operator,

𝐀 =
[

0 𝐈̃
−𝐈̃T 0

]

, (37)

with

𝐈̃ =
⎡

⎢

⎢

⎢

⎣

− 𝜋
𝐽𝑔𝐾(𝜇)

√

𝜁
1+𝜅

2(𝛱(−𝜅 ,𝜇)−(1−𝜁 )𝐾(𝜇))
𝐽𝑔𝐾(𝜇) 0

0 −1 0
0 0 −1

⎤

⎥

⎥

⎥

⎦

,

and

𝐁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝜁
𝐽𝑔
𝑏13 − 2𝜁 (1−𝜇)

𝐽𝑔 (1+𝜅)
𝑏23

2(1−𝜁 )
𝐽𝑔

𝑏33
𝑏13 𝑏23 𝑏33

cos 𝛿 𝑏13 + sin 𝛿 𝑏12 cos 𝛿 𝑏23 + sin 𝛿 𝑏22 cos 𝛿 𝑏33 + sin 𝛿 𝑏32
− 𝜋 𝑆𝑥

2𝐽𝑔𝐾(𝜇)(1−𝜇) − 𝜋 𝑆𝑦
2𝐽𝑔𝐾(𝜇) − 𝜋 𝑆𝑧

2𝐽𝑔𝐾(𝜇)(1−𝜇)
 𝑆𝑥
1−𝜇 − 𝑏11 cos 𝛿

𝐽𝑔 sin 𝛿
 𝑆𝑦 −

𝑏21 cos 𝛿
𝐽𝑔 sin 𝛿

 𝑆𝑧
1−𝜇 − 𝑏31 cos 𝛿

𝐽𝑔 sin 𝛿
𝑏11

𝐽𝑔 sin 𝛿
𝑏21

𝐽𝑔 sin 𝛿
𝑏31

𝐽𝑔 sin 𝛿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

with

 =
(𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝑚))

√

1 + 𝜅
𝐽𝑔𝐾(𝜇)

√

𝜁
, (39)

𝑆𝑥 =
dn(𝑢, 𝜇)sn(𝑢, 𝜇) − cn(𝑢, 𝜇)zn(𝑢, 𝜇)

√

1 − 𝜁
, (40)

𝑆𝑦 =
dn(𝑢, 𝜇)cn(𝑢, 𝜇) + sn(𝑢, 𝜇)zn(𝑢, 𝜇)

√

1 + 𝜅√1 − 𝜁
, (41)

𝑆𝑧 =
dn(𝑢, 𝜇)zn(𝑢, 𝜇) − 𝜇cn(𝑢, 𝜇)sn(𝑢, 𝜇)

√
, (42)
𝜁

6 



I. Cavallari et al.

a

s

v

Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108549 
and zn(𝑢, 𝜇) the Jacobi zeta function. Eqs. (36) to (42) are derived in Appendix A.
Note that, when the new set of variables 𝒔 are employed, 𝜇 is only a function 𝜁 and 𝑢 is a function of 𝜁 and 𝜓𝑙.

4. External torques

At medium and high altitudes, Earth satellites are mostly affected by the gravity-gradient, the residual magnetic, and the light
pressure torques (see [20]). Typically, the light pressure has smaller effects. However, since the magnitude of the gravity gradient
and the residual magnetic torques decrease with the geocentric distance of the satellite, the light pressure becomes more and more
significant at increasing altitudes.

4.1. Gravity-gradient torque

The Earth’s gravity generates a conservative torque acting on the satellites. As suggested by Liu and Chen [21], this torque can
be modelled by considering the Earth as a perfectly spherical body, so that its potential energy results equal to:

𝑉g =
3𝜇⊕
2𝑟3

(

𝐴𝛼21 + 𝐵 𝛼22 + 𝐶 𝛼23
)

, (43)

with

(𝛼1, 𝛼2, 𝛼3)T = 𝐑i2b
𝒓
𝑟
.

In the above equations, 𝜇⊕ is the Earth’s gravitational parameters, 𝒓 is the geocentric position vector of the satellite’s centre of mass,
nd 𝑟 = |𝒓|.

4.2. Residual magnetic torque

The residual magnetic torque arises from the interaction between the Earth’s magnetic field and the intrinsic magnetic moment
of an orbiting object, due, for example, to parasitic magnetic induction (see [13]). Similarly to the gravity-gradient torque, it is a
conservative torque. As proposed by Liu and Chen [21], the magnetic flux density of the Earth can be approximated by using a
implified model, in which the geomagnetic dipole is aligned with the Earth’s polar axis, so that

𝑩⊕ =
𝜇m
𝑟3

(

𝒆̂𝑍 − 3
(

𝒆̂𝑍 ⋅
𝒓
𝑟

) 𝒓
𝑟

)

,

where 𝜇m = 1017 Wb m is the Earth’s magnetic dipole strength. The potential energy reads:

𝑉m = −𝑰m ⋅ 𝐑i2b𝑩⊕. (44)

where 𝑰m is the intrinsic magnetic moment of the object.

4.3. Light pressure torque

The light pressure torque is a non-conservative torque caused by the resultant of the light pressure force acting on different
surfaces of an object. As suggested by Benson and Scheeres [12], the light pressure force can be computed by modelling a complex
object as the composition of 𝑛𝑓 facets and summing up the forces acting on each facet. The force acting on the 𝑖th facet is:

𝒇 lp𝑖 = −𝑃lp𝑆𝑖
(

𝑐a,𝑖𝒖̂ + 𝑐d,𝑖𝒏̂𝑖 + 𝑐s,𝑖(𝒖̂ ⋅ 𝒏̂𝑖) 𝒏̂𝑖
)

max
(

𝒖̂ ⋅ 𝒏̂𝑖, 0
)

. (45)

𝑃lp is the light pressure given by

𝑃lp = 𝑃lp

(

1 au
|𝒓⊙ − 𝒓|

)2
,

with 𝑃lp = 4.56 10−6 k g∕s2 m its value at 1 astronomical unit (au) and 𝒓⊙ the geocentric position vector of the Sun (see [10]). 𝑆𝑖
is the area of the 𝑖th facet, 𝒏̂𝑖 is its outer-pointing normal unit vector, and 𝑐a,𝑖, 𝑐d,𝑖 and 𝑐s,𝑖 are coefficients depending on its optical
properties. In particular, given the total reflectivity 𝜌𝑖 of the facet and the fraction 𝑠𝑖 of 𝜌𝑖 that is specular, relations

𝑐a,𝑖 = 1 − 𝜌𝑖𝑠𝑖, 𝑐d,𝑖 =
2
3
(1 − 𝑠𝑖)𝜌𝑖, 𝑐s,𝑖 = 2𝜌𝑖𝑠𝑖.

hold (see [10]). Furthermore,

𝒖̂ = 𝐑i2b
𝒓⊙ − 𝒓
|𝒓⊙ − 𝒓|

,

(see [12]). Following [12], some simplifications are adopted. The satellite-to-Sun vector is approximated by the geocentric position
ector of the Sun so that

𝒖̂ ∼ 𝒖̃ = 𝐑i2b
𝒓⊙
|𝒓 |

, (46)

⊙
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and

𝑃lp ∼ 𝑃lp

(

1 au
|𝒓⊙|

)2
.

Moreover,

max
(

𝒖̂ ⋅ 𝒏̂𝑖, 0
)

∼ 𝑔𝑖 =
1
3𝜋

+ 1
2
(𝒖̃ ⋅ 𝒏̂𝑖) + 4

3𝜋
(𝒖̃ ⋅ 𝒏̂𝑖)2.

It follows that the light pressure force can be approximated as

𝒇 lp ∼ −𝑃lp
(

1 au
|𝒓⊙|

)2 𝑛𝑓
∑

𝑖=1
𝑆𝑖𝑔𝑖(𝑐a,𝑖𝒖̃ + 𝑐d,𝑖𝒏̂𝑖 + 𝑐s,𝑖(𝒖̃ ⋅ 𝒏̂𝑖) 𝒏̂𝑖), (47)

and, consequently, the light pressure torque can be modelled as

𝑴 lp ∼ −𝑃lp
(

1 au
|𝒓⊙|

)2 𝑛𝑓
∑

𝑖=1
𝑆𝑖𝑔𝑖𝝆𝑖 × (𝑐a,𝑖𝒖̃ + 𝑐d,𝑖𝒏̂𝑖 + 𝑐s,𝑖(𝒖̃ ⋅ 𝒏̂𝑖) 𝒏̂𝑖), (48)

with 𝝆𝑖 the vector from the centre of mass of an object to the centroid of the 𝑖th facet.
The effect of the Earth’s shadow, which may become relevant over long periods of time, is included by multiplying 𝑴 lp by a

shadow function, which is equal to either zero when the satellite is in shadow or one when the satellite is in sunlight (see [22]). A
natural choice would be the function:

𝑣𝑠(𝛶 ) =
{

0 if 𝛶1 ≤ 𝛶 ≤ 𝛶2,
1 otherwise,

where 𝛶 is the satellite’s eccentric longitude, and 𝛶1 and 𝛶2 are the values of 𝛶 at the entrance and the exit of the shadow region,
respectively. However, when propagating the dynamics, it is more convenient to use a smooth function. Thus, we multiply 𝑴 lp by
he Fourier expansion of 𝑣𝑠(𝛶 ) truncated at the 20-th harmonic:

𝑣𝑠(𝛶 ) ∼ 𝑣̃𝑠(𝛶 ) = 1 − 𝛶2 − 𝛶1
2𝜋

−
20
∑

𝑘=1

sin
(

𝑘(𝛶 − 𝛶1)
)

− sin (𝑘(𝛶 − 𝛶2)
)

𝜋 𝑘 . (49)

The algorithm proposed by Valk and Lemaître [23] can be employed to compute the values 𝛶1 and 𝛶2.

5. Averaged model

If the effect of external torques can be considered a perturbation of the torque-free motion, perturbation techniques can be
pplied to derive an averaged model suitable to study the attitude dynamics over long timescales. The equations of attitude motion
36) can be shortly written as

d𝒔
d𝑡

= 𝐀∇𝒔𝛷 + 𝑭 et (𝒔), (50)

where 𝑭 et (𝒔) is the vector field depending on all the external torques acting on the object, defined as:

𝑭 et (𝒔) = 𝐀∇𝒔
(

𝑉g + 𝑉m
)

+ 𝐁𝑴 lp𝜐𝑠, (51)

where

𝜐𝑠 =
{

1 if the satellite is considered always in light,
𝑣̃𝑠 if the Earth’s shadow effects are taken into account,

see Eqs. (43), (44), (48) and (49). If the satellite was not affected by any external torque, the only non-constant attitude variables
would be the angles 𝜓𝑙 and 𝜓𝑔 . Furthermore, if the orbital perturbations are also neglected, the only non-constant orbital element
s the orbital mean anomaly 𝑀 . Under the hypothesis that the external torques are perturbations of the free-torque problem, all
he other attitude variables in 𝒔 are expected to have a slower evolution in comparison to 𝜓𝑙, 𝜓𝑔 and 𝑀 , i.e. their time derivatives

are expected to remain close to zero and be smaller than the time derivatives of 𝜓𝑙, 𝜓𝑔 and 𝑀 . Thus, 𝜓𝑙, 𝜓𝑔 , and 𝑀 are the fast
variables of the problem in our derivations (see [4,8]). Averaging over the fast variables allows one to retain only the long-period
terms in the equations of motion. This average is equivalent to performing the transformation of variables close to the identity

𝒔(𝑡) = 𝒔̄(𝑡) +𝑾 (𝒔̄(𝑡), 𝑡) , (52)

transforming (50) into
d𝒔̄(𝑡)
d𝑡

= 𝐀∇𝒔𝛷 + 𝑭̄ et (𝒔̄) +𝑹, (53)

and neglecting the remainder 𝑹, whose magnitude is hopefully significantly smaller than |𝑭̄ et |. This leads to the approximation:
d𝒔̄(𝑡)
d𝑡

∼
̄d𝒔(𝑡)
d𝑡

= 𝐀∇𝒔𝛷 + 𝑭̄ et . (54)

The averaged model gives the dynamical evolution of the mean attitude variables 𝒔̄. Transformation (52) is computed with a Lie
series technique. The same technique can be used to compute a higher-order correction term, to be included in the model:

d𝒔̄(𝑡) ̄ ̄

d𝑡

∼ 𝐀∇𝒔𝛷 + 𝑭 et +𝑹𝑝. (55)
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The term 𝑹̄𝑝 corresponds to the average of the largest terms of 𝑹 over the fast variables. Eqs. (55) are characterised by a smaller
number of terms than the original Eqs. (50), and, thus, are faster to integrate. The averaging process is performed under the
hypothesis that the fast angles are not resonant. Furthermore, the satellite is assumed to be fast-rotating and moving along a
Keplerian orbit. The orbit is defined by the equinoctial elements 𝑬 = (𝑎, 𝑃1, 𝑃2, 𝑄1, 𝑄2), where 𝑎 is the semi-major axis of the orbit,
and

𝑃1 = 𝑒 sin (𝜔 +𝛺) ,

𝑃2 = 𝑒 cos (𝜔 +𝛺) ,

𝑄1 = t an
( 𝐼
2

)

sin𝛺 ,

𝑄2 = t an
( 𝐼
2

)

cos𝛺 ,
with 𝑒, 𝐼 , 𝜔 and 𝛺 the orbital eccentricity, inclination, argument of the perigee and longitude of the node, respectively. In the
following, we will describe the procedure to analytically solve the integral

𝑭̄ et =
1

8𝜋3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝑭 et d𝜓𝑔d𝜓𝑙d𝑀 , (56)

which corresponds to deriving the first-order averaged model. Then, we will present how the Lie series technique can be used to
derive the transformation from non-averaged to mean variables and compute higher-order correction terms. Finally, we will discuss
the singularities appearing in the averaged model and a way to handle them, through the use of non-singular variables.

5.1. Averaging procedure

The average of the terms due to conservative torques can be computed from the average of the corresponding potential energies
s 𝐀∇𝒔

(

𝑉g + 𝑉m
)

, with

𝑉g =
1

8𝜋3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝑉gd𝜓𝑔d𝜓𝑙d𝑀 , (57)

𝑉m = 1
8𝜋3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝑉md𝜓𝑔d𝜓𝑙d𝑀 . (58)

Thus, determining 𝑭̄ et in (56) implies to compute (57), (58) and the integral
1

8𝜋3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝐁𝑴 lp𝜐𝑠 d𝜓𝑔d𝜓𝑙d𝑀 .

All the terms in 𝐁𝑴 lp𝜐𝑠, 𝑉g and 𝑉m can be expressed as the product of three factors: a function of the slow variables (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓ℎ);
 function of the fast angles (𝜓𝑙 , 𝜓𝑔) and 𝜁 ; a function of the orbital elements. Thus, the generic term to be averaged has the form

𝑓 =  (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓ℎ)𝑓a(𝜁 , 𝜓𝑙 , 𝜓𝑔)𝑓o(𝑬, 𝑀).

From (43), (44) and (48), it is clear that 𝑉g, 𝑉m and 𝑴 lp depend on the Sadov fast angles only through the elements 𝑏𝑖𝑗 of the
rotation matrix 𝐑i2b in (24). Instead, the dependence of 𝐁 in (38) on (𝜓𝑙 , 𝜓𝑔) occurs through both the 𝑏𝑖𝑗 elements and the terms
𝑆𝑥, 𝑆𝑦, 𝑆𝑧 (see (40)–(42)). It follows that 𝑓a has the form

𝑓a = a(𝜁 ) sin𝑖(𝜓𝑔 + 𝛿 𝑔) cos𝑗 (𝜓𝑔 + 𝛿 𝑔)dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘
𝑝𝑖+𝑝𝑗

2 zn𝑤(𝑢, 𝜇), (59)

with 𝑤 ∈ [0, 1], 𝑖, 𝑗 , 𝑜, 𝑠, 𝑘 natural numbers, 𝑝𝑖 an integer number with the same parity as 𝑖 and 𝑝𝑗 and integer number with the same
arity as 𝑗. Because of the form of 𝑓 and 𝑓a, to analytically compute

𝑓 = 1
8𝜋3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝑓 d𝜓𝑔d𝜓𝑙d𝑀 ,

it is convenient to apply the procedure described in the following:

(i) Average over 𝜓𝑔
As a first step, the average ⟨𝑓 ⟩𝜓𝑔 of 𝑓 over 𝜓𝑔 is computed:

⟨𝑓 ⟩𝜓𝑔 =  𝑓o ⟨𝑓a⟩𝜓𝑔 , ⟨𝑓a⟩𝜓𝑔 = 1
2𝜋 ∫

2𝜋

0
𝑓ad𝜓𝑔 .

It can be proved that

Proposition 1. If either the natural number 𝑖 or the natural number 𝑗 in Eq. (59) is odd, ⟨𝑓a⟩𝜓𝑔 = 0. Otherwise, if both 𝑖 and 𝑗 are even
numbers,

⟨𝑓a⟩𝜓𝑔 = ̃a(𝜁 )dn
𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn𝑤(𝑢, 𝜇),

with 𝑝 an integer number and

̃a(𝜁 ) = a(𝜁 )

𝑖
2
∑

(

𝑖
2

)

(−1)𝑑
𝑑+ 𝑗

2−1
∏ 2𝑑 + 𝑗 − 2𝑣 − 1

.

𝑑=0 𝑑 𝑣=0 2𝑑 + 𝑗 − 2𝑣

9 
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The proof of Proposition 1 is given in Appendix B. Observe that the resulting ⟨𝑓 ⟩𝜓𝑔 depends on 𝜓𝑙 only through Jacobi elliptic
unctions, as the trigonometric functions depending on 𝛿 𝑔 disappear. This makes ⟨𝑓 ⟩𝜓𝑔 easier to be averaged over 𝜓𝑙 than 𝑓 .

(ii) Average over 𝜓𝑙
As a second step, the average ⟨𝑓 ⟩𝜓𝑔 ,𝜓𝑙 of ⟨𝑓 ⟩𝜓𝑔 over 𝜓𝑙 is determined, i.e.

⟨𝑓 ⟩𝜓𝑔 ,𝜓𝑙 = 𝑓o𝑓a = 𝑓o
̃a
4𝐾(𝜇)

,

where

 = ∫

4𝐾(𝜇)

0
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn𝑤(𝑢, 𝜇)d𝑢.

It is possible to show that

Proposition 2. If 𝑤 = 1 and either 𝑠 or 𝑘 are even,  = 0. Otherwise, if 𝑤 = 1 and both 𝑠 or 𝑘 are odd,

 = ∫

4𝐾(𝜇)

0

(

∫ dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝d𝑢
)

⋅
(𝐸(𝜇)
𝐾(𝜇)

− dn2(𝑢, 𝜇)
)

d𝑢,

with 𝐸(𝜇) the complete elliptic integral of second kind, i.e.

𝐸(𝜇) = ∫

𝜋
2

0

√

1 − 𝜇 sin2 𝜗d𝜗.

Thus, the computation of  implies solving integrals with the form

∫ dn𝑣(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝d𝑢,

with 𝑣 natural number. This can be easily done with the support of a symbolic manipulator, such as MAPLE. The proof of
Proposition 2 is given in Appendix C.

(iii) Average over 𝑀
Finally, the average over 𝑀 is computed:

𝑓 = 𝑓a
1
2𝜋 ∫

2𝜋

0
𝑓od𝑀 .

Since the dependence of the external torques or their potential energies on 𝑀 is implicit through geometrical angles, such as the
true longitude 𝛬 or the eccentric longitude 𝛶 , 𝑓 is computed as either

𝑓 =
𝑓a
2𝜋 ∫

2𝜋

0

𝑓o𝜂3

(1 + 𝑃1 sin𝛬 + 𝑃2 cos𝛬)2
d𝛬

or

𝑓 = = 𝑓a
2𝜋 ∫

2𝜋

0
𝑓o(1 − 𝑃1 sin𝛶 − 𝑃2 cos𝛶 )d𝛶 .

with

𝜂 =
√

1 − 𝑃 2
1 − 𝑃 2

2 .

For example, one can note that the light pressure torque 𝑴 lp in (48) is independent of the mean anomaly. The dependence on 𝑀
s introduced when 𝑴 lp is multiplied by the shadow function in (49), which indeed depends on the eccentric longitude. Instead, it

is convenient to express the gravity-gradient and the residual magnetic torques potential energies in terms of the true longitude, by
using

𝒓 = 𝑟

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

1−𝑄2
1+𝑄

2
2

)

cos𝛬+2𝑄1𝑄2 sin𝛬

1+𝑄2
1+𝑄

2
2(

1+𝑄2
1−𝑄

2
2

)

sin𝛬+2𝑄1𝑄2 cos𝛬

1+𝑄2
1+𝑄

2
2

−2𝑄1 cos𝛬+2𝑄2 sin𝛬
1+𝑄2

1+𝑄
2
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑟 =
𝑎𝜂2

1 + 𝑃1 sin𝛬 + 𝑃2 cos𝛬
,

in (43) and (44). This simplifies computing 𝑓 analytically. Indeed, the resulting integrands depend on the geometrical angles through
trigonometric functions always at the numerator.

5.2. Lie transformations and the higher-order correction term

As already discussed, the semi-analytical propagation does not give the evolution of the osculating attitude variables 𝒔, but the
ne of the mean attitude variables 𝒔̄. Deriving a transformation (52) between these two sets of variables is necessary to compute
10 
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the initial value of 𝒔̄. This is done by using a Lie series technique, based on the combination of Lie transformations. In particular, a
method similar to the one in Barrio and Palaciàn [14] is employed in this paper. The Lie transformation from a set of variables 𝒔(0)
to a new set 𝒔(1) is given by

𝒔(0) =
∞
∑

𝑖=0

1
𝑖!
ℒ 𝑖

𝑾 𝒔(1), (60)

where ℒ𝑾 𝒔(1) is the Lie derivative of 𝒔(1) with respect to the vector field 𝑾 , called generator, and

ℒ 𝑖
𝑾 (𝒔(1)) = ℒ𝑾

(

ℒ𝑾
(

…
(

ℒ𝑾 𝒔(1)
)))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖 times

.

Henrard [24] shows that, as a consequence of the transformation, a vector field 𝑭 (𝒔(0)) becomes

𝑭 ′(𝒔(1)) =
∞
∑

𝑖=0

1
𝑖!
ℒ̃ 𝑖

𝑾 𝑭 (𝒔(0))||
|𝒔(0)=𝒔(1)

,

with

ℒ̃ 𝑖
𝑾 𝑭 (𝒔(0)) = ℒ̃𝑾

(

ℒ̃𝑾
(

…
(

ℒ̃𝑾 𝑭
(

𝒔(0)
))))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖 times

,

where

ℒ̃𝑾 ⋅ = 𝜕⋅
𝜕𝒔(0)

𝑾 − 𝜕𝑾
𝜕𝒔(0)

⋅

is the so-called Lie operator. In the following, to simplify the notation, we drop the subscripts here employed to distinguish the
variables before and after the Lie transformation.

The dependence of the attitude equations of motion in (50) on the Sadov fast angles through the Jacobi elliptic function makes
t extremely difficult to compute the generators of the Lie transformations leading to the averaged model (54). Thus, a Fourier

expansion of the Jacobi elliptic functions in (50) is performed, applying the method by Abad et al. [25] and Vallejo [2], summarised
in Appendix D. This allows us to express the dependence of the equations of motion on (𝜓𝑙 , 𝜓𝑔) through trigonometric functions,
which are easier to handle. It is also convenient to introduce a dummy action 𝐽𝑀 conjugated to the mean anomaly 𝑀 , extending 𝒔
to the set

𝒔̃ =
(

𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝜓𝑔 , 𝜓ℎ, 𝐽𝑀 , 𝑀
)

,

to obtain an autonomous system. The equations of motion become
d𝒔̃
d𝑡

= 𝐀̃∇𝒔̃
(

𝛷 + 𝑛𝐽𝑀 + 𝑉g + 𝑉m
)

+ 𝐁̃𝑴 lp𝜐𝑠,

where 𝑛 is the orbital mean motion, i.e.

𝑛 =
√

𝜇⊕
𝑎3
, (61)

and

𝐀̃ =
[

𝐀 0
0 𝐉

]

, 𝐁̃ =
[

𝐁 0
0 0

]

, 𝐉 =
[

0 −1
1 0

]

. (62)

To keep track of the different relative sizes of the terms characterising the vector field during the successive application of Lie
transformations, we introduce the book-keeping parameter 𝜀 (see [26]). This is a formal parameter whose numerical value is equal
to one and whose powers are used to assess the sizes of the terms. The higher the power of 𝜖, the smaller the order of magnitude
of the term multiplied by it. Because of the hypothesis of a fast-rotating satellite, we have

d𝒔̃
d𝑡

= 𝐀̃∇𝒔̃𝛷 + 𝜀𝐀̃∇𝒔̃
(

𝑛𝐽𝑀
)

+ 𝜀2𝐀̃∇𝒔̃
(

𝑉g + 𝑉m
)

+ 𝜀2𝐁̃𝑴 lp𝜐𝑠.

Three successive Lie transformations are applied to transform 𝒔̃ into ̄̃𝒔 = (𝑠̄, 𝐽𝑀 , 𝑀), with 𝐽𝑀 the transformed ‘mean’ dummy action:

1. The generator 𝑾 1 of the first transformation is given by the sum of two generators 𝑾 1NH and 𝑾 1H , used to deal with the
parts of the vectorial field depending on non-conservative and conservative torques, respectively:

𝑾 1 = 𝑾 1NH +𝑾 1H .

𝑾 1NH fulfils

ℒ̃𝑾 1NH
𝐀̃∇𝒔̃𝛷 + 𝜀2𝐁̃𝑴 lp𝜐𝑠 = 𝜀2𝒁2, 𝒁2 =

1
4𝜋2 ∫

2𝜋

0 ∫

2𝜋

0
𝐁̃𝑴 lp𝜐𝑠d𝜓𝑔d𝜓𝑙 .

Instead, 𝑾 1H = 𝐀̃∇𝒔̃𝜒1, with 𝜒1 fulfilling

− 𝑛𝜓
𝜕 𝜒1 − 𝑛𝜓

𝜕 𝜒1 + 𝜀2
(

𝑉g + 𝑉m
)

= 𝜀22, 2 =
1 2𝜋 2𝜋

(

𝑉g + 𝑉m
)

d𝜓𝑔d𝜓𝑙 ,
𝑙 𝜕 𝜓𝑙 𝑔 𝜕 𝜓𝑔 4𝜋2 ∫0 ∫0

11 
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where

𝑛𝜓𝑙 = −𝜋
√

𝜁
1 + 𝜅

𝐽𝑔
2𝐴𝐶

𝐶 − 𝐴
𝐾(𝜇)

(63)

and

𝑛𝜓𝑔 =
(

𝛱(−𝜅 , 𝜇) + 𝐴
𝐶 − 𝐴

𝐾(𝜇)
) 𝐽𝑔(𝐶 − 𝐴)
𝐴 𝐶 𝐾(𝜇)

(64)

respectively represent the angular speed of 𝜓𝑙 and 𝜓𝑔 in the torque-free problem. The transformed vectorial field is
d𝒔̃
d𝑡

(1)
= 𝐀̃∇𝒔̃𝛷 + 𝜀𝐀̃∇𝒔̃

(

𝑛𝐽𝑀
)

+ 𝜀2𝐀̃∇𝒔̃2 + 𝜀2𝒁2 + (𝜀3). (65)

Let us remark that the average of 𝑾 1 over (𝜓𝑙 , 𝜓𝑔) is equal to zero.
2. Denoting by 𝑍2,𝑖, 𝑖 = 1 … 8, the components of 𝒁2, the generator of the second transformation is

𝑾 2 =
2𝜀2

𝑛2𝜓𝑔

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝜓𝑔𝛥𝑍2,1 ar ct an
(

t an 𝜓𝑔
2

)

,

𝑛𝜓𝑔𝛥𝑍2,2 ar ct an
(

t an 𝜓𝑔
2

)

0
(

𝜕 𝑛𝜓𝑙
𝜕 𝜁 𝛥𝑍2,1 +

𝜕 𝑛𝜓𝑙
𝜕 𝐽𝑔 𝛥𝑍2,2

)

(

ar ct an2
(

t an 𝜓𝑔
2

)

− 𝜋2

12

)

(

𝜕 𝑛𝜓𝑔
𝜕 𝜁 𝛥𝑍2,1 +

𝜕 𝑛𝜓𝑔
𝜕 𝐽𝑔 𝛥𝑍2,2

)

(

ar ct an2
(

t an 𝜓𝑔
2

)

− 𝜋2

12

)

0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with

𝛥𝑍2,1 = 𝑍2,1 − 𝑍̄2,1, 𝑍̄2,1 =
1
2𝜋 ∫

2𝜋

0
𝑍2,1d𝑀 , (66)

𝛥𝑍2,2 = 𝑍2,2 − 𝑍̄2,2, 𝑍̄2,2 =
1
2𝜋 ∫

2𝜋

0
𝑍2,2d𝑀 , (67)

The vector field in (65) is transformed into
d𝒔̃
d𝑡

(2)
= 𝐀̃∇𝒔̃𝛷 + 𝜀𝐀̃∇𝒔̃

(

𝑛𝐽𝑀
)

+ 𝜀2𝐀̃∇𝒔̃2 + 𝜀2𝒁̃2 + (𝜀3),

where 𝒁̃2 =
(

𝑍̄2,1, 𝑍̄2,2, 𝑍2,3, 𝑍2,4, 𝑍2,5, 𝑍2,6, 𝑍2,7, 𝑍2,8
)T.

3. The generator 𝑾 3 of the last Lie transformation is
𝑾 3 = 𝑾 3NH − 𝑾̄ 3NH +𝑾 3H − 𝑾̄ 3H .

Here, 𝑾 3NH fulfils

ℒ̃𝑾 3NH
𝐀̃∇𝒔̃(𝑛𝐽𝑀 ) + 𝜀2𝒁̃2 = 𝜀2𝒁̄2, 𝒁̄2 =

1
2𝜋 ∫

2𝜋

0
𝒁̃2d𝑀 ,

and 𝑾̄ 3NH is the average of 𝑾 3NH over 𝑀 . Instead, 𝑾 3H = 𝐀̃∇𝒔̃𝜒3, with 𝜒3 fulfilling

−𝑛
𝜕 𝜒3
𝜕 𝑀 𝜀 + 𝜀22 = 𝜀2̄2, ̄2 =

1
2𝜋 ∫

2𝜋

0
̄2d𝑀 ,

and

𝑾̄ 3H = 𝐀∇𝒔̃

(

1
2𝜋 ∫

2𝜋

0
𝜒3d𝑀

)

.

The transformed vector field is
d𝒔̃
d𝑡

(3)
= 𝐀̃∇𝒔̃𝛷 + 𝜀𝐀̃∇𝒔̃

(

𝑛𝐽𝑀
)

+ 𝜀2𝐀̃∇𝒔̃̄2 + 𝜀2𝒁̄2 + (𝜀3).

Neglecting the terms of order higher than 1 in the power series (60), the mean variables can be computed as

̄̃𝒔 = 𝒔̃ −𝑾 1(𝒔̃) −𝑾 2
(

𝒔̃ −𝑾 1(𝒔̃)
)

−𝑾 3
(

𝒔̃ −𝑾 1(𝒔̃) −𝑾 2
(

𝒔̃ −𝑾 1(𝒔̃)
))

.

The generators of the three Lie transformations can also be used to estimate the remainder 𝑹, i.e. the difference between the
original and the transformed vector fields, and, thus, to determine the higher-order term 𝑹𝑝 to include in the averaged model,
increasing its accuracy. The remainder term of the third order in 𝜀 is

̃ ( ̃ ( )) ̃ ( ̃ ( )) 1 ̃ ( ̃ ̃ ̃ ̄ ̄ )
𝑹3 = ℒ𝑾 1
𝐀∇𝒔̃ 𝑛𝐽𝑀 +ℒ𝑾 2

𝐀∇𝒔̃ 𝑛𝐽𝑀 +
2
ℒ𝑾 3

𝐀∇𝒔̃2 +𝒁2 + 𝐀∇𝒔̃2 +𝒁2 .

12 
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Since the average of the three generators 𝑾 1, 𝑾 2 and 𝑾 3 is null and the terms 𝐀̃∇𝒔̃
(

𝑛𝐽𝑀
)

, 𝐀̃∇𝒔̃̄2, 𝒁̄2 do not depend on (𝜓𝑙 , 𝜓𝑔 , 𝑀),
it is straightforward that the average 𝑹̄3 over the fast angles is

𝑹̄3 =
1

2(2𝜋)3 ∭

2𝜋

0
ℒ̃𝑾 3

(

𝐀̃∇𝒔̃2 + 𝒁̃2
)

d𝜓𝑙d𝜓𝑔d𝑀 .

More specifically, 𝑹̄3 can be split in the sum of the following terms:

𝑹̄3,1 =
1

2(2𝜋)3 ∭

2𝜋

0
ℒ̃𝑾 3H−𝑾̄ 3H

(

𝐀̃∇𝒔̃2
)

d𝜓𝑙d𝜓𝑔d𝑀 ,

𝑹̄3,2 =
1

2(2𝜋)3 ∭

2𝜋

0
ℒ̃𝑾 3NH−𝑾̄ 3NH

(

𝒁̃2
)

d𝜓𝑙d𝜓𝑔d𝑀 ,

𝑹̄3,3 =
1

2(2𝜋)3 ∭

2𝜋

0
ℒ̃𝑾 3NH−𝑾̄ 3NH

(

𝐀̃∇𝒔̃2
)

d𝜓𝑙d𝜓𝑔d𝑀 ,

𝑹̄3,4 =
1

2(2𝜋)3 ∭

2𝜋

0
ℒ̃𝑾 3H−𝑾̄ 3H

(

𝒁̃2
)

d𝜓𝑙d𝜓𝑔d𝑀 .

Considering that the dependence of the light pressure perturbation on the orbital mean anomaly occurs only through the shadow
unction, one can easily find that 𝑹̄3,2 is null. Thus,

𝑹̄3 = 𝑹̄3,1 + 𝑹̄3,3 + 𝑹̄3,4.

As previously discussed, the light pressure torque has typically smaller effects than the gravity-gradient and the residual magnetic
torques. These perturbations become more comparable at higher altitudes, where their effects are less significant and, thus, the
necessity of higher-order corrections reduces. Hence, we include only 𝑹̄3,1 in the averaged model:

𝑹𝑝 = 𝑹̄3,1.

Considering 𝑹̄3,3, 𝑹̄3,4 and also the average of remainder terms of order higher than 3 in 𝜀 would certainly benefit the accuracy of
he model. However, this would imply introducing a prohibitive number of terms in the model which would negatively affect the
omputational time required to propagate the dynamics.

5.3. Non-singular variables

The attitude equations of motion in Eq. (36) are characterised by three singularities: i) 𝜇 = 0, appearing in the time derivatives
f 𝜓𝑙 and 𝜓𝑔 ; ii) 𝜇 = 1, in the time derivatives of 𝜓𝑙 and 𝜓𝑔 ; iii) sin 𝛿 = 0 in the time derivatives of 𝜓𝑔 and 𝜓ℎ. Only the last two
ingularities survive in the averaged model (55). Indeed, even though the averaged model has terms with 𝜇 at the denominator,

these have a finite limit when 𝜇 tends to zero. For example, one of the terms appearing in the time derivative of the mean 𝜓𝑙 variable
is

9𝜋 𝜇⊕𝐴𝑄2
1𝑄2 sin(2𝛿) cos𝜓ℎ

√

1 − 𝜁
8𝑎3𝜂3(𝑄2

1 +𝑄
2
2 + 1)2

√

1 + 𝑘𝐽𝑔(1 − 𝜇)
(𝐸(𝜇) −𝐾(𝜇)(1 − 𝜇))2

𝜇 𝐾(𝜇)2

where

lim
𝜇→0

(𝐸(𝜇) −𝐾(𝜇)(1 − 𝜇))2
𝜇 𝐾(𝜇)2

= 0,

as it follows from L’Hôpital’s rule.
The singularity 𝜇 = 1 is peculiar. Indeed, since it occurs when 𝐽𝑑 = 𝐵, as follows from Eq. (6), it denotes the separatrix between

the SAMs and the LAMs in the torque-free problem.
When external torques perturb the free rotation of the satellite, the region of the phase space in the neighbourhood of the

separatrix becomes chaotic: the attitude motion becomes recurrent aperiodic and extremely sensitive to initial conditions (see [21]).
Small variations in the initial conditions result in huge differences in the dynamical evolution, which has no regular pattern. The
dynamics becomes comparable to a stochastic process. When the rotational state of the satellite falls in the chaotic region, the
averaged model is quantitatively inaccurate and becomes unsuitable. Thus, the singularity 𝜇 = 1 is not an issue.

The singularity sin 𝛿 = 0 does not identify any attractive equilibrium point of the rotational dynamics. It constitutes a problem
nly for initial conditions such that the value of sin 𝛿 is close to zero, or if, during the propagation of the dynamics, the singularity
s slowly approached. As a solution, we introduce alternative variables 𝒔𝐼 obtained by a suitable combination of the 𝒔 variables. A
ossible set is 𝒔𝐼 = (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝐼5, 𝐼6, 𝐼7) with

𝐼5 = 𝜓𝑔 +
𝐽ℎ
𝐽𝑔
𝜓ℎ, 𝐼6 =

√

𝐽 2
𝑔 − 𝐽 2

ℎ cos𝜓ℎ, 𝐼7 =
√

𝐽 2
𝑔 − 𝐽 2

ℎ sin𝜓ℎ.

The attitude equations of motion in the new variables can be obtained by suitably combining the equations of motion (36) in the
Sadov variables, using that
13 
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d𝐼5
d𝑡

=
d𝜓𝑔
d𝑡

−
𝐽ℎ
𝐽 2
𝑔
𝜓ℎ

d𝐽𝑔
d𝑡

+ 1
𝐽𝑔
𝜓ℎ

d𝐽ℎ
d𝑡

+
𝐽ℎ
𝐽𝑔

d𝜓ℎ
d𝑡

,

d𝐼6
d𝑡

=
𝐽𝑔 cos𝜓ℎ
√

𝐽 2
𝑔 − 𝐽 2

ℎ

d𝐽𝑔
d𝑡

−
𝐽ℎ cos𝜓ℎ
√

𝐽 2
𝑔 − 𝐽 2

ℎ

d𝐽ℎ
d𝑡

−
√

𝐽 2
𝑔 − 𝐽 2

ℎ sin𝜓ℎ
d𝜓ℎ
d𝑡

,

d𝐼7
d𝑡

=
𝐽𝑔 sin𝜓ℎ
√

𝐽 2
𝑔 − 𝐽 2

ℎ

d𝐽𝑔
d𝑡

−
𝐽ℎ sin𝜓ℎ
√

𝐽 2
𝑔 − 𝐽 2

ℎ

d𝐽ℎ
d𝑡

+
√

𝐽 2
𝑔 − 𝐽 2

ℎ cos𝜓ℎ
d𝜓ℎ
d𝑡

,

and successively expressing them in terms of the variables 𝒔𝐼 . The equations of motion are explicitly reported in Appendix E. With
the same technique, it is also possible to easily obtain the averaged model in the new variables. This could be used in place of
the averaged equations of motion discussed above. However, this is convenient when the singularity is problematic as previously
iscussed.

The averaged equations of motion expressed both in the 𝒔 variables and in the non-singular variables are available open source
at the following link:

ℎ𝑡𝑡𝑝𝑠 ∶ ∕∕𝑔 𝑖𝑡ℎ𝑢𝑏.𝑐 𝑜𝑚∕𝑠𝑡𝑟𝑎𝑡ℎ − 𝑎𝑐 𝑒∕𝑠𝑚𝑎𝑟𝑡 − 𝑎𝑠𝑡𝑟𝑜∕𝑡𝑟𝑒𝑒∕𝑜𝑝𝑒𝑛𝑠𝑜𝑢𝑟𝑐 𝑒_𝑟𝑒𝑙 𝑒𝑎𝑠𝑒∕𝐽 𝑈 𝐿𝐼 𝐴.
In this paper we include the generators of the Lie transformations, which are used to compute the higher-order correction terms
and perform the transformation from osculating to mean variables. Once the transformation from osculating to mean variables is
performed through the successive application of the Lie transformations, as discussed in Section 5.2, it is possible to integrate the
averaged equations of motion, using the mean variables as initial conditions, to get the evolution of the attitude averaged dynamics.
The higher-order correction term may or may not be added to the averaged model. In the numerical simulations discussed in
Sections 7 and 8, the higher-order correction term is always included in the averaged model.

6. Coupling attitude and orbital dynamics

We introduce the effect of the variation of the orbital elements on the attitude and vice versa, via the Gauss non-singular planetary
quations:

d𝑎
d𝑡

= 2
𝜂

√

𝑎3
𝜇⊕

(

(

𝑃2 sin𝛬 − 𝑃1 cos𝛬
)

𝑎𝑅 +
𝑎𝜂2

𝑟
𝑎𝑇

)

, (68)

d𝑃1
d𝑡

= 𝑟
𝜂
√

𝑎𝜇⊕

(

−
𝑎𝜂2 cos𝛬

𝑟
𝑎𝑅 +

(

𝑃1 + sin𝛬 +
𝑎𝜂2 sin𝛬

𝑟

)

𝑎𝑇 − 𝑃2
(

𝑄1 cos𝛬 −𝑄2 sin𝛬
)

𝑎𝑁
)

, (69)

d𝑃2
d𝑡

= 𝑟
𝜂
√

𝑎𝜇⊕

(𝑎𝜂2 sin𝛬
𝑟

𝑎𝑅 +
(

𝑃2 + cos𝛬 +
𝑎𝜂2 cos𝛬

𝑟

)

𝑎𝑇 + 𝑃1
(

𝑄1 cos𝛬 −𝑄2 sin𝛬
)

𝑎𝑁
)

, (70)

d𝑄2
d𝑡

= 𝑟
2𝜂

√

𝑎𝜇⊕

(

1 +𝑄2
1 +𝑄

2
2
)

sin𝛬 𝑎𝑁 , (71)

d𝑄1
d𝑡

= 𝑟
2𝜂

√

𝑎𝜇⊕

(

1 +𝑄2
1 +𝑄

2
2
)

cos𝛬 𝑎𝑁 . (72)

where the components (𝑎𝑅, 𝑎𝑇 , 𝑎𝑁 ) of the perturbing acceleration are expressed in a radial-transverse-normal reference frame
attached to the orbiting object (see [27]). The semi-analytical propagation of the attitude dynamics is coupled with the analytical
ntegration of a first-order averaged model of the orbital dynamics. This is derived by averaging Eqs. (68)–(72) over the orbital

mean anomaly, as described in [27,28]. This model accounts for the perturbations due to the Earth’s zonal harmonics 𝐽2, 𝐽3, 𝐽4, 𝐽5,
the gravitational influence of the Moon and the Sun, and light pressure. In Zuiani and Vasile [27] the authors model the perturbing
acceleration as

𝒂lp,ZV = −𝐾lp𝐑T
i2b𝒖̃, 𝐾lp = 𝑃lp𝐶𝑅

𝑆
𝑚
,

where 𝑆 is the cross-section area, 𝐶𝑅 is a coefficient depending on the optical properties of the space object, and 𝒖̃ is defined
in Eq. (46). Note that 𝒂lp,ZV does not depend on the orbital mean anomaly. For the sake of consistency between the orbital and the
attitude averaged models, we replace 𝒂lp,ZV with

𝒂lp =
1

4𝜋2𝑚 ∫

2𝜋

0 ∫

2𝜋

0
𝐑T
i2b 𝒇 lpd𝜓𝑔d𝜓𝑙 ,

with 𝒇 lp given in Eq. (47). Also 𝒂lp is independent of the orbital mean anomaly, so this replacement introduces minimal changes in
he analytical model by Zuiani and Vasile [27]. The integral in is computed with the same procedure described in Section 5.1.

7. Numerical simulations

We consider a few test cases to compare the outcome of the semi-analytical propagation, against the outcome of the numerical
integration of the full non-averaged attitude dynamics in (36). In all the simulations, the averaged model includes the higher-
rder correction term discussed in Section 5.2. To avoid singularity, the propagation of the non-averaged dynamics is performed by
ntegrating the following Euler’s equations in quaternions (see [29]):
14 
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d𝒘
d𝑡

=

⎡

⎢

⎢

⎢

⎣

1
𝐴 0 0
0 1

𝐵 0
0 0 1

𝐶

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝑴 −𝒘 ×
⎡

⎢

⎢

⎣

𝐴 0 0
0 𝐵 0
0 0 𝐶

⎤

⎥

⎥

⎦

𝒘
⎞

⎟

⎟

⎠

,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d𝑞1
d𝑡
d𝑞2
d𝑡
d𝑞3
d𝑡
d𝑞4
d𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 1
2

⎡

⎢

⎢

⎢

⎢

⎣

−𝑞2 −𝑞3 −𝑞4
𝑞1 −𝑞4 𝑞3
𝑞4 𝑞1 −𝑞2
−𝑞3 𝑞2 𝑞1

⎤

⎥

⎥

⎥

⎥

⎦

𝒘,

with 𝒘 the satellite’s angular velocity, given by

𝒘 = 𝐽𝑔

⎡

⎢

⎢

⎢

⎢

⎣

√

1−𝜁
𝐴 cn(𝑢, 𝜇)

−
√

1−𝜁
√

1+𝜅
𝐵 sn(𝑢, 𝜇)

√

𝜁
𝐶 dn(𝑢, 𝜇)

⎤

⎥

⎥

⎥

⎥

⎦

,

and (𝑞1, 𝑞2, 𝑞3, 𝑞4) the quaternions. From the evolution of the angular velocity and the quaternions, one can derive the evolution of the
corresponding 𝒔 variables, by passing through the transformation in Andoyer–Serret variables and, then, exploiting the relationships
in Section 2.2. Then, it is possible to numerically compute the evolution of the mean slow variables by performing a double average
over the time intervals 𝑇a and 𝑇o, defined as

𝑇a = max

(

2𝜋
𝑛𝜓𝑙

, 2𝜋
𝑛𝜓𝑔

)

, 𝑇o =
2𝜋
𝑛
,

(see (61), (63), (64) for the definitions of 𝑛𝜓𝑙 and 𝑛𝑝𝑠𝑖𝑔 ). The percentage difference, or error, between the semi-analytical propagation
nd the numerical average of 𝒔 is defined as:

𝛥𝜁 = 100
|

|

|

|

|

𝜁O − 𝜁SA
𝜁O

|

|

|

|

|

, (73)

𝛥𝐽𝑔 = 100
|

|

|

|

|

𝐽𝑔O − 𝐽𝑔SA
𝐽𝑔O

|

|

|

|

|

, (74)

𝛥𝐽ℎ = 100
|

|

|

|

|

𝐽ℎO − 𝐽ℎSA
𝐽ℎO

|

|

|

|

|

, (75)

𝛥𝜓ℎ = 100
|

|

|

|

|

𝜓̄ℎO − 𝜓̄ℎSA
𝜓̄ℎO

|

|

|

|

|

, (76)

where the subscripts SA and O imply that the value of the mean slow variables is computed through the semi-analytical propagation
or the numerical averaged procedure, respectively.

In this work, the propagation of the averaged dynamics is performed using the JULIA’s Feagin14 numerical integrator with
1e−13 absolute and relative tolerances. The propagation of the non-averaged dynamics is performed using MATLAB’s ODE113
numerical propagator with 5e−14 absolute and relative tolerances, after checking the consistency with the outcomes obtained with
the same numerical propagator used for the averaged dynamics. When the shadow effects are considered, in the propagation of
the non-averaged dynamics, the shadow is modelled through a numerical smoothing function as described in [30]. Instead, in the
averaged-model the shadow function is modelled and treated as described in the previous sections.

While the transformation from osculating to mean variables is necessary at the initial instant of time, once the integration of
the averaged model is performed, computing the back-transformation from mean to osculating variables at each instant of time
ould be disadvantageous in terms of computational time. This would also introduce a further increasing source of error, as the
ariable transformation is based on a Fourier expansion of the equations of motion. Thus, it would be extremely advantageous to

approximate the evolution of the non-averaged dynamics directly through the outcomes of the semi-analytical integration, without
performing any further transformation. The discrepancy between the averaged dynamics and the non-averaged dynamics is here
represented using quantities with an immediate physical meaning. In particular, the satellite’s angular velocity and the axis-angle
representation of the rotations are employed. At each considered instant of time, we compute

𝛥𝑤 =
|

|

𝑤̄SA −𝑤O
|

|

𝑤O
,

⎡

⎢

⎢

⎣

𝛥𝑤𝑥
𝛥𝑤𝑦
𝛥𝑤𝑧

⎤

⎥

⎥

⎦

= 1
2
|

|

|

|

𝒘̄SA
𝑤̄SA

−
𝒘O
𝑤O

|

|

|

|

, (77)

where 𝑤 = |𝒘|. Note that 𝛥𝑤 is a quantity related to the magnitude of the angular velocity, while 𝛥𝑤𝑥, 𝛥𝑤𝑦 and 𝛥𝑤𝑧 are related to its
direction cosines, and are defined so that their maximum value is equal to one. Concerning the orientation of the body, we measure
the rotation that would be required to bring the attitude computed through the semi-analytical propagation to the non-averaged
numerically-computed attitude. At each instant of time, this rotation is defined by the matrix

T

𝐑SA2O = 𝐑i2bSA𝐑i2bO,
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Fig. 2. Fictitious triaxial satellite employed in the test cases.

where 𝐑i2b is the rotation matrix from 𝑂 𝑋 𝑌 𝑍 to 𝑂 𝑥𝑦𝑧. The rotation can be represented as an elementary rotation of angle 𝛽 equal
to

𝛽 = 2 ar ccos
(
√

Tr + 1
2

)

, (78)

with Tr the trace of 𝐑SA2O. Let us remark that 𝛥𝑤, 𝛥𝑤𝑥, 𝛥𝑤𝑦, 𝛥𝑤𝑧 and 𝛽 are not properly errors, as they are used to compare different
kinds of variables, i.e. mean variables and osculating variables.

As a test case, we consider a fictitious satellite along an orbit with initial osculating Keplerian elements

𝑎 = 29600 k m, 𝑒 = 0.01, 𝐼 = 56 deg, 𝜔 = 0 deg, 𝛺 = 60 deg, (79)

in a SAM, with initial angular velocity and quaternions

𝒘 =
⎡

⎢

⎢

⎣

0.05
0.1
5

⎤

⎥

⎥

⎦

deg
𝑠
,

⎡

⎢

⎢

⎢

⎢

⎣

𝑞1
𝑞2
𝑞3
𝑞4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.392862
0.160367
0.527825
0.735860

⎤

⎥

⎥

⎥

⎥

⎦

. (80)

In terms of the 𝒔 variables, the attitude initial conditions are
𝜁 = 0.999993,
𝐽𝑔 = 233.774 k g m2∕s,

𝐽ℎ = 94.3974 k g m2∕s,

𝜓𝑙 = 298.620 deg,
𝜓𝑔 = 16.6746 deg,
𝜓ℎ = 190.460 deg.

(81)

The satellite is shown in Fig. 2. Its mass, moments of inertia, and intrinsic magnetic moment are

𝑚 = 500 k g,
𝐴 = 334.042 k g m2,

𝐵 = 2404.958 k g m2,

𝐶 = 2678.416 k g m2,

𝑰m = [0.1, 0.1, 0.1] A m2.

Its bus has a total reflectivity 𝜌𝑖 = 0.6 and the fraction of 𝜌𝑖 which is specular is 𝑠𝑖 = 1; the front of panels 1 and 2 has 𝜌𝑖 = 0.27 and
𝑠𝑖 = 1; the back of panels 1 and 2 has 𝜌𝑖 = 0.07 and 𝑠𝑖 = 0. The initial value of 𝜇 is ∼ 4 ⋅ 10−4, and, thus the initial conditions fall in
a region of the phase space far from the chaotic region discussed in Section 5.3. The averaged model is expected to be suitable.

Figs. 3, 4 show the evolution of (𝛥𝜁 , 𝛥𝐽𝑔 , 𝛥𝐽ℎ, 𝛥𝜓ℎ) and (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧, 𝛽) when the satellite is assumed along a Keplerian orbit.
In this simulation as well as in the following ones, the geocentric position of the Sun, and thus the unit vector 𝒖̃, are derived from the
Earth’s ephemeris (see [31]). The evolution of the mean slow variables is well-reproduced: 𝛥𝜁 , 𝛥𝐽𝑔 , 𝛥𝐽ℎ and 𝛥𝜓ℎ remain smaller than
10−6 %, 10−6 %, 10−1 % and 10−3 %, respectively. It is possible to observe a first fast sudden increase of the relative errors 𝛥𝜁 and 𝛥𝐽𝑔
around 150 days. Even though this growth is relatively small, it impacts the evolution of the quantities (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧), which
are functions of mean and osculating (𝜁 , 𝐽𝑔 , 𝜓𝑙) variables. The angular speed of 𝜓𝑙 mainly depends on (𝜁 , 𝐽𝑔), thus the growth of 𝛥𝜁
and 𝛥𝐽𝑔 causes a phase shift of the fast angle, which is reflected in the faster increase of (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧). Anyway, these are still
reasonably small after one year. The same occurs for 𝛽, which is a function of all the variables 𝒔. The trend of (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧, 𝛽)
is worsened by the effects of the Earth’s shadow. Indeed, if the satellite is constantly assumed in light, while 𝛽 is comparable, the
other quantities are smaller, as shown in Figs. 5 and 6.

Fig. 8 shows the evolution of the errors in the more realistic case in which also the orbital dynamics is affected by environmental
perturbations. In particular, the effects of the Earth’s zonal harmonics (𝐽2, 𝐽3, 𝐽4, 𝐽5), the lunar gravity, the solar gravity, and the
light pressure acceleration are considered. Because of the error accumulation related to both the attitude and the orbital averaged
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Fig. 3. Evolution of the errors (73)–(76) for the triaxial satellite in Fig. 2 for the initial conditions in (79) and (81). The satellite’s orbit is here assumed
Keplerian.

models, the errors (𝛥𝜁 , 𝛥𝐽𝑔 , 𝛥𝐽ℎ, 𝛥𝜓ℎ) are larger, and (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧, 𝛽) increase faster. However, they are still acceptable after
one year.

We slightly change the initial conditions, imposing an initial angular velocity equal to

𝒘 =
⎡

⎢

⎢

⎣

0.1
0.2
5

⎤

⎥

⎥

⎦

deg
s
.

The initial 𝒔 variables are
𝜁 = 0.999973,
𝐽𝑔 = 233.887 k g m2∕s,

𝐽ℎ = 97.3184 k g m2∕s,

𝜓𝑙 = 298.627 deg,
𝜓𝑔 = 16.940 deg,
𝜓ℎ = 189.712 deg,

(82)

and the new initial value of 𝜇 is ∼ 0.00185, so that, even though still far from the chaotic region, the initial rotational state is slightly
closer to it. We consider the effects of both attitude and orbital perturbations. By comparing Figs. 9 and 10 with Figs. 7 and 8, it is
possible to observe that while (𝛥𝜁 , 𝛥𝐽𝑔 , 𝛥𝐽ℎ, 𝛥𝜓ℎ) and 𝛽 are comparable, (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧) grow faster. Instead, all the quantities
in Figs. 11, 12 are larger than those in Figs. 7, 8. In particular, 𝛽 increases significantly faster. The outcomes in Figs. 11, 12 are
obtained by modifying only the semi-major axis in the initial conditions in (79) and (80), imposing it equal to 𝑎 = 10000 k m, and
considering the effects of both orbital and attitude perturbations. The smaller semi-major axis implies that the perturbations by the
gravity gradient and residual magnetic torques are larger. In Fig. 11, the errors 𝛥𝐽ℎ and 𝛥𝜓ℎ can reach quite large values at certain
instants of time. Most of the peaks are related to the definitions of the errors themselves as they occur in the neighbourhood of
singularities for the mean variables 𝐽ℎ and 𝜓̄ℎ. Nevertheless, the trend of these variables is well reproduced as one can see from
Fig. 13, showing the evolution of the mean 𝐽ℎ and 𝜓̄ℎ computed through the semi-analytical propagation and the osculating 𝐽ℎ and
𝜓ℎ obtained by integrating the full-dynamics.

From the numerical simulations, it is clear that 𝛽 grows faster than the quantities related to the angular velocity. This trend is
justified by the dependence of these quantities on the Sadov fast variables. Indeed, typically, the error tends to increase significantly
17 
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Fig. 4. Evolution of the quantities in (77)–(78) for the triaxial satellite in Fig. 2 for the initial conditions in (79) and (81). The satellite’s orbit is here assumed
Keplerian.

faster for the fast variables (𝜓𝑙 , 𝜓𝑔) than for the slow variables (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓ℎ) and while the angular velocity depends on the only 𝜓𝑙,
the attitude depends on both 𝜓𝑙 and 𝜓𝑔 . The evolution of the slow variables is typically well reproduced. This is advantageous,
as it allows to compute the evolution of mean angular momentum in the inertial reference frame. Indeed, 𝐽𝑔 corresponds to the
magnitude of 𝑮, while

√

𝐽 2
𝑔 − 𝐽 2

ℎ sin𝜓ℎ, −
√

𝐽 2
𝑔 − 𝐽 2

ℎ cos𝜓ℎ and 𝐽ℎ are its projections on the 𝑋, 𝑌 and 𝑍 axes, respectively. On the
contrary, the small increments of errors 𝛥𝜁 and 𝛥𝐽𝑔 , which occur as expected with time, cause a significant increase in the error
rate of the fast variables, reflected by the quantities (𝛽 , 𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧). Such an increase is worsened when eclipse effects are
taken into account.

In terms of computational times, the propagation of the full non-averaged dynamics takes ∼2.16 h for the test case in Figs. 7, 8,
∼2.4 h for the test case in Figs. 9, 10, and ∼2.12 for the test case in Figs. 11, 12. Integrating the semi-analytical model is significantly
faster, as it takes ∼54.1 s, ∼64.4 s and ∼37.3 s, respectively.

The test case with initial conditions in (79) and (80) is repeated for the axisymmetric satellite in Fig. 14. Its mass, moments of
inertia, and intrinsic magnetic moment are

𝑚 = 800 k g,
18 
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Fig. 5. Evolution of the errors (73)–(76) for the triaxial satellite in Fig. 2 for the initial conditions in (79) and (81). The satellite is assumed to be along a
Keplerian and constantly in light.

𝐴 = 483.33 k g m2,

𝐵 = 483.33 k g m2,

𝐶 = 833.33 k g m2,

𝑰m = [0.1, 0.1, 0.1] A m2.

The external surface of the satellite has 𝜌𝑖 = 0.6 and 𝑠𝑖 = 1 except for the dark grey panel which has 𝜌𝑖 = 0.27 and 𝑠𝑖 = 1. The effects
of both attitude and orbital perturbations are considered. The new initial 𝒔 variables are

𝜁 = 0.999832,
𝐽𝑔 = 72.7282 k g m2∕s,

𝐽ℎ = 29.2844 k g m2∕s,

𝜓𝑙 = 296.565 deg,
𝜓𝑔 = 18.5372 deg,
𝜓ℎ = 190.9434 deg.

(83)

Figs. 15, 16 show the evolution of (𝛥𝜁 , 𝛥𝐽𝑔 , 𝛥𝐽ℎ, 𝛥𝜓ℎ) and (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧, 𝛽). They increase in time, but also in this case they
maintain acceptable values after one year.

8. Accuracy of the attitude semi-analytical propagation

As discussed in 5.3, the accuracy of the semi-analytical propagation depends on the rotational state vector of the satellite. Indeed,
if it belongs to a chaotic region of the phase space, i.e. the value of 𝜇 is close to 1, the averaged model is not suitable. There are
also other sources of error. If the hypothesis at the basis of the averaged model are not fulfilled, the integration results to be
inaccurate. For example, near a resonance or if the magnitude of the external torques is too large to be considered as a perturbation
in comparison to the rotational kinetic energy of the satellite, the averaged model may not be accurate enough. Indeed, as observed
in Section 7, the larger the perturbation, the larger the errors and the faster the growth of the discrepancy between the averaged
and the non-averaged dynamics.
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Fig. 6. Evolution of the quantities in (77) and (78), for the triaxial satellite in Fig. 2 for the initial conditions in (79) and (81). The satellite is assumed to be
along a Keplerian and constantly in light.

In this section we introduce qualitative accuracy maps to quantify the discrepancy between the outcomes of the semi-analytical
propagation and the full non-averaged dynamics over a range of possible initial conditions and perturbing torques. The maps are
numerically computed and are suitable for any triaxial satellite. A map is formally defined as

𝛩 ∶ (, 𝑇𝑘, 𝜇) ↦ 

where  is a quantity used to estimate the magnitude of the perturbation, 𝑇𝑘 is the value of the torque-free Hamiltonian coinciding
with the kinetic energy of the satellite, and  is a quantity that allows comparing the evolution of the average attitude dynamics with
the evolution of the non-averaged dynamics, similarly to (𝛥𝜔, 𝛥𝜔𝑥, 𝛥𝜔𝑦, 𝛥𝜔𝑧, 𝛽) discussed in the previous section. In the following,
we employ the subscripts SA and O to specify whether the value of a considered quantity is computed through the semi-analytical
propagation or by numerically integrating the full non-averaged dynamics (see Section 7), we define  as

 = log10
⎛

⎜

⎜

⎜

max
𝑡∈𝑇

√

√

√

√

√𝛥21 + 𝛥
2
2 + 𝛥

2
3 +

3
∑

𝑖=1

3
∑

𝑗=1
(𝛥𝑟𝑖,𝑗 )2

⎞

⎟

⎟

⎟

, (84)
⎝ ⎠
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Fig. 7. Evolution of the errors (73)–(76) for the triaxial satellite in Fig. 2 for the initial conditions in (79) and (81). Here, the effects of both environmental
perturbing torques and accelerations are considered.

where
⎡

⎢

⎢

⎣

𝛥1
𝛥2
𝛥3

⎤

⎥

⎥

⎦

=
𝒘O − 𝒘̄SA

𝑤𝑂
,

with 𝑤 = |𝒘|, 𝛥𝑟𝑖,𝑗 are the components of

𝛥𝐑i2b = 𝐑i2bO − 𝐑i2bSA,

and 𝑇 is the time of propagation. The upper bound of quantity  is computed by first deriving an upper bound of the perturbation
magnitude. Initial conditions leading to a perturbation magnitude close to such an upper bound should be selected. To this aim,
we separately consider the contribution of each perturbing torque. For the gravity-gradient torque, an upper bound can be derived
from (43):

g =
3𝜇⊕

2𝑎3
(

1 −
√

𝑃 2
1 + 𝑃 2

2

)3
max(𝐴, 𝐵 , 𝐶). (85)

Similarly, for the residual magnetic torque, an upper bound, derived from (44), is:

m =
|𝑰m|𝜇m

𝑎3
(

1 −
√

𝑃 2
1 + 𝑃 2

2

)3

√

√

√

√

√1 +
12

(

𝑄2
1 +𝑄

2
2
)

(

1 +𝑄2
1 +𝑄

2
2
)2
. (86)

For the effect of light pressure, an upper bound, derived from Eq. (48), is:

sr p = max
𝒖̃

|

|

|

|

|

|

𝑛𝑓
∑

𝑖=1
𝑆𝑖𝑔𝑖𝝆𝒊 ×

(

𝑐a,𝑖𝒖̃ + 𝑐d,𝑖𝒏̂𝑖 + 𝑐s,𝑖(𝒖̃ ⋅ 𝒏̂𝑖) 𝒏̂𝑖
)

|

|

|

|

|

|

, (87)

Fig. 17 shows three maps for the gravity-gradient torque on the (𝑔 , 𝑇𝑘) plane, each obtained for a different value of 𝜇. The
first one is 𝜇 ∼ 4 ⋅ 10−4, corresponding to the initial value of 𝜇 in the test case described in Section 7. The other two values are
randomly selected. The quantity  is represented with a colour code. Warmer colours correspond to larger values of  . The maps are
computed using grids of (200 × 160) points, imposing a propagation time 𝑇 equal to 2 days, and assuming the satellite is Keplerian
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Fig. 8. Evolution of the quantities in (77) and (78) for the triaxial satellite in Fig. 2 with the initial conditions in (79) and (81). Here, the effects of both
environmental perturbing torques and accelerations are considered.

orbits. As expected, the value of  increases at the increase of both 𝑔 and 𝜇. In particular, for the largest value of 𝜇, the map
seems less regular, especially in the region with the largest value of 𝑔 , where it is also possible to observe the presence of stripes.
At the increase of the perturbations, chaotic regions in the phase space typically tend to extend. Thus, the phenomenon may be
related to the chaoticity of the dynamics. The specific nature of these interesting features would deserve an accurate analysis, that
we reserve to perform in the future.

Figs. 18 and 19 respectively show the maps computed for the residual magnetic torque and the light pressure torque
perturbations, for the smaller value of 𝜇, 𝜇 ∼ 4 ⋅ 10−4. The map for the residual magnetic torque is computed by using the same
grid, and the same time of propagation as the maps for the gravity torque. Also, in this case, the orbits are assumed Keplerian.
The map for the light pressure is obtained assuming the satellite is always in light and along Keplerian orbits. Because of the large
computational time required by the propagation of the non-averaged dynamics, the grid adopted has a smaller number of points,
(30 × 60). This is the reason why it appears discontinuous, differently from the maps for the other perturbations. Furthermore, the
propagation time is shorter, equal to 1 day. Since over such a period, the geocentric position of the Sun has a very small variation,
it is considered fixed, to save computational time. Finally, to evaluate sr p in (87), we approximate the heliocentric orbit of the
Earth as circular and tilted by 𝐼 = 23.43928111 deg over the equatorial plane, so that
𝐸
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Fig. 9. Evolution of the errors (73)–(76) for the triaxial satellite in Fig. 2, when the initial angular velocity is modified to increase the initial value of 𝜇. Here,
the effects of both environmental perturbing torques and accelerations are considered.

𝒖̃ ∼ −𝐑i2b

⎡

⎢

⎢

⎣

1 0 0
0 cos 𝐼𝐸 − sin 𝐼𝐸
0 sin 𝐼𝐸 cos 𝐼𝐸

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos𝑀𝐸
sin𝑀𝐸

0

⎤

⎥

⎥

⎦

,

with 𝑀𝐸 the Earth’s mean anomaly.
Note that the initial conditions (79) and (80) of the test case in Section 7 belong to the blue regions in all three maps 17(a), 18

and 19. The computational time of the averaged model, for all the propagations used to building the accuracy maps, ranges from
∼0.7% to 0.9%, of the computational time of the same propagations with the non-averaged model.

9. Conclusions

The semi-analytical theory proposed in this paper was developed to be suitable for both triaxial and axisymmetric space objects,
which are fast-rotating along geocentric orbits, under the hypothesis that the orbital mean anomaly and the Sadov fast angles
(𝜓𝑙 , 𝜓𝑔) are non-resonant. Considering a fictitious triaxial satellite, some numerical tests were performed with different initial values
of the attitude or orbital variables. Tests included the coupled effects of perturbations on the orbital and attitude dynamics. A
similar numerical test was performed considering an axisymmetric satellite. The results of these tests display a good accuracy vs
computational cost with a moderate increase in propagation error over one year. In particular, the results show that the semi-
analytical theory can be exploited to well reproduce the evolution of the slow Sadov variables, while the error in the evolution of
(𝜓𝑙 , 𝜓𝑔) increases faster. From a further test, where the dynamics was assumed to be affected only by the perturbing torques, and
the orbital dynamics was assumed Keplerian, we can speculate that one of the main sources of propagation error comes from the
repeated passage through the Earth’s shadow region.

To better evaluate the limits of the semi-analytical theory, we performed a test campaign to assess its accuracy at the variation
of the initial conditions and of the magnitude of the perturbations. From the test campaign, we derived accuracy maps showing the
accuracy of the semi-analytical propagation as a function of the initial kinetic energy and of an upper estimate of the magnitude of
the perturbations. As expected, it was found that the accuracy decreases for larger perturbations and at the decrease of the initial
kinetic energy. Furthermore, the error depends also on the dynamic stability of the object: the model is not suitable for rotational
states close to the chaotic regions of the phase space.

Future work is required to improve the approach to take into account the Earth’s shadowing effects. Moreover, in this paper, we
excluded any atmospheric component of the torque and force. In the future, these effects need to be included to study the long-term
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Fig. 10. Evolution of the quantities in (77) and (78) for the triaxial satellite in Fig. 2, when the initial angular velocity is modified to increase the initial value
of 𝜇. Here, the effects of both environmental perturbing torques and accelerations are considered.

evolution of the motion of Low Earth Orbits. Finally, for the sake of completeness, it would also be interesting to treat the rare case
of axisymmetric satellites with equal the principal moments of inertia.
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Fig. 11. Evolution of the errors (73)–(76) for the triaxial satellite in Fig. 2, when the initial semi-major axis is reduced. Here, the effects of both environmental
perturbing torques and accelerations are considered.
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Appendix A. From the attitude dynamics in the Andoyer–Serret variables to the attitude dynamics in the 𝒔 variables

Setting 𝒂 = (𝐿, 𝐺 , 𝐻 , 𝑙 , 𝑔 , ℎ), the attitude equations of motion expressed in the Andoyer–Serret variables are
d𝒂
d𝑡

=
[

0 −𝐈
𝐈 0

]

∇𝒂
(

 + ̃
)

+ 𝐂𝑴 , (88)

where ∇𝒂 is the gradient operator, 𝐈 is the 3 × 3 identity matrix,  is the Hamiltonian in (2), ̃ is the potential energy of the total
conservative external torque, 𝑴 is the total non-conservative torque, and

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1
𝑏̃13 𝑏̃23 𝑏̃33

cos 𝛿 𝑏̃13 + sin 𝛿 𝑏̃12 cos 𝛿 𝑏̃23 + sin 𝛿 𝑏̃22 cos 𝛿 𝑏̃33 + sin 𝛿 𝑏̃32
cos 𝑙
𝐺 sin 𝜎 − sin 𝑙

𝐺 sin 𝜎 0

− cos 𝜎 cos 𝑙
𝐺 sin 𝜎 − cos 𝛿 𝑏̃11

𝐺 sin 𝛿
cos 𝜎 sin 𝑙
𝐺 sin 𝜎 − cos 𝛿 𝑏̃21

𝐺 sin 𝛿 − cos 𝛿 𝑏̃31
𝐺 sin 𝛿

𝑏̃11
𝐺 sin 𝛿

𝑏̃21
𝐺 sin 𝛿

𝑏̃31
𝐺 sin 𝛿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

cos 𝜎 = 𝐿
𝐺
, cos 𝛿 = 𝐻

𝐺
,

and

𝑏̃11 = cos 𝑔 cos 𝑙 − sin 𝑔 sin 𝑙 cos 𝜎 ,
𝑏̃ = sin 𝑔 cos 𝑙 + cos 𝑔 sin 𝑙 cos 𝜎 ,
12
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Fig. 12. Evolution of the errors defined in (77) and (78) for the triaxial satellite in Fig. 2, when the initial semi-major axis is reduced. Here, the effects of both
environmental perturbing torques and accelerations are considered.

𝑏̃13 = sin 𝜎 sin 𝑙 ,
𝑏̃21 = − cos 𝑔 sin 𝑙 − sin 𝑔 cos 𝑙 cos 𝜎 ,
𝑏̃22 = − sin 𝑔 sin 𝑙 + cos 𝑔 cos 𝑙 cos 𝜎 ,
𝑏̃23 = sin 𝜎 cos 𝑙 ,
𝑏̃31 = sin 𝑔 sin 𝜎 ,
𝑏̃32 = − cos 𝑔 sin 𝜎 ,
𝑏̃33 = cos 𝜎 .

(see [32]).
If the problem was conservative, i.e. the contribution of the total non-conservative torque 𝑴 was not present, computing the

equations of motion in the 𝒔 variables is straightforward, as one can exploit the canonical nature of the transformation from the
Andoyer–Serret variables to the Sadov variables, described in Section 2.2. Setting 𝒔𝑉 = (𝐽𝑙 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝜓𝑔), and considering the
canonical transformation
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Fig. 13. One-day and One-year evolutions of the mean 𝐽ℎ and 𝜓ℎ, computed through the semi-analytical propagation, and of the osculating 𝐽ℎ and 𝜓ℎ. Here,
we consider the triaxial satellite in Fig. 2, when the initial semi-major axis is reduced. The dynamics is affected by environmental perturbing torques and
accelerations.

Fig. 14. Fictitious axisymmetric satellite employed in the test cases.

𝜳 ∶ 𝒔𝑉 ↦ 𝒂,

which is the inverse transformation of (19), we have
d𝒔𝑉
d𝑡

=
[

0 𝐈
−𝐈 0

]

∇𝒔𝑉 (𝛷 + ) ,

where

 = ̃
(

𝜳 (𝒔𝑉 )
)

𝛷 = 
(

𝜳 (𝒔𝑉 )
)

,

with 𝛷 given in (8). From Eqs. (18), (16), (17), it follows that
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Fig. 15. Evolution of the errors (73)–(76) for the axisymmetric satellite in Fig. 14 with initial conditions (79), (83). Here, the effects of both environmental
perturbing torques and accelerations are considered.

𝜕 𝜁
𝜕 𝐽𝑙

= − 𝜁
2

𝜅
d𝜇
d𝐽𝑙

= 𝜋
𝐽𝑔

𝜁
1
2

√

1 + 𝜅
1

𝐾(𝜇)
,

𝜕 𝜁
𝜕 𝐽𝑔

= − 𝜁
2

𝜅
d𝑚
d𝐽𝑔

= −2 (𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝜇))
𝐽𝑔𝐾(𝜇)

.

Thus, using the chain rule, we have
d𝜁
d𝑡

=
𝜕 𝜁
𝜕 𝐽𝑙

d𝐽𝑙
d𝑡

+
𝜕 𝜁
𝜕 𝐽𝑔

d𝐽𝑔
d𝑡
.

Furthermore,

∇𝒔𝑉 (⋅) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝜁
𝜕 𝐽𝑙 0 0 0 0 0
𝜕 𝜁
𝜕 𝐽𝑔 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∇𝒔(⋅)

Then,

d𝒔
d𝑡

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝜁
𝜕 𝐽𝑙

𝜕 𝜁
𝜕 𝐽𝑔 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

0 −𝐈
𝐈 0

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝜁
𝜕 𝐽𝑙 0 0 0 0 0
𝜕 𝜁
𝜕 𝐽𝑔 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∇𝒔(𝛷 + ) = 𝐀∇𝒔(𝛷 + ),

with 𝐀 in (37).
Now, consider the non-conservative contribution in the equations of motion (88), i.e.,

[ d𝒂 ]
d𝑡 NC
= 𝐂𝑴 .

28 



I. Cavallari et al. Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108549 
Fig. 16. Evolution of the errors defined in (77) and (78)for the axisymmetric satellite in Fig. 14 with initial conditions (79), (83). Here, the effects of both
environmental perturbing torques and accelerations are considered.
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Fig. 17. Accuracy maps of the semi-analytical propagation for the gravity-gradient torque perturbation. The quantity defined in (84) is represented with a colour
code on the (g , 𝑇𝑘) plane for a fixed value of 𝜇, with g given in (85) and 𝑇𝑘 the satellite’s kinetic energy.

Fig. 18. Accuracy map of the semi-analytical propagation for the residual magnetic torque perturbation. The error defined in (84) is represented with a colour
code on the (m , 𝑇𝑘) plane for a fixed value of 𝜇, 𝜇 ∼ 4 10−4, with m given in (86) and 𝑇𝑘 the satellite’s kinetic energy.
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Fig. 19. Accuracy map of the semi-analytical propagation for the light pressure torque perturbation. The error defined in (84) is represented with a colour code
on the (sr p , 𝑇𝑘) plane for a fixed value of 𝜇, 𝜇 ∼ 4 10−4, with sr p given in (87) and 𝑇𝑘 the satellite’s kinetic energy.

Given the transformation (19) and using the chain rule, it is possible to determine the non-conservative contribution to the time
derivatives of the 𝒔 variables. Consider the transformation

𝜳−1 ∶ 𝒂 ↦ 𝒔𝑉 .

The quantity 𝜇 in (6) expressed in terms of the Andoyer–Serret variables is

𝜇̃ = 𝜇
(

𝜳−1(𝒂)
)

=

(

−𝐴𝐶
(

cos2 (𝑙)
)

+ 𝐵
(

−𝐶
(

sin2 (𝑙)
)

+ 𝐴
))

𝐶 (𝐴 − 𝐵) (𝐺 + 𝐿) (𝐺 − 𝐿)

𝐴 (−𝐶 + 𝐵)
(((

𝐺2 − 𝐿2
)

𝐴 − 𝐵 𝐺2
)

𝐶
(

cos2 (𝑙)
)

+ 𝐵 𝐿2
(

−𝐶
(

sin2 (𝑙)
)

+ 𝐴
))
.

It follows that
d𝜇̃
d𝑡

=
𝜕 ̃𝜇
𝜕 𝑙

d𝑙
d𝑡

+
𝜕 ̃𝜇
𝜕 𝐿

d𝐿
d𝑡

+
𝜕 ̃𝜇
𝜕 𝐺

d𝐺
d𝑡
.

Doing some algebra and considering only the non-conservative contribution of the time derivatives, we obtain
[

d𝜇̃
d𝑡

]

NC
=

2𝑏̃13(𝜇̃ + 𝜅)
𝐺

𝑀𝑥 +
2𝑏̃23(1 − 𝜇̃)(𝜇̃ + 𝜅)

𝐺(1 + 𝜅) 𝑀𝑦 −
2𝜇̃𝑏̃33(𝜇̃ + 𝜅)

𝐺 𝜅 ,

with (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) the components of 𝑴 . Applying the transformation

𝜳̃ ∶ 𝒂 ↦ 𝒔,

and, in particular, using Eqs. (19) and (21), one obtain that 𝐺(𝜳̃ (𝒂)) = 𝐽𝑔 and 𝑏̃𝑖𝑗 (𝜳̃ (𝒂)) = 𝑏𝑖𝑗 for each 𝑖, 𝑗 ∈ [1, 3], with 𝑏𝑖𝑗 in
(25)–(33). Thus,

[

d𝜇̃
d𝑡

]

NC
=

2𝑏13(𝜇 + 𝜅)
𝐽𝑔

𝑀𝑥 +
2𝑏23(1 − 𝜇)(𝜇 + 𝜅)

𝐽𝑔(1 + 𝜅)
𝑀𝑦 −

2𝜇 𝑏33(𝜇 + 𝜅)
𝐽𝑔𝜅

.

From (18), it follows
[

d𝜁
d𝑡

]

NC
=
𝜕 𝜁
𝜕 𝜇

[

d𝜇̃
d𝑡

]

NC
= − 𝑘

(𝑘 + 𝜇)2

[

d𝜇̃
d𝑡

]

NC
= −2𝑏13𝜁

𝐽𝑔
𝑀𝑥 −

2𝑏23(1 − 𝜇)𝜁
𝐽𝑔(1 + 𝜅)

𝑀𝑦 +
2𝑏33(1 − 𝜁 )

𝐽𝑔
.

The time derivative of 𝜓𝑙 can be obtained by considering that it depends on 𝜇̃(𝐿, 𝐺 , 𝑙) and 𝜆(𝑙), with 𝜆(𝑙) defined in (5). In particular,
by directly applying the transformation 𝜳̃ ,

𝜕 𝜓𝑙
𝜕 ̃𝜇 =

𝜋(dn(𝑢, 𝜇)zn(𝑢, 𝜇) − 𝜇cn(𝑢, 𝜇)sn(𝑢, 𝜇))
4𝐾(𝜇)(1 − 𝑚)dn(𝑢, 𝜇)𝜇 ,

𝜕 𝜓𝑙
𝜕 𝑙 =

𝜋(𝜅sn(𝑢, 𝜇)2 + 1)
2
√

1 + 𝜅 𝐾(𝜇)dn(𝑢, 𝜇)
,

with 𝑢 in (20), so that
[

d𝜓𝑙
d𝑡

]

NC
=
𝜕 𝜓𝑙
𝜕 ̃𝜇

[

d𝜇̃
d𝑡

]

NC
+
𝜕 𝜓𝑙
𝜕 𝑙

[ d𝑙
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
.

Performing some algebra, we obtain
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[

d𝜓𝑙
d𝑡

]

NC
= −𝜋 (dn(𝑢, 𝜇)sn(𝑢, 𝜇) − cn(𝑢, 𝜇)zn(𝑢, 𝜇))

2(1 − 𝜇)𝐽𝑔
√

1 − 𝜁 𝐾(𝜇)
𝑀𝑥 −

𝜋 (cn(𝑢, 𝜇)dn(𝑢, 𝜇) + sn(𝑢, 𝜇)zn(𝑢, 𝜇))
2𝐾(𝜇)

√

1 + 𝜅√1 − 𝜁 𝐽𝑔
𝑀𝑦

−
𝜋 (dn(𝑢, 𝜇)zn(𝑢, 𝜇) − 𝜇cn(𝑢, 𝜇)sn(𝑢, 𝜇))

2𝐽𝑔
√

𝜁 𝐾(𝜇)(1 − 𝜇)
𝑀𝑧.

Similarly, 𝜓𝑔 can be seen as a function of 𝜇̃(𝐿, 𝐺 , 𝑙), 𝜆(𝑙), and 𝑔:
𝜕 𝜓𝑔
𝜕 ̃𝜇 =

(dn(𝑢, 𝜇)zn(𝑢, 𝜇) − 𝜇cn(𝑢, 𝜇)sn(𝑢, 𝜇))  𝐽𝑔
2dn(𝑢, 𝜇)(1 − 𝜇)𝜇 ,

𝜕 𝜓𝑔
𝜕 𝑙 =

𝑑 𝑛𝑘
(

1
𝑑 𝑛𝑘 − 𝐽𝑔

√

𝜁
1+𝜅 − (1 − 𝜁 )

)

√

𝜁dn(𝑢, 𝜇)

𝜕 𝜓𝑔
𝜕 𝑔 = 1,

with  in (39). Then,
[d𝜓𝑔

d𝑡

]

NC
=
𝜕 𝜓𝑔
𝜕 ̃𝜇

[

d𝜇̃
d𝑡

]

NC
+
𝜕 𝜓𝑔
𝜕 𝑙

[ d𝑙
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
+
𝜕 𝜓𝑔
𝜕 𝑔

[

d𝑔
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
,

i.e., after performing some algebra,
[d𝜓𝑔

d𝑡

]

NC
=

(

 (dn(𝑢, 𝜇)sn(𝑢, 𝜇) − cn(𝑢, 𝜇)zn(𝑢, 𝜇))
(1 − 𝜇)√1 − 𝜁

−
cos(𝛿)𝑏11
𝐽𝑔 sin(𝛿)

)

𝑀𝑥

+

(

 (cn(𝑢, 𝜇)dn(𝑢, 𝜇) + sn(𝑢, 𝜇)zn(𝑢, 𝜇))
√

1 + 𝜅√1 − 𝜁
−

cos(𝛿)𝑏21
𝐽𝑔 sin(𝛿)

)

𝑀𝑦

+

(

 (dn(𝑢, 𝜇)zn(𝑢, 𝜇) − 𝜇cn(𝑢, 𝜇)sn(𝑢, 𝜇))
√

𝜁 (1 − 𝜇)
−

cos(𝛿)𝑏31
𝐽𝑔 sin(𝛿)

)

𝑀𝑧,

with cos 𝛿 = cos 𝛿(𝜳̃ (𝒔)) = 𝐽ℎ
𝐽𝑔

. Concerning 𝐽𝑔 , 𝐽ℎ, 𝜓ℎ, we have
𝜕 𝐽𝑔
𝜕 𝐺 = 1, 𝜕 𝐽ℎ

𝜕 𝐻 = 1, 𝜕 𝜓ℎ
𝜕 ℎ = 1,

so that
[d𝐽𝑔

d𝑡

]

NC
=
[ d𝐺
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
,

[

d𝐽ℎ
d𝑡

]

NC
=
[ d𝐻
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
,

[

d𝜓ℎ
d𝑡

]

NC
=
[ dℎ
d𝑡

(

𝜳̃ (𝒔)
)

]

NC
,

i.e.
[d𝐽𝑔

d𝑡

]

NC
= 𝑏13𝑀𝑥 + 𝑏23𝑀𝑦 + 𝑏33𝑀𝑧,

[

d𝐽ℎ
d𝑡

]

NC
= (cos 𝛿 𝑏13 + sin 𝛿 𝑏12)𝑀𝑥 + (cos 𝛿 𝑏23 + sin 𝛿 𝑏22)𝑀𝑦 + (cos 𝛿 𝑏33 + sin 𝛿 𝑏32)𝑀𝑧,

[

d𝜓ℎ
d𝑡

]

NC
= − 𝑏11

𝐽𝑔 sin(𝛿)
𝑀𝑥 −

𝑏21
𝐽𝑔 sin(𝛿)

𝑀𝑦 −
𝑏31

𝐽𝑔 sin(𝛿)
𝑀𝑧.

Appendix B. Proof of Proposition 1

Consider the term 𝑓a given in (59). Its average over 𝜓𝑔 is equal to
⟨𝑓a⟩𝜓𝑔 = 1

2𝜋
a(𝜁 )dn

𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘
𝑝𝑖+𝑝𝑗

2 zn𝑤(𝑢, 𝜇),

 = ∫

2𝜋

0
sin𝑖(𝜓𝑔 + 𝛿 𝑔) cos𝑗 (𝜓𝑔 + 𝛿 𝑔)d𝜓𝑔 .

Consider the integral . By the variable change 𝑔 = 𝜓𝑔 + 𝛿 𝑔, we obtain

 = ∫

𝛿 𝑔+2𝜋
𝛿 𝑔

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 .

 can be written as the sum of two integrals, i.e.

 =
𝛿 𝑔+𝜋

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 +
𝛿 𝑔+2𝜋

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 .
∫𝛿 𝑔 ∫𝛿 𝑔+𝜋
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Setting 𝑔 = 𝑔̃ + 𝜋, the periodicity of the trigonometric functions implies

∫

𝛿 𝑔+2𝜋
𝛿 𝑔+𝜋

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 = (−1)𝑖+𝑗 ∫
𝛿 𝑔+𝜋

𝛿 𝑔
sin𝑖 𝑔̃ cos𝑗 𝑔̃d𝑔̃ .

Thus, if 𝑖 is odd and 𝑗 is even or vice versa, it follows

 = ∫

𝛿 𝑔+𝜋
𝛿 𝑔

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 − ∫

𝛿 𝑔+𝜋
𝛿 𝑔

sin𝑖 𝑔̃ cos𝑗 𝑔̃d𝑔̃ = 0.

Instead, if both 𝑖 and 𝑗 are odd,  can be written as

 = 2∫
𝛿 𝑔+𝜋

𝛿 𝑔
sin𝑖 𝑔 cos𝑗 𝑔d𝑔 . (89)

Similarly as before,  in (89) can expressed as the sum of two integrals

 = 2∫
𝛿 𝑔+ 𝜋

2

𝛿 𝑔
sin𝑖 𝑔 cos𝑗 𝑔d𝑔 + 2∫

𝛿 𝑔+𝜋
𝛿 𝑔+ 𝜋

2

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 .

Performing the variable change 𝑔̂ = 𝑔 − 𝜋
2 in the second integral, we get

2∫

𝛿 𝑔+𝜋
𝛿 𝑔+ 𝜋

2

sin𝑖 𝑔 cos𝑗 𝑔d𝑔 = 2∫
𝛿 𝑔+ 𝜋

2

𝛿 𝑔
(−1)𝑗 cos𝑖 𝑔̂ sin𝑗 𝑔̂d𝑔̂ .

Since 𝑗 is odd,

 = 2∫
𝛿+ 𝜋

2

𝛿 𝑔
sin𝑖 𝑔 cos𝑗 𝑔d𝑔 − 2∫

𝛿 𝑔+ 𝜋
2

𝛿 𝑔
cos𝑖 𝑔̂ sin𝑗 𝑔̂d𝑔̂ = 0.

This brings to the conclusion that if either 𝑖 or 𝑗 are odd, ⟨𝑓a⟩𝜓𝑔 = 0.
Now, suppose that 𝑖 and 𝑗 are both even. Since 𝑖 = 2𝚤, with 𝚤 ∈ N,

 = ∫

𝛿 𝑔+2𝜋
𝛿 𝑔

sin2𝚤 𝑔 cos𝑗 𝑔d𝑔 = ∫

𝛿 𝑔+2𝜋
𝛿 𝑔

(

1 − cos2 𝑔)𝚤 cos𝑗 𝑔 d𝑔 .

By the binomial theorem [see33, Section 1.2], it follows

 =
𝚤

∑

𝑑=0

(

𝚤
𝑑

)

(−1)𝑑 ∫

𝛿 𝑔+2𝜋
𝛿 𝑔

cos2𝑑+𝑗 𝑔 d𝑔 ,

where 2𝑑 + 𝑗 is an even number for every 𝑑 so that we can write 2𝑑 + 𝑗 = 2𝚥, with 𝚥 ∈ N. Consider the integral

̃ = ∫

𝛿 𝑔+2𝜋
𝛿 𝑔

cos2𝚥 𝑔 d𝑔 .

Applying the integration by parts, we get

̃ = 1
2𝚥

(

sin 𝑔 cos2𝚥−1 𝑔||
|

𝛿 𝑔+2𝜋
𝛿 𝑔 + (2𝚥 − 1)∫

𝛿 𝑔+2𝜋
𝛿 𝑔

cos2(𝚥−1) 𝑔 d𝑔
)

.

The same procedure can be applied to the integral

∫

𝛿 𝑔+2𝜋
𝛿 𝑔

cos2(𝚥−1) 𝑔 d𝑔 .

By recursively applying the integration by parts, it follows

̃ =

[

sin 𝑔 cos2𝚥−1 𝑔
2𝚥

+
𝚥−1
∏

𝑣=0

2𝚥 − 2𝑣 − 1
2(𝚥 − 𝑣)

𝑔 +
sin 𝑔
2𝚥

𝚥−1
∑

𝑞=1

𝑞
∏

𝑣=1

2𝚥 − 2𝑣 + 1
2(𝚥 − 𝑣)

cos2𝚥−1−2𝑞 𝑔

]𝛿 𝑔+2𝜋

𝛿 𝑔
.

Since sin(𝛿 𝑔 + 2𝜋) = sin(𝛿 𝑔) and cos(𝛿 𝑔 + 2𝜋) = cos(𝛿 𝑔),

̃ = 2𝜋
𝚥−1
∏

𝑣=0

2𝚥 − 2𝑣 − 1
2(𝚥 − 𝑣)

,

so that

 = 2𝜋
𝚤

∑

𝑑=0

(

𝚤
𝑑

)

(−1)𝑑
𝑑+ 𝑗

2−1
∏

𝑣=0

2𝑑 + 𝑗 − 2𝑣 − 1
2𝑑 + 𝑗 − 2𝑣 .

Since 𝑝𝑖 has the same parity as 𝑖 and 𝑝𝑗 has the same parity as 𝑗, when  is different from zero, they are both even numbers, which
implies that (𝑝𝑖 + 𝑝𝑗 )∕2 is an integer number. This concludes the proof of Proposition 1.

Appendix C. Proof of Proposition 2

Consider the integral
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 = ∫

4𝐾(𝜇)

0
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢, 𝜇)d𝑢,

with 𝑜, 𝑠, 𝑘,∈ N, 𝑝 ∈ Z and 𝑑 𝑛𝑘 defined in (23). It is possible to write  as the sum of two integrals:

 = 1 + 2,

with

1 = ∫

2𝐾(𝜇)

0
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢, 𝜇)d𝑢

and

2 = ∫

4𝐾(𝜇)

2𝐾(𝜇)
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢, 𝜇)d𝑢.

Functions dn(𝑢, 𝜇), and cn(𝑢, 𝜇) are even and periodic, while zn(𝑢, 𝜇) and sn(𝑢, 𝜇) are odd and periodic. The period of dn(𝑢, 𝜇) and
zn(𝑢, 𝜇) is 2𝐾(𝜇), while the period of cn(𝑢, 𝜇) and sn(𝑢, 𝜇) is 4𝐾(𝜇) [see34, Sections 120.01, 140.03]. Thus, performing the change of
ariables 𝑢 = −𝑢̃ + 4𝐾(𝜇) in 2 results in

2 = (−1)𝑠+1 ∫
2𝐾(𝜇)

0
dn𝑜(𝑢̃, 𝜇)sn𝑠(𝑢̃, 𝜇)cn𝑘(𝑢̃, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢̃, 𝜇)d𝑢̃.

It is straightforward that  = 0 if 𝑠 is even. On the contrary, if 𝑠 is odd it is possible to write

 = 2 (̃1 + ̃2
)

,

with

̃1 = ∫

𝐾(𝜇)

0
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢, 𝜇)d𝑢

and

̃1 = ∫

2𝐾(𝜇)

𝐾(𝜇)
dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢, 𝜇)d𝑢.

Performing the variables change 𝑢 = −𝑢̂ + 2𝐾(𝜇), and considering that

sn(−𝑢̂ + 2𝐾(𝜇), 𝜇) = sn(𝑢̂, 𝜇),
cn(−𝑢̂ + 2𝐾(𝜇), 𝜇) = −cn(𝑢̂, 𝜇),

(see [34, Sections 122.00, 122.04], it follows

̃2 = (−1)𝑘+1 ∫
𝐾(𝜇)

0
dn𝑜(𝑢̂, 𝜇)sn𝑠(𝑢̂, 𝜇)cn𝑘(𝑢̂, 𝜇)𝑑 𝑛𝑘𝑝zn(𝑢̂, 𝜇)d𝑢̂.

Thus,  = 0 if 𝑘 is even.
Now, consider the case in which both 𝑠 and 𝑘 are odd. Set

 = ∫ dn𝑜(𝑢, 𝜇)sn𝑠(𝑢, 𝜇)cn𝑘(𝑢, 𝜇)𝑑 𝑛𝑘𝑝d𝑢,

so that it is possible to write  as

 = ∫

4𝐾(𝜇)

0

d
d𝑢

zn(𝑢, 𝜇)d𝑢.

Since
d zn(𝑢, 𝜇)

d𝑢
= dn2(𝑢, 𝜇) − 𝐸(𝜇)

𝐾(𝜇)
,

by applying the integration by parts, it follows

 = [ zn(𝑢, 𝜇)]4𝐾(𝜇)
0 − ∫

4𝐾(𝜇)

0

(

dn2(𝑢, 𝜇) − 𝐸(𝜇)
𝐾(𝜇)

)

d𝑢

= −∫

4𝐾(𝜇)

0

(

dn2(𝑢, 𝜇) − 𝐸(𝜇)
𝐾(𝜇)

)

d𝑢,

as zn(0, 𝜇) = zn(4𝐾(𝜇), 𝜇) = 0. This concludes the proof of Proposition 2.

Appendix D. Fourier expansion

Here, we summarise the method described in [2,25] to perform the Fourier expansions of combinations of Jacobi elliptic
functions, specifically the Jacobi elliptic sine, the Jacobi elliptic cosine, and the Jacobi elliptic delta amplitude. Unless differently
stated, all the relations presented in this section previously appeared and were proven in [2,25]. To apply the method, the Jacobi
elliptic functions have to be expressed in terms of the Jacobi theta functions, defined as
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𝜗1(𝜉 ,𝜘) = 2
∞
∑

𝑖=0
(−1)𝑖𝑞(𝑖+1∕2)

2
sin((2𝑖 + 1)𝜉),

𝜗2(𝜉 ,𝜘) = 2
∞
∑

𝑖=0
𝑞(𝑖+1∕2)

2
cos((2𝑖 + 1)𝜉),

𝜗3(𝜉 ,𝜘) = 1 + 2
∞
∑

𝑖=1
𝑞𝑖

2
cos(2𝑖𝜉),

𝜗0(𝜉 ,𝜘) = 1 + 2
∞
∑

𝑖=1
(−1)𝑖𝑞𝑖

2
cos(2𝑖𝜉),

where 𝑞 is the Jacobi nome, i.e.

𝑞 = exp(2𝗂𝜏),
with 𝗂 the imaginary unit and

𝜏 = 𝗂
𝜋
2
𝐾(1 − 𝜘)
𝐾(𝜘)

,

with 𝐾(𝜘) the complete elliptic integral of the first kind. In particular, the relations

sn(𝜐,𝜘) = 1
𝜘1∕4

𝜗1(𝜉 ,𝜘)
𝜗0(𝜉 ,𝜘)

, (90)

cn(𝜐,𝜘) = (1 − 𝜘)1∕4

𝜘1∕4
𝜗2(𝜉 ,𝜘)
𝜗0(𝜁 ,𝜘)

, (91)

dn(𝜐,𝜘) = (1 − 𝜘)1∕4
𝜗3(𝜉 ,𝜘)
𝜗0(𝜉 ,𝜘)

, (92)

hold for

𝜉 = 𝜋
2𝐾(𝜘)

𝜐.

The method is suitable for computing the Fourier expansions of functions like

(𝜉 ,𝜘) =
∏

𝑖,𝑗 ,𝑘
𝜗𝑘𝑖 (𝜉 + 𝗂 𝑗 𝜍 ,𝜘)
𝜗𝑘0(𝜉 ,𝜘)

, (93)

with 𝑖 ∈ (1, 2, 3), 𝑗 ∈ (0, 1,−1), and 𝑘 ∈ N+. The expansion is given by

(𝜉 ,𝜘) =
+∞
∑

𝑘=−∞
𝐴𝑘 exp

( 2𝜋
𝑇

𝗂𝑘𝜉
)

, (94)

with 𝑇 the period of (𝜉 ,𝜘) and

𝐴𝑘 =
1
𝑇 ∫

𝑇

0
(𝜉 ,𝜘) exp

(

−2𝜋
𝑇

𝗂𝑘𝜉
)

d𝜉 . (95)

The integral (95) is determined through a technique based on the periodicity of the theta functions and the following two properties
f (𝜉 ,𝜘):

1. since 𝜗1 and 𝜗2 have period 2𝜋, and 𝜗3 and 𝜗0 have period 𝜋, (𝜉 ,𝜘) has either 𝑇 = 𝜋 or 𝑇 = 2𝜋;
2. since (𝜉 ,𝜘) possesses an exponentiation with base 𝜃0(𝜉 ,𝜘) at the denominator, it has complex poles 𝑗 𝜋 + (2𝑖 + 1)𝜏, with 𝑖, 𝑗

integers.

The technique consists of two main steps:

(1) the computation of the quadrature

𝑘 = ∮𝛤
(𝜉 ,𝜘) exp

(

−2𝜋
𝑇

𝗂𝑘𝜉
)

d𝜉 , (96)

where 𝛤 = 𝖠𝖡𝖢𝖣𝖠 is the closed path in the complex field with
𝖠 = 0, 𝖡 = 𝜋 , 𝖢 = 𝜋 + 2𝜏 , 𝖣 = 2𝜏 , if 𝑇 = 𝜋 ,
𝖠 = 0, 𝖡 = 𝜋 , 𝖢 = 2𝜋 + 2𝜏 , 𝖣 = 2𝜏 , if 𝑇 = 2𝜋 .

(2) the computation of (95) as

𝐴𝑘 =
1
𝑇

𝑘

1 −𝑄(𝑞)𝑞 −2𝜋
𝑇 𝑘

,

where

𝑄(𝑞) = (𝜉 + 2𝜏 ,𝜘)
(𝜉 ,𝜘) . (97)
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The quadrature 𝑘 in (96) is determined by applying Cauchy’s theorem, for which

𝑘 = 2𝜋𝗂
∑

r es
where r es are the residues of the integrand (𝜉 ,𝜘) exp (−2𝜋𝗂𝑘𝜉∕𝑇 ) at its poles inside the closed path 𝛤 . We have

∑

r es =
{

r es|𝜉=𝜏 if 𝑇 = 𝜋 ,
r es|𝜉=𝜏 + r es|𝜉=𝜋+𝜏 if 𝑇 = 2𝜋 .

Expressing

(𝜉 ,𝜘) exp
(

−2𝜋
𝑇

𝗂𝑘𝜉
)

= 𝐹
𝐺𝑝

,

with 𝑝 ∈ N+ the exponent of 𝜃0(𝜉 ,𝜘) at the denominator of (𝜉 ,𝜘), Abad et al. [25] gives the recurrent formula to determine the
expression of the residue, obtained by applying L’Hôpital’s rule:

r es
( 𝐹
𝐺𝑜

)

= 1
(𝑜 − 1)𝐺′

(

r es
(

𝐹
𝐺𝑜−1

))′
, 𝑜 > 1,

r es
(𝐹
𝐺

)

= 𝐹
𝐺′ ,

(98)

where the subscript ′ is here used to represent the derivative with respect to 𝜉. In particular, to compute the derivatives in (98),
consider that

𝜃′1(𝜉 ,𝜘) =
2𝐾(𝜘)
𝜋 𝜃0(𝜉 ,𝜘)

(

𝜃1(𝜉 ,𝜘)𝜃0(𝜉 ,𝜘)zn (𝜐,𝜘) +
√

1 − 𝜘 𝜃2(𝜉 ,𝜘)𝜃3(𝜉 ,𝜘)
)

,

𝜃′2(𝜉 ,𝜘) =
2𝐾(𝜘)
𝜋 𝜃0(𝜉 ,𝜘)

(

𝜃2(𝜉 ,𝜘)𝜃0(𝜉 ,𝜘)zn (𝜐,𝜘) − 𝜃1(𝜉 ,𝜘)𝜃3(𝜉 ,𝜘)
)

,

𝜃′3(𝜉 ,𝜘) =
2𝐾(𝜘)
𝜋 𝜃0(𝜉 ,𝜘)

(

𝜃3(𝜉 ,𝜘)𝜃0(𝜉 ,𝜘)zn (𝜐,𝜘) −
√

𝜘 𝜃1(𝜉 ,𝜘)𝜃2(𝜉 ,𝜘)
)

,

𝜃′0(𝜉 ,𝜘) =
2𝐾(𝜘)
𝜋

zn (𝜐,𝜘) 𝜃0(𝜉 ,𝜘),
with 𝜐 = 2𝐾(𝜘)𝜉∕𝜋. To evaluate the residues at the poles 𝜉 = 𝜏 and 𝜉 = 𝜋 + 𝜏, the following relations are useful:

𝜃1(𝜉 + 𝜏 + 𝗂𝑗 𝜍 ,𝜘) = 𝗂 𝑞−
1
4 exp(𝑗 𝜎) exp (−𝗂𝜉) 𝜃0(𝜉 + 𝗂𝑗 𝜍 ,𝜘),

𝜃2(𝜉 + 𝜏 + 𝗂𝑗 𝜍 ,𝜘) = 𝑞−
1
4 exp(𝑗 𝜎) exp (−𝗂𝜉) 𝜃3(𝜉 + 𝗂𝑗 𝜍 ,𝜘),

𝜃3(𝜉 + 𝜏 + 𝗂𝑗 𝜍 ,𝜘) = 𝑞−
1
4 exp(𝑗 𝜎) exp (−𝗂𝜉) 𝜃2(𝜉 + 𝗂𝑗 𝜍 ,𝜘),

𝜃0(𝜉 + 𝜏 + 𝗂𝑗 𝜍 ,𝜘) = 𝗂 𝑞−
1
4 exp(𝑗 𝜎) exp (−𝗂𝜉) 𝜃1(𝜉 + 𝗂𝑗 𝜍 ,𝜘),

zn
(

2𝐾(𝜘)(𝜉 + 𝜏 + 𝗂𝑗 𝜍)
𝜋

,𝜘
)

= zn
(

𝜐 + 𝗂
2𝐾(𝜘)𝑗 𝜍

𝜋
,𝜘

)

− 𝗂𝜋
𝐾(𝜘)

,

𝜃1(0,𝜘) = 𝜃1(𝜋 ,𝜘) = 0,

𝜃2(0,𝜘) = −𝜃2(𝜋 ,𝜘) = 𝜘
1
4

√

2𝐾(𝜘)
𝜋

,

𝜃3(0,𝜘) = 𝜃3(𝜋 ,𝜘) =
√

2𝐾(𝜘)
𝜋

,

𝜃0(0,𝜘) = 𝜃0(𝜋 ,𝜘) = (1 − 𝜘)
1
4

√

2𝐾(𝜘)
𝜋

,

zn(0,𝜘) = zn(2𝐾(𝜘),𝜘) = 0,
with 𝑗 ∈ (0, 1,−1) (see Byrd and Friedman [34], Section 141.01; Olver et al. [33], Section 20.2). Instead, the function of the nome
𝑄(𝑞) in (97) can be determined using the periodicity properties of the theta functions, i.e.

𝜃1(𝜉 + 2𝑗 𝜏) = exp(−2𝑗𝗂𝜉)
𝑞𝑗

(−1)𝑗𝜃1(𝜉 ,𝜘),

𝜃2(𝜉 + 2𝑗 𝜏) = exp(−2𝑗𝗂𝜉)
𝑞𝑗

𝜃2(𝜉 ,𝜘),

𝜃3(𝜉 + 2𝑗 𝜏) = exp(−2𝑗𝗂𝜉)
𝑞𝑗

𝜃3(𝜉 ,𝜘),

𝜃0(𝜉 + 2𝑗 𝜏) = exp(−2𝑗𝗂𝜉)
𝑞𝑗

(−1)𝑗𝜃0(𝜉 ,𝜘),

𝑗 ∈ Z. Note that the method can be applied to evaluate all the coefficients 𝐴0 of the Fourier expansions (94) if 𝑄(𝑞) ≠ 1. On the
ontrary, if 𝑄(𝑞) = 1, the method can be used for all the terms, but 𝐴0, which has to be classically computed. This can be easily done
y re-writing the integrand of 𝐴 in terms of the Jacobi elliptic functions and employing the support of a symbolic manipulator.
0
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In the problem of interest, it is necessary to compute the Fourier expansions of combinations of the elements 𝑏𝑖𝑗 in (25)–(33),
potentially multiplied by one of the terms (𝑆𝑥, 𝑆𝑦, 𝑆𝑧) in (40)–(42). Vallejo [2] gives the expression of the elements 𝑏𝑖𝑗 suitable for
applying the method:

𝑏11 = 𝗂
𝐵11 exp(𝗂𝜓𝑔) − 𝐵21 exp(−𝗂𝜓𝑔)

2
,

𝑏12 =
𝐵11 exp(𝗂𝜓𝑔) + 𝐵21 exp(−𝗂𝜓𝑔)

2
,

𝑏13 = 𝐵13,

𝑏21 = 𝗂
𝐵12 exp(𝗂𝜓𝑔) − 𝐵22 exp(−𝗂𝜓𝑔)

2
,

𝑏22 =
𝐵12 exp(𝗂𝜓𝑔) + 𝐵22 exp(−𝗂𝜓𝑔)

2
,

𝑏23 = 𝐵23,

𝑏31 = 𝗂
𝐵13 exp(𝗂𝜓𝑔) − 𝐵23 exp(−𝗂𝜓𝑔)

2
,

𝑏32 =
𝐵13 exp(𝗂𝜓𝑔) + 𝐵23 exp(−𝗂𝜓𝑔)

2
,

𝑏33 = 𝐵33,

where

𝐵11 = 𝗂

√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(𝜇(1 − 𝜇)) 14
𝜃0(𝗂𝜍̂ , 𝜇)

𝜃1(𝜓𝑙 − 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵12 = 𝗂

√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(

𝜇(1 − 𝜇)2)
1
4

𝜃0(𝗂𝜍̂ , 𝜇)
𝜃2(𝜓𝑙 − 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵13 = −
√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(

𝜇2(1 − 𝜇))
1
4

𝜃0(𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 − 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵21 = −𝗂
√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(𝜇(1 − 𝜇)) 14
𝜃0(𝗂𝜍̂ , 𝜇)

𝜃1(𝜓𝑙 + 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵22 = −𝗂
√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(

𝜇(1 − 𝜇)2)
1
4

𝜃0(𝗂𝜍̂ , 𝜇)
𝜃2(𝜓𝑙 + 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵23 = −
√

2𝐾(𝜇)
𝜋(𝜅 + 𝜇)

(

𝜇2(1 − 𝜇))
1
4

𝜃0(𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 + 𝗂𝜍̂ , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵31 =
(𝜇(1 − 𝜇)) 14
√

𝜇 + 𝜅

𝜃2(𝜓𝑙 , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵32 = −𝜇
1
4
√

1 + 𝜅
√

𝜇 + 𝜅

𝜃1(𝜓𝑙 , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

𝐵33 = (1 − 𝜇) 14
√

𝜅
𝜇 + 𝜅

𝜃3(𝜓𝑙 , 𝜇)
𝜃0(𝜓𝑙 , 𝜇)

,

and

𝜍̂ = 𝜋
2𝐾(𝜇)

𝐹
(

ar ct an
(√

𝜅
𝜇

)

, 1 − 𝜇
)

.

In particular, to evaluate the coefficients of the Fourier expansions, it is convenient to use the following equations:

sn
(

𝗂
2𝐾(𝜇)𝜍̂
𝜋

, 𝜇
)

= 𝗂

√

𝜅
𝜇
,

cn
(

𝗂
2𝐾(𝜇)𝜍̂
𝜋

, 𝜇
)

=
√

1
1 − 𝜁 ,

dn
(

𝗂
2𝐾(𝜇)𝜍̂

, 𝜇
)

=
√

1 + 𝜅 ,

𝜋
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zn
(

𝗂
2𝐾(𝜇)𝜍̂
𝜋

, 𝜇
)

= −𝗂
√

1 + 𝜅 (𝛱(−𝑘, 𝜇) −𝐾(𝜇))
√

𝜁 𝐾(𝜇)
,

cn
(

2𝐾(𝜇)𝜍̂
𝜋

, 1 − 𝜇
)

=
√

1 − 𝜁 ,

sn
(

2𝐾(𝜇)𝜍̂
𝜋

, 1 − 𝜇
)

=
√

𝜁 .

The method described in [2,25] can be applied to expand the combinations of Jacobi elliptic sine, cosine and delta amplitude
contained in the elements 𝑆𝑥, 𝑆𝑦, 𝑆𝑧, with 𝜘 = 𝜇 and 𝜉 = 𝜓𝑙. However, the same method does not apply to the Jacobi zeta function,
herefore, one needs to directly replace it with its own Fourier expansion, i.e.

zn(𝑢, 𝜇) = 2𝜋
𝐾(𝜇)

∞
∑

𝑘=1

𝑞𝑘

1 − 𝑞2𝑘 sin(2𝑘𝜓𝑙),

(see [34, Section 905.01]).

Appendix E. Attitude equations of motion in Sadov-like non-singular variables

With the variables 𝒔𝐼 = (𝜁 , 𝐽𝑔 , 𝐽ℎ, 𝜓𝑙 , 𝐼5, 𝐼6, 𝐼7) introduced in Section 5.3, the equations of motion for the attitude dynamics can
be shortly written as

d𝒔𝐼
d𝑡

= 𝐀𝐼∇𝒔𝐼𝛷 + 𝐀𝐼∇𝒔𝐼 + 𝐁𝐼𝑴

with 𝛷 in (8),  the potential energy of a conservative external torque and 𝑴 an external non-conservative torque. 𝐀𝐼 is an
anti-symmetric matrix equal to

𝐀𝐼 = 𝐓𝐴 − 𝐓T
𝐴,

with 𝐓𝐴 = (𝖺𝑖𝑗 )𝑖=1…7,𝑗=1…7 an upper triangular matrix whose non-null elements are

𝖺14 = − 𝜋
𝐽𝑔

𝜁
1
2

√

1 + 𝜅
1

𝐾(𝜇)
,

𝖺15 =
2 (𝛱(−𝜅 , 𝜇) − (1 − 𝜁 )𝐾(𝜇))

𝐽𝑔𝐾(𝜇)
,

𝖺25 = −1,
𝖺35 = − 𝐽ℎ

𝐽 𝑔 ,
𝖺36 = 𝐼7,

𝖺37 = −𝐼6,

𝖺56 =
𝐼6 + 𝐼7 ar ct an

(

𝐼7
𝐼6

)

𝐽 𝑔 ,

𝖺57 =
𝐼7 − 𝐼6 ar ct an

(

𝐼7
𝐼6

)

𝐽 𝑔 ,

𝖺67 = 𝐽ℎ.

We recall that 𝜇 = (1 − 𝜁 )𝜅∕𝜁 is a function of the variable 𝜁 and 𝜅 is the constant defined in (7). 𝐁𝐼 is equal to

𝐁𝐼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2𝜁
𝐽𝑔
𝑏13 − 2𝜁 (1−𝜇)

𝐽𝑔 (1+𝜅)
𝑏23

2(1−𝜁 )
𝐽𝑔

𝑏33
𝑏13 𝑏23 𝑏33

𝐽ℎ
𝐽𝑔
𝑏13 + 𝛥𝖻31

𝐽ℎ
𝐽𝑔
𝑏23 + 𝛥𝖻32

𝐽ℎ
𝐽𝑔
𝑏33 + 𝛥𝖻33

− 𝜋 𝑆𝑥
2𝐽𝑔𝐾(𝜇)(1−𝜇) − 𝜋 𝑆𝑦

2𝐽𝑔𝐾(𝜇) − 𝜋 𝑆𝑧
2𝐽𝑔𝐾(𝜇)(1−𝜇)

 𝑆𝑥
1−𝜇 + +𝛥𝖻51  𝑆𝑦 + 𝛥𝖻52

 𝑆𝑧
1−𝜇 + 𝛥𝖻53

𝐼6
𝐽𝑔
𝑏13 + 𝛥𝖻61

𝐼6
𝐽𝑔
𝑏23 + 𝛥𝖻62

𝐼6
𝐽𝑔
𝑏33 + 𝛥𝖻63

𝐼7
𝐽𝑔
𝑏13 + 𝛥𝖻71

𝐼7
𝐽𝑔
𝑏23 + 𝛥𝖻72

𝐼7
𝐽𝑔
𝑏33 + 𝛥𝖻73

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with 𝑏13 in (27), 𝑏23 in (30), 𝑏33 in (33), and

𝛥𝖻31 = −

√

𝐼26 + 𝐼27
(

𝐾1 cos
(

𝐼5 −
𝐽ℎ ar ct an

(

𝐼7
)

+ 𝛿 𝑔
)

−𝐾2 sin
(

𝐼5 −
𝐽ℎ ar ct an

(

𝐼7
)

+ 𝛿 𝑔
)

)

,

𝐽𝑔 𝐽𝑔 𝐼6 𝐽𝑔 𝐼6
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𝛥𝖻32 = −

√

𝐼26 + 𝐼27
𝐽𝑔

(

𝐾3 cos
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−𝐾4 sin
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

,

𝛥𝖻33 = −

√

𝐼26 + 𝐼27
𝐽𝑔

𝐾5 cos
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

,

𝛥𝖻51 = −

√

𝐼26 + 𝐼27
𝐽 2
𝑔

(

𝐾1 cos
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−𝐾2 sin
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

ar ct an
(

𝐼7
𝐼6

)

,

𝛥𝖻52 = −

√

𝐼26 + 𝐼27
𝐽 2
𝑔

(

𝐾3 cos
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−𝐾4 sin
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

ar ct an
(

𝐼7
𝐼6

)

,

𝛥𝖻53 = −

√

𝐼26 + 𝐼27
𝐽 2
𝑔

𝐾5 cos
(

𝐼5 −
𝐽ℎ
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

ar ct an
(

𝐼7
𝐼6

)

,

𝛥𝖻61 =
𝐾1
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

cos
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

+
(

𝐽ℎ
𝐽𝑔

− 1
)

cos
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

−
𝐾2
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

sin
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

+
(

𝐽ℎ
𝐽𝑔

− 1
)

sin
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

,

𝛥𝖻62 =
𝐾3
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

cos
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

+
(

𝐽ℎ
𝐽𝑔

− 1
)

cos
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

−
𝐾4
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

sin
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

+
(

𝐽ℎ
𝐽𝑔

− 1
)

sin
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

,

𝛥𝖻63 =
𝐾5
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

cos
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

+
(

𝐽ℎ
𝐽𝑔

− 1
)

cos
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

,

𝛥𝖻71 =
𝐾1
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

sin
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−
(

𝐽ℎ
𝐽𝑔

− 1
)

sin
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

+
𝐾2
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

cos
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−
(

𝐽ℎ
𝐽𝑔

− 1
)

cos
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

,

𝛥𝖻72 =
𝐾3
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

sin
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−
(

𝐽ℎ
𝐽𝑔

− 1
)

sin
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

+
𝐾4
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

cos
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−
(

𝐽ℎ
𝐽𝑔

− 1
)

cos
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

,

𝛥𝖻73 =
𝐾5
2

(

(

𝐽ℎ
𝐽𝑔

+ 1
)

sin
(

𝐼5 −
𝐽ℎ − 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

−
(

𝐽ℎ
𝐽𝑔

− 1
)

sin
(

𝐼5 −
𝐽ℎ + 𝐽𝑔
𝐽𝑔

ar ct an
(

𝐼7
𝐼6

)

+ 𝛿 𝑔
)

)

,

where

𝐾1 = −
√

𝜁cn(𝑢, 𝜇)dn(𝑢, 𝜇)
√

𝑑 𝑛𝑘
,

𝐾2 = −
√

1 + 𝜅sn(𝑢, 𝜇)
√

𝑑 𝑛𝑘
,

𝐾3 =

√

1 + 𝜅√𝜁sn(𝑢, 𝜇)dn(𝑢, 𝜇)
√

𝑑 𝑛𝑘
,

𝐾4 = −cn(𝑢, 𝜇)
√

𝑑 𝑛𝑘
,

𝐾5 =
√

1 − 𝜁
√

𝑑 𝑛𝑘.

and 𝛿 𝑔, 𝑑 𝑛𝑘 and 𝑢 and are given in (22), (20) and (23), respectively. If 𝐼6 = 𝐼7 = 0, the term ar ct an(𝐼7∕𝐼6) becomes undefined.
owever, in the equations of motion, this term is always multiplied by 𝐼6, 𝐼7, or 𝐽ℎ − 𝐽𝑔 , whose value is equal to zero when
= 𝐼 = 0. Since ar ct an(𝐼 ∕𝐼 ) = 𝜓 , which has a finite value, it follows that
6 7 7 6 ℎ
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𝐼6 ar ct an(𝐼7∕𝐼6) = 0,
𝐼7 ar ct an(𝐼7∕𝐼6) = 0,
(𝐽ℎ − 𝐽𝑔) ar ct an(𝐼7∕𝐼6) = 0,

(𝐽ℎ − 𝐽𝑔) sin
(𝐽𝑔 + 𝐽ℎ

𝐽𝑔
ar ct an(𝐼7∕𝐼6)

)

= 0,

(𝐽ℎ − 𝐽𝑔) cos
(𝐽𝑔 + 𝐽ℎ

𝐽𝑔
ar ct an(𝐼7∕𝐼6)

)

= 0,

when 𝐼6 = 𝐼7 = 0.

Data availability

Data will be made available on request.
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